gp: [N,k,chi] = [583,2,Mod(213,583)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(583, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("583.213");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [104,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{104} + 4 T_{2}^{103} + 47 T_{2}^{102} + 176 T_{2}^{101} + 1217 T_{2}^{100} + 4132 T_{2}^{99} + \cdots + 143496441 \)
T2^104 + 4*T2^103 + 47*T2^102 + 176*T2^101 + 1217*T2^100 + 4132*T2^99 + 22263*T2^98 + 69450*T2^97 + 323231*T2^96 + 943265*T2^95 + 3958680*T2^94 + 10934146*T2^93 + 42318126*T2^92 + 111080901*T2^91 + 402044808*T2^90 + 1006128543*T2^89 + 3438953648*T2^88 + 8230518038*T2^87 + 26749564853*T2^86 + 61350506461*T2^85 + 190526078125*T2^84 + 419016680912*T2^83 + 1247757056947*T2^82 + 2632716102332*T2^81 + 7538312431345*T2^80 + 15263532139316*T2^79 + 42122195739327*T2^78 + 81816826993511*T2^77 + 217992122709150*T2^76 + 405763839981395*T2^75 + 1045201974069569*T2^74 + 1862003614610249*T2^73 + 4643609987441635*T2^72 + 7903767413284729*T2^71 + 19112695007592071*T2^70 + 31003885641704363*T2^69 + 72799190205963126*T2^68 + 112156646341037909*T2^67 + 256153950470924637*T2^66 + 373206408586854678*T2^65 + 831337217221091114*T2^64 + 1139313690006538357*T2^63 + 2484844101875343925*T2^62 + 3180680453252680657*T2^61 + 6826316079437303378*T2^60 + 8084974803979632957*T2^59 + 17207955856848988935*T2^58 + 18647732139193405013*T2^57 + 39857993443853160303*T2^56 + 39025980507356994883*T2^55 + 85193961793623540150*T2^54 + 74266548611775897722*T2^53 + 168721701133567461009*T2^52 + 128272063356397768990*T2^51 + 310096624347373375986*T2^50 + 199886356853927159919*T2^49 + 530307313032476621770*T2^48 + 279373883396437364135*T2^47 + 846187091479086167871*T2^46 + 346674797063014923536*T2^45 + 1260422336749151951336*T2^44 + 369635372582920897027*T2^43 + 1748520205094270126229*T2^42 + 315454161062697946209*T2^41 + 2263480154487840436769*T2^40 + 173322746624043258118*T2^39 + 2719266289551417615333*T2^38 - 50117521299912120245*T2^37 + 3018264216057579130331*T2^36 - 307508895392791357668*T2^35 + 3083706168998714575821*T2^34 - 532642177287304587499*T2^33 + 2875371329545562704311*T2^32 - 647207380035160886083*T2^31 + 2405232005104611857344*T2^30 - 635417667655468356310*T2^29 + 1792666333114032842946*T2^28 - 516344460130064177403*T2^27 + 1162443187072793419246*T2^26 - 333644197546683530463*T2^25 + 624384191244481796940*T2^24 - 160636417068314690525*T2^23 + 261177374761441295980*T2^22 - 55656565930597500354*T2^21 + 82555062625230305316*T2^20 - 14752718200420762267*T2^19 + 20274979990067282045*T2^18 - 3733841867405056712*T2^17 + 4289314913865193954*T2^16 - 911635816318411716*T2^15 + 748711021663246985*T2^14 - 135607033102893632*T2^13 + 94622701236206628*T2^12 - 13409789245582953*T2^11 + 9843951432993809*T2^10 - 1250358993317998*T2^9 + 889878803164936*T2^8 - 109253803797928*T2^7 + 65749740519129*T2^6 - 4072802213067*T2^5 + 2678926910212*T2^4 + 163519567200*T2^3 + 67733199468*T2^2 + 4816815795*T2 + 143496441
acting on \(S_{2}^{\mathrm{new}}(583, [\chi])\).