Defining parameters
Level: | \( N \) | = | \( 583 = 11 \cdot 53 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 12 \) | ||
Newform subspaces: | \( 32 \) | ||
Sturm bound: | \(56160\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(583))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14560 | 14255 | 305 |
Cusp forms | 13521 | 13335 | 186 |
Eisenstein series | 1039 | 920 | 119 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(583))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
583.2.a | \(\chi_{583}(1, \cdot)\) | 583.2.a.a | 1 | 1 |
583.2.a.b | 1 | |||
583.2.a.c | 1 | |||
583.2.a.d | 2 | |||
583.2.a.e | 2 | |||
583.2.a.f | 6 | |||
583.2.a.g | 8 | |||
583.2.a.h | 10 | |||
583.2.a.i | 12 | |||
583.2.b | \(\chi_{583}(529, \cdot)\) | 583.2.b.a | 2 | 1 |
583.2.b.b | 2 | |||
583.2.b.c | 2 | |||
583.2.b.d | 6 | |||
583.2.b.e | 8 | |||
583.2.b.f | 24 | |||
583.2.f | \(\chi_{583}(76, \cdot)\) | 583.2.f.a | 4 | 2 |
583.2.f.b | 100 | |||
583.2.g | \(\chi_{583}(213, \cdot)\) | 583.2.g.a | 4 | 4 |
583.2.g.b | 4 | |||
583.2.g.c | 96 | |||
583.2.g.d | 104 | |||
583.2.j | \(\chi_{583}(158, \cdot)\) | 583.2.j.a | 208 | 4 |
583.2.k | \(\chi_{583}(89, \cdot)\) | 583.2.k.a | 252 | 12 |
583.2.k.b | 300 | |||
583.2.l | \(\chi_{583}(30, \cdot)\) | 583.2.l.a | 416 | 8 |
583.2.p | \(\chi_{583}(78, \cdot)\) | 583.2.p.a | 240 | 12 |
583.2.p.b | 288 | |||
583.2.q | \(\chi_{583}(21, \cdot)\) | 583.2.q.a | 48 | 24 |
583.2.q.b | 1200 | |||
583.2.s | \(\chi_{583}(15, \cdot)\) | 583.2.s.a | 2496 | 48 |
583.2.t | \(\chi_{583}(4, \cdot)\) | 583.2.t.a | 2496 | 48 |
583.2.x | \(\chi_{583}(2, \cdot)\) | 583.2.x.a | 4992 | 96 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(583))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(583)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(53))\)\(^{\oplus 2}\)