Properties

Label 583.2
Level 583
Weight 2
Dimension 13335
Nonzero newspaces 12
Newform subspaces 32
Sturm bound 56160
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 583 = 11 \cdot 53 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 32 \)
Sturm bound: \(56160\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(583))\).

Total New Old
Modular forms 14560 14255 305
Cusp forms 13521 13335 186
Eisenstein series 1039 920 119

Trace form

\( 13335 q - 207 q^{2} - 210 q^{3} - 219 q^{4} - 216 q^{5} - 224 q^{6} - 212 q^{7} - 223 q^{8} - 217 q^{9} - 222 q^{10} - 237 q^{11} - 492 q^{12} - 230 q^{13} - 240 q^{14} - 230 q^{15} - 231 q^{16} - 222 q^{17}+ \cdots + 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(583))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
583.2.a \(\chi_{583}(1, \cdot)\) 583.2.a.a 1 1
583.2.a.b 1
583.2.a.c 1
583.2.a.d 2
583.2.a.e 2
583.2.a.f 6
583.2.a.g 8
583.2.a.h 10
583.2.a.i 12
583.2.b \(\chi_{583}(529, \cdot)\) 583.2.b.a 2 1
583.2.b.b 2
583.2.b.c 2
583.2.b.d 6
583.2.b.e 8
583.2.b.f 24
583.2.f \(\chi_{583}(76, \cdot)\) 583.2.f.a 4 2
583.2.f.b 100
583.2.g \(\chi_{583}(213, \cdot)\) 583.2.g.a 4 4
583.2.g.b 4
583.2.g.c 96
583.2.g.d 104
583.2.j \(\chi_{583}(158, \cdot)\) 583.2.j.a 208 4
583.2.k \(\chi_{583}(89, \cdot)\) 583.2.k.a 252 12
583.2.k.b 300
583.2.l \(\chi_{583}(30, \cdot)\) 583.2.l.a 416 8
583.2.p \(\chi_{583}(78, \cdot)\) 583.2.p.a 240 12
583.2.p.b 288
583.2.q \(\chi_{583}(21, \cdot)\) 583.2.q.a 48 24
583.2.q.b 1200
583.2.s \(\chi_{583}(15, \cdot)\) 583.2.s.a 2496 48
583.2.t \(\chi_{583}(4, \cdot)\) 583.2.t.a 2496 48
583.2.x \(\chi_{583}(2, \cdot)\) 583.2.x.a 4992 96

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(583))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(583)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(53))\)\(^{\oplus 2}\)