Newspace parameters
Level: | \( N \) | \(=\) | \( 583 = 11 \cdot 53 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 583.s (of order \(65\), degree \(48\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.65527843784\) |
Analytic rank: | \(0\) |
Dimension: | \(2496\) |
Relative dimension: | \(52\) over \(\Q(\zeta_{65})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{65}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15.1 | −0.609490 | − | 2.75799i | 0.0232631 | − | 0.320316i | −5.42130 | + | 2.51914i | −0.949471 | + | 1.92046i | −0.897607 | + | 0.131070i | 0.434677 | − | 0.997856i | 6.82210 | + | 8.92790i | 2.86646 | + | 0.418564i | 5.87531 | + | 1.44813i |
15.2 | −0.559594 | − | 2.53221i | −0.229369 | + | 3.15824i | −4.28519 | + | 1.99122i | −0.00345901 | + | 0.00699641i | 8.12569 | − | 1.18652i | 1.81697 | − | 4.17108i | 4.29103 | + | 5.61556i | −6.95337 | − | 1.01534i | 0.0196520 | + | 0.00484378i |
15.3 | −0.550408 | − | 2.49064i | 0.147978 | − | 2.03754i | −4.08659 | + | 1.89893i | 1.51759 | − | 3.06958i | −5.15623 | + | 0.752919i | 0.760141 | − | 1.74500i | 3.88142 | + | 5.07952i | −1.16115 | − | 0.169553i | −8.48050 | − | 2.09026i |
15.4 | −0.541423 | − | 2.44998i | 0.193352 | − | 2.66232i | −3.89553 | + | 1.81015i | −0.110775 | + | 0.224061i | −6.62732 | + | 0.967730i | −1.79525 | + | 4.12122i | 3.49713 | + | 4.57660i | −4.08202 | − | 0.596062i | 0.608922 | + | 0.150086i |
15.5 | −0.531942 | − | 2.40708i | −0.0115479 | + | 0.159005i | −3.69732 | + | 1.71805i | 1.06602 | − | 2.15620i | 0.388881 | − | 0.0567850i | 0.610591 | − | 1.40169i | 3.10874 | + | 4.06832i | 2.94337 | + | 0.429795i | −5.75721 | − | 1.41902i |
15.6 | −0.506102 | − | 2.29015i | −0.141708 | + | 1.95121i | −3.17490 | + | 1.47530i | 0.560272 | − | 1.13324i | 4.54029 | − | 0.662980i | −0.269187 | + | 0.617952i | 2.13739 | + | 2.79714i | −0.818638 | − | 0.119539i | −2.87885 | − | 0.709572i |
15.7 | −0.498228 | − | 2.25452i | −0.214972 | + | 2.96000i | −3.02089 | + | 1.40373i | −1.50022 | + | 3.03443i | 6.78049 | − | 0.990097i | −1.94321 | + | 4.46088i | 1.86606 | + | 2.44206i | −5.74687 | − | 0.839166i | 7.58865 | + | 1.87043i |
15.8 | −0.482086 | − | 2.18148i | 0.248217 | − | 3.41776i | −2.71269 | + | 1.26052i | −0.615674 | + | 1.24530i | −7.57544 | + | 1.10618i | 1.02837 | − | 2.36075i | 1.34461 | + | 1.75965i | −8.65097 | − | 1.26323i | 3.01340 | + | 0.742738i |
15.9 | −0.473522 | − | 2.14273i | −0.0225380 | + | 0.310331i | −2.55330 | + | 1.18645i | 0.319160 | − | 0.645552i | 0.675627 | − | 0.0986559i | −1.62636 | + | 3.73352i | 1.08655 | + | 1.42194i | 2.87272 | + | 0.419479i | −1.53437 | − | 0.378188i |
15.10 | −0.457117 | − | 2.06849i | −0.0710262 | + | 0.977978i | −2.25595 | + | 1.04828i | −1.07149 | + | 2.16727i | 2.05540 | − | 0.300133i | 0.552635 | − | 1.26864i | 0.627167 | + | 0.820757i | 2.01712 | + | 0.294543i | 4.97278 | + | 1.22568i |
15.11 | −0.451515 | − | 2.04314i | 0.0736398 | − | 1.01396i | −2.15681 | + | 1.00222i | −1.70356 | + | 3.44573i | −2.10492 | + | 0.307364i | 0.0110242 | − | 0.0253074i | 0.480602 | + | 0.628952i | 1.94582 | + | 0.284131i | 7.80930 | + | 1.92482i |
15.12 | −0.361123 | − | 1.63411i | 0.109823 | − | 1.51219i | −0.726158 | + | 0.337427i | 0.473717 | − | 0.958169i | −2.51074 | + | 0.366621i | −0.732224 | + | 1.68091i | −1.21859 | − | 1.59474i | 0.693874 | + | 0.101320i | −1.73682 | − | 0.428088i |
15.13 | −0.340607 | − | 1.54127i | −0.183861 | + | 2.53163i | −0.445764 | + | 0.207135i | 0.844150 | − | 1.70743i | 3.96456 | − | 0.578910i | 0.0425969 | − | 0.0977865i | −1.44568 | − | 1.89193i | −3.40682 | − | 0.497468i | −2.91914 | − | 0.719504i |
15.14 | −0.328537 | − | 1.48666i | −0.0478455 | + | 0.658797i | −0.288461 | + | 0.134040i | 1.52396 | − | 3.08246i | 0.995124 | − | 0.145309i | 1.38242 | − | 3.17351i | −1.55480 | − | 2.03472i | 2.53679 | + | 0.370426i | −5.08324 | − | 1.25291i |
15.15 | −0.319539 | − | 1.44594i | 0.138896 | − | 1.91249i | −0.174893 | + | 0.0812681i | 0.133857 | − | 0.270747i | −2.80974 | + | 0.410282i | 0.965243 | − | 2.21584i | −1.62481 | − | 2.12635i | −0.669826 | − | 0.0978088i | −0.434257 | − | 0.107035i |
15.16 | −0.272733 | − | 1.23414i | −0.176989 | + | 2.43700i | 0.365031 | − | 0.169621i | −0.589979 | + | 1.19333i | 3.05587 | − | 0.446223i | −0.576344 | + | 1.32307i | −1.84370 | − | 2.41280i | −2.93914 | − | 0.429178i | 1.63364 | + | 0.402657i |
15.17 | −0.259744 | − | 1.17536i | −0.146596 | + | 2.01852i | 0.499736 | − | 0.232215i | −1.33505 | + | 2.70036i | 2.41057 | − | 0.351995i | 2.02132 | − | 4.64019i | −1.86445 | − | 2.43996i | −1.08441 | − | 0.158347i | 3.52068 | + | 0.867770i |
15.18 | −0.248897 | − | 1.12628i | 0.177543 | − | 2.44463i | 0.607192 | − | 0.282146i | −1.65787 | + | 3.35330i | −2.79753 | + | 0.408498i | −1.33124 | + | 3.05603i | −1.86957 | − | 2.44666i | −2.97616 | − | 0.434584i | 4.18940 | + | 1.03259i |
15.19 | −0.244851 | − | 1.10797i | 0.175706 | − | 2.41934i | 0.646100 | − | 0.300226i | 1.17618 | − | 2.37902i | −2.72359 | + | 0.397702i | −0.0903727 | + | 0.207462i | −1.86874 | − | 2.44557i | −2.85384 | − | 0.416721i | −2.92388 | − | 0.720671i |
15.20 | −0.194638 | − | 0.880753i | −0.0162284 | + | 0.223452i | 1.07591 | − | 0.499946i | 1.89522 | − | 3.83339i | 0.199965 | − | 0.0291991i | −2.03274 | + | 4.66642i | −1.74507 | − | 2.28372i | 2.91885 | + | 0.426215i | −3.74515 | − | 0.923097i |
See next 80 embeddings (of 2496 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
53.d | even | 13 | 1 | inner |
583.s | even | 65 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 583.2.s.a | ✓ | 2496 |
11.c | even | 5 | 1 | inner | 583.2.s.a | ✓ | 2496 |
53.d | even | 13 | 1 | inner | 583.2.s.a | ✓ | 2496 |
583.s | even | 65 | 1 | inner | 583.2.s.a | ✓ | 2496 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
583.2.s.a | ✓ | 2496 | 1.a | even | 1 | 1 | trivial |
583.2.s.a | ✓ | 2496 | 11.c | even | 5 | 1 | inner |
583.2.s.a | ✓ | 2496 | 53.d | even | 13 | 1 | inner |
583.2.s.a | ✓ | 2496 | 583.s | even | 65 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(583, [\chi])\).