Properties

Label 5800.2.a.x
Level $5800$
Weight $2$
Character orbit 5800.a
Self dual yes
Analytic conductor $46.313$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5800,2,Mod(1,5800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5800 = 2^{3} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-1,0,0,0,-4,0,5,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.3132331723\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.16196689.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 8x^{4} + 5x^{3} + 11x^{2} - 7x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( - \beta_{3} + \beta_1 - 1) q^{7} + (\beta_{5} - \beta_{4} + \beta_{3} + 1) q^{9} + (\beta_{5} + \beta_{2}) q^{11} + ( - \beta_{4} + \beta_{3} - \beta_{2}) q^{13} + ( - \beta_{5} + \beta_{4} + \beta_{3} + \cdots + 1) q^{17}+ \cdots + (3 \beta_{2} - 3 \beta_1 + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} - 4 q^{7} + 5 q^{9} - q^{11} + 6 q^{17} - 11 q^{19} - 9 q^{21} - 11 q^{23} + 8 q^{27} - 6 q^{29} - 21 q^{31} + 16 q^{33} + 26 q^{37} - 10 q^{39} - 16 q^{41} + 6 q^{43} + 3 q^{47} + 6 q^{49}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 8x^{4} + 5x^{3} + 11x^{2} - 7x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{5} + \nu^{4} + 8\nu^{3} - 4\nu^{2} - 12\nu + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - \nu^{4} - 8\nu^{3} + 5\nu^{2} + 11\nu - 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 3\nu^{5} - 2\nu^{4} - 24\nu^{3} + 6\nu^{2} + 32\nu - 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 3\nu^{5} - 2\nu^{4} - 25\nu^{3} + 7\nu^{2} + 37\nu - 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} + 6\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 6\beta_{3} + 9\beta_{2} + 10\beta _1 + 17 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{5} + 9\beta_{4} + 10\beta_{3} + 12\beta_{2} + 42\beta _1 + 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.28248
0.359514
−1.42864
0.236718
2.82229
−2.27236
0 −2.85798 0 0 0 0.0622207 0 5.16806 0
1.2 0 −1.44873 0 0 0 1.14105 0 −0.901181 0
1.3 0 −1.23031 0 0 0 −4.12861 0 −1.48634 0
1.4 0 0.0437611 0 0 0 2.46116 0 −2.99808 0
1.5 0 1.49734 0 0 0 1.17661 0 −0.757966 0
1.6 0 2.99592 0 0 0 −4.71243 0 5.97551 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5800.2.a.x 6
5.b even 2 1 5800.2.a.y yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5800.2.a.x 6 1.a even 1 1 trivial
5800.2.a.y yes 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5800))\):

\( T_{3}^{6} + T_{3}^{5} - 11T_{3}^{4} - 12T_{3}^{3} + 20T_{3}^{2} + 22T_{3} - 1 \) Copy content Toggle raw display
\( T_{7}^{6} + 4T_{7}^{5} - 16T_{7}^{4} - 33T_{7}^{3} + 110T_{7}^{2} - 71T_{7} + 4 \) Copy content Toggle raw display
\( T_{11}^{6} + T_{11}^{5} - 13T_{11}^{4} - 15T_{11}^{3} + 26T_{11}^{2} + 31T_{11} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + T^{5} - 11 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 4 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{6} + T^{5} - 13 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{6} - 30 T^{4} + \cdots - 100 \) Copy content Toggle raw display
$17$ \( T^{6} - 6 T^{5} + \cdots + 13 \) Copy content Toggle raw display
$19$ \( T^{6} + 11 T^{5} + \cdots - 1625 \) Copy content Toggle raw display
$23$ \( T^{6} + 11 T^{5} + \cdots - 130 \) Copy content Toggle raw display
$29$ \( (T + 1)^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + 21 T^{5} + \cdots + 24194 \) Copy content Toggle raw display
$37$ \( T^{6} - 26 T^{5} + \cdots + 70802 \) Copy content Toggle raw display
$41$ \( T^{6} + 16 T^{5} + \cdots + 4187 \) Copy content Toggle raw display
$43$ \( T^{6} - 6 T^{5} + \cdots + 431344 \) Copy content Toggle raw display
$47$ \( T^{6} - 3 T^{5} + \cdots - 274 \) Copy content Toggle raw display
$53$ \( T^{6} - 271 T^{4} + \cdots - 419796 \) Copy content Toggle raw display
$59$ \( T^{6} - T^{5} + \cdots + 2404 \) Copy content Toggle raw display
$61$ \( T^{6} + 17 T^{5} + \cdots - 44318 \) Copy content Toggle raw display
$67$ \( T^{6} + 4 T^{5} + \cdots - 438271 \) Copy content Toggle raw display
$71$ \( T^{6} + 25 T^{5} + \cdots + 357326 \) Copy content Toggle raw display
$73$ \( T^{6} + 5 T^{5} + \cdots + 349939 \) Copy content Toggle raw display
$79$ \( T^{6} - 8 T^{5} + \cdots + 8224 \) Copy content Toggle raw display
$83$ \( T^{6} - 6 T^{5} + \cdots - 241331 \) Copy content Toggle raw display
$89$ \( T^{6} + 21 T^{5} + \cdots + 559 \) Copy content Toggle raw display
$97$ \( T^{6} - 41 T^{5} + \cdots - 849434 \) Copy content Toggle raw display
show more
show less