Properties

Label 580.2.d.c.521.4
Level $580$
Weight $2$
Character 580.521
Analytic conductor $4.631$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [580,2,Mod(521,580)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(580, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("580.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 580 = 2^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 580.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.63132331723\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 12x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 521.4
Root \(-1.63810i\) of defining polynomial
Character \(\chi\) \(=\) 580.521
Dual form 580.2.d.c.521.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{3} +1.00000 q^{5} +2.31662 q^{7} +1.00000 q^{9} +1.41421i q^{11} +1.41421i q^{15} -1.86199i q^{17} -1.86199i q^{19} +3.27620i q^{21} +0.316625 q^{23} +1.00000 q^{25} +5.65685i q^{27} +(3.31662 - 4.24264i) q^{29} +4.69042i q^{31} -2.00000 q^{33} +2.31662 q^{35} +7.51884i q^{37} -3.27620i q^{41} +7.96662i q^{43} +1.00000 q^{45} +4.24264i q^{47} -1.63325 q^{49} +2.63325 q^{51} -8.63325 q^{53} +1.41421i q^{55} +2.63325 q^{57} -2.63325 q^{59} -3.27620i q^{61} +2.31662 q^{63} +8.94987 q^{67} +0.447775i q^{69} -6.63325 q^{71} -13.6235i q^{73} +1.41421i q^{75} +3.27620i q^{77} -13.6235i q^{79} -5.00000 q^{81} -2.31662 q^{83} -1.86199i q^{85} +(6.00000 + 4.69042i) q^{87} -11.3137i q^{89} -6.63325 q^{93} -1.86199i q^{95} +4.24264i q^{97} +1.41421i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 4 q^{7} + 4 q^{9} - 12 q^{23} + 4 q^{25} - 8 q^{33} - 4 q^{35} + 4 q^{45} + 20 q^{49} - 16 q^{51} - 8 q^{53} - 16 q^{57} + 16 q^{59} - 4 q^{63} - 4 q^{67} - 20 q^{81} + 4 q^{83} + 24 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/580\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(291\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421i 0.816497i 0.912871 + 0.408248i \(0.133860\pi\)
−0.912871 + 0.408248i \(0.866140\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.31662 0.875602 0.437801 0.899072i \(-0.355757\pi\)
0.437801 + 0.899072i \(0.355757\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.41421i 0.365148i
\(16\) 0 0
\(17\) 1.86199i 0.451599i −0.974174 0.225799i \(-0.927501\pi\)
0.974174 0.225799i \(-0.0724994\pi\)
\(18\) 0 0
\(19\) 1.86199i 0.427169i −0.976925 0.213585i \(-0.931486\pi\)
0.976925 0.213585i \(-0.0685139\pi\)
\(20\) 0 0
\(21\) 3.27620i 0.714926i
\(22\) 0 0
\(23\) 0.316625 0.0660208 0.0330104 0.999455i \(-0.489491\pi\)
0.0330104 + 0.999455i \(0.489491\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.65685i 1.08866i
\(28\) 0 0
\(29\) 3.31662 4.24264i 0.615882 0.787839i
\(30\) 0 0
\(31\) 4.69042i 0.842424i 0.906962 + 0.421212i \(0.138395\pi\)
−0.906962 + 0.421212i \(0.861605\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) 2.31662 0.391581
\(36\) 0 0
\(37\) 7.51884i 1.23609i 0.786143 + 0.618045i \(0.212075\pi\)
−0.786143 + 0.618045i \(0.787925\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.27620i 0.511657i −0.966722 0.255828i \(-0.917652\pi\)
0.966722 0.255828i \(-0.0823482\pi\)
\(42\) 0 0
\(43\) 7.96662i 1.21490i 0.794359 + 0.607449i \(0.207807\pi\)
−0.794359 + 0.607449i \(0.792193\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 4.24264i 0.618853i 0.950923 + 0.309426i \(0.100137\pi\)
−0.950923 + 0.309426i \(0.899863\pi\)
\(48\) 0 0
\(49\) −1.63325 −0.233321
\(50\) 0 0
\(51\) 2.63325 0.368729
\(52\) 0 0
\(53\) −8.63325 −1.18587 −0.592934 0.805251i \(-0.702031\pi\)
−0.592934 + 0.805251i \(0.702031\pi\)
\(54\) 0 0
\(55\) 1.41421i 0.190693i
\(56\) 0 0
\(57\) 2.63325 0.348782
\(58\) 0 0
\(59\) −2.63325 −0.342820 −0.171410 0.985200i \(-0.554832\pi\)
−0.171410 + 0.985200i \(0.554832\pi\)
\(60\) 0 0
\(61\) 3.27620i 0.419475i −0.977758 0.209737i \(-0.932739\pi\)
0.977758 0.209737i \(-0.0672609\pi\)
\(62\) 0 0
\(63\) 2.31662 0.291867
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.94987 1.09340 0.546701 0.837328i \(-0.315884\pi\)
0.546701 + 0.837328i \(0.315884\pi\)
\(68\) 0 0
\(69\) 0.447775i 0.0539058i
\(70\) 0 0
\(71\) −6.63325 −0.787222 −0.393611 0.919277i \(-0.628774\pi\)
−0.393611 + 0.919277i \(0.628774\pi\)
\(72\) 0 0
\(73\) 13.6235i 1.59451i −0.603645 0.797253i \(-0.706285\pi\)
0.603645 0.797253i \(-0.293715\pi\)
\(74\) 0 0
\(75\) 1.41421i 0.163299i
\(76\) 0 0
\(77\) 3.27620i 0.373358i
\(78\) 0 0
\(79\) 13.6235i 1.53276i −0.642387 0.766380i \(-0.722056\pi\)
0.642387 0.766380i \(-0.277944\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) −2.31662 −0.254283 −0.127141 0.991885i \(-0.540580\pi\)
−0.127141 + 0.991885i \(0.540580\pi\)
\(84\) 0 0
\(85\) 1.86199i 0.201961i
\(86\) 0 0
\(87\) 6.00000 + 4.69042i 0.643268 + 0.502865i
\(88\) 0 0
\(89\) 11.3137i 1.19925i −0.800281 0.599625i \(-0.795316\pi\)
0.800281 0.599625i \(-0.204684\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −6.63325 −0.687836
\(94\) 0 0
\(95\) 1.86199i 0.191036i
\(96\) 0 0
\(97\) 4.24264i 0.430775i 0.976529 + 0.215387i \(0.0691014\pi\)
−0.976529 + 0.215387i \(0.930899\pi\)
\(98\) 0 0
\(99\) 1.41421i 0.142134i
\(100\) 0 0
\(101\) 12.2093i 1.21487i −0.794371 0.607433i \(-0.792199\pi\)
0.794371 0.607433i \(-0.207801\pi\)
\(102\) 0 0
\(103\) −0.949874 −0.0935939 −0.0467970 0.998904i \(-0.514901\pi\)
−0.0467970 + 0.998904i \(0.514901\pi\)
\(104\) 0 0
\(105\) 3.27620i 0.319725i
\(106\) 0 0
\(107\) 5.68338 0.549433 0.274716 0.961525i \(-0.411416\pi\)
0.274716 + 0.961525i \(0.411416\pi\)
\(108\) 0 0
\(109\) −4.63325 −0.443785 −0.221892 0.975071i \(-0.571223\pi\)
−0.221892 + 0.975071i \(0.571223\pi\)
\(110\) 0 0
\(111\) −10.6332 −1.00926
\(112\) 0 0
\(113\) 12.7279i 1.19734i −0.800995 0.598671i \(-0.795696\pi\)
0.800995 0.598671i \(-0.204304\pi\)
\(114\) 0 0
\(115\) 0.316625 0.0295254
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.31353i 0.395421i
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 4.63325 0.417766
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.518663i 0.0460239i 0.999735 + 0.0230120i \(0.00732558\pi\)
−0.999735 + 0.0230120i \(0.992674\pi\)
\(128\) 0 0
\(129\) −11.2665 −0.991960
\(130\) 0 0
\(131\) 9.45172i 0.825801i −0.910776 0.412900i \(-0.864516\pi\)
0.910776 0.412900i \(-0.135484\pi\)
\(132\) 0 0
\(133\) 4.31353i 0.374030i
\(134\) 0 0
\(135\) 5.65685i 0.486864i
\(136\) 0 0
\(137\) 0.966438i 0.0825684i −0.999147 0.0412842i \(-0.986855\pi\)
0.999147 0.0412842i \(-0.0131449\pi\)
\(138\) 0 0
\(139\) −3.36675 −0.285564 −0.142782 0.989754i \(-0.545605\pi\)
−0.142782 + 0.989754i \(0.545605\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.31662 4.24264i 0.275431 0.352332i
\(146\) 0 0
\(147\) 2.30976i 0.190506i
\(148\) 0 0
\(149\) −15.2665 −1.25068 −0.625340 0.780352i \(-0.715040\pi\)
−0.625340 + 0.780352i \(0.715040\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) 1.86199i 0.150533i
\(154\) 0 0
\(155\) 4.69042i 0.376743i
\(156\) 0 0
\(157\) 13.6235i 1.08727i 0.839321 + 0.543636i \(0.182953\pi\)
−0.839321 + 0.543636i \(0.817047\pi\)
\(158\) 0 0
\(159\) 12.2093i 0.968257i
\(160\) 0 0
\(161\) 0.733501 0.0578080
\(162\) 0 0
\(163\) 3.34709i 0.262164i 0.991372 + 0.131082i \(0.0418452\pi\)
−0.991372 + 0.131082i \(0.958155\pi\)
\(164\) 0 0
\(165\) −2.00000 −0.155700
\(166\) 0 0
\(167\) 4.31662 0.334030 0.167015 0.985954i \(-0.446587\pi\)
0.167015 + 0.985954i \(0.446587\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 1.86199i 0.142390i
\(172\) 0 0
\(173\) −12.6332 −0.960488 −0.480244 0.877135i \(-0.659452\pi\)
−0.480244 + 0.877135i \(0.659452\pi\)
\(174\) 0 0
\(175\) 2.31662 0.175120
\(176\) 0 0
\(177\) 3.72398i 0.279911i
\(178\) 0 0
\(179\) −4.63325 −0.346305 −0.173153 0.984895i \(-0.555395\pi\)
−0.173153 + 0.984895i \(0.555395\pi\)
\(180\) 0 0
\(181\) 5.26650 0.391456 0.195728 0.980658i \(-0.437293\pi\)
0.195728 + 0.980658i \(0.437293\pi\)
\(182\) 0 0
\(183\) 4.63325 0.342500
\(184\) 0 0
\(185\) 7.51884i 0.552796i
\(186\) 0 0
\(187\) 2.63325 0.192562
\(188\) 0 0
\(189\) 13.1048i 0.953235i
\(190\) 0 0
\(191\) 12.7279i 0.920960i −0.887670 0.460480i \(-0.847677\pi\)
0.887670 0.460480i \(-0.152323\pi\)
\(192\) 0 0
\(193\) 0.966438i 0.0695658i −0.999395 0.0347829i \(-0.988926\pi\)
0.999395 0.0347829i \(-0.0110740\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.36675 −0.667353 −0.333677 0.942688i \(-0.608289\pi\)
−0.333677 + 0.942688i \(0.608289\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 12.6570i 0.892758i
\(202\) 0 0
\(203\) 7.68338 9.82861i 0.539267 0.689833i
\(204\) 0 0
\(205\) 3.27620i 0.228820i
\(206\) 0 0
\(207\) 0.316625 0.0220069
\(208\) 0 0
\(209\) 2.63325 0.182146
\(210\) 0 0
\(211\) 19.2803i 1.32731i 0.748038 + 0.663656i \(0.230996\pi\)
−0.748038 + 0.663656i \(0.769004\pi\)
\(212\) 0 0
\(213\) 9.38083i 0.642764i
\(214\) 0 0
\(215\) 7.96662i 0.543319i
\(216\) 0 0
\(217\) 10.8659i 0.737628i
\(218\) 0 0
\(219\) 19.2665 1.30191
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 3.68338 0.246657 0.123329 0.992366i \(-0.460643\pi\)
0.123329 + 0.992366i \(0.460643\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −8.31662 −0.551994 −0.275997 0.961159i \(-0.589008\pi\)
−0.275997 + 0.961159i \(0.589008\pi\)
\(228\) 0 0
\(229\) 8.48528i 0.560723i −0.959894 0.280362i \(-0.909546\pi\)
0.959894 0.280362i \(-0.0904544\pi\)
\(230\) 0 0
\(231\) −4.63325 −0.304845
\(232\) 0 0
\(233\) 1.36675 0.0895388 0.0447694 0.998997i \(-0.485745\pi\)
0.0447694 + 0.998997i \(0.485745\pi\)
\(234\) 0 0
\(235\) 4.24264i 0.276759i
\(236\) 0 0
\(237\) 19.2665 1.25149
\(238\) 0 0
\(239\) −19.8997 −1.28721 −0.643604 0.765359i \(-0.722562\pi\)
−0.643604 + 0.765359i \(0.722562\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 9.89949i 0.635053i
\(244\) 0 0
\(245\) −1.63325 −0.104344
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 3.27620i 0.207621i
\(250\) 0 0
\(251\) 10.7950i 0.681377i 0.940176 + 0.340689i \(0.110660\pi\)
−0.940176 + 0.340689i \(0.889340\pi\)
\(252\) 0 0
\(253\) 0.447775i 0.0281514i
\(254\) 0 0
\(255\) 2.63325 0.164900
\(256\) 0 0
\(257\) 0.633250 0.0395010 0.0197505 0.999805i \(-0.493713\pi\)
0.0197505 + 0.999805i \(0.493713\pi\)
\(258\) 0 0
\(259\) 17.4183i 1.08232i
\(260\) 0 0
\(261\) 3.31662 4.24264i 0.205294 0.262613i
\(262\) 0 0
\(263\) 1.41421i 0.0872041i −0.999049 0.0436021i \(-0.986117\pi\)
0.999049 0.0436021i \(-0.0138834\pi\)
\(264\) 0 0
\(265\) −8.63325 −0.530336
\(266\) 0 0
\(267\) 16.0000 0.979184
\(268\) 0 0
\(269\) 7.00018i 0.426808i −0.976964 0.213404i \(-0.931545\pi\)
0.976964 0.213404i \(-0.0684551\pi\)
\(270\) 0 0
\(271\) 5.13819i 0.312123i −0.987747 0.156061i \(-0.950120\pi\)
0.987747 0.156061i \(-0.0498798\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.41421i 0.0852803i
\(276\) 0 0
\(277\) 8.63325 0.518722 0.259361 0.965780i \(-0.416488\pi\)
0.259361 + 0.965780i \(0.416488\pi\)
\(278\) 0 0
\(279\) 4.69042i 0.280808i
\(280\) 0 0
\(281\) 20.6332 1.23088 0.615438 0.788185i \(-0.288979\pi\)
0.615438 + 0.788185i \(0.288979\pi\)
\(282\) 0 0
\(283\) 29.5831 1.75853 0.879267 0.476329i \(-0.158033\pi\)
0.879267 + 0.476329i \(0.158033\pi\)
\(284\) 0 0
\(285\) 2.63325 0.155980
\(286\) 0 0
\(287\) 7.58973i 0.448008i
\(288\) 0 0
\(289\) 13.5330 0.796059
\(290\) 0 0
\(291\) −6.00000 −0.351726
\(292\) 0 0
\(293\) 1.41421i 0.0826192i 0.999146 + 0.0413096i \(0.0131530\pi\)
−0.999146 + 0.0413096i \(0.986847\pi\)
\(294\) 0 0
\(295\) −2.63325 −0.153314
\(296\) 0 0
\(297\) −8.00000 −0.464207
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 18.4557i 1.06377i
\(302\) 0 0
\(303\) 17.2665 0.991934
\(304\) 0 0
\(305\) 3.27620i 0.187595i
\(306\) 0 0
\(307\) 12.7279i 0.726421i 0.931707 + 0.363210i \(0.118319\pi\)
−0.931707 + 0.363210i \(0.881681\pi\)
\(308\) 0 0
\(309\) 1.34333i 0.0764191i
\(310\) 0 0
\(311\) 31.0418i 1.76022i −0.474770 0.880110i \(-0.657469\pi\)
0.474770 0.880110i \(-0.342531\pi\)
\(312\) 0 0
\(313\) −22.5330 −1.27364 −0.636820 0.771012i \(-0.719751\pi\)
−0.636820 + 0.771012i \(0.719751\pi\)
\(314\) 0 0
\(315\) 2.31662 0.130527
\(316\) 0 0
\(317\) 5.72774i 0.321702i 0.986979 + 0.160851i \(0.0514239\pi\)
−0.986979 + 0.160851i \(0.948576\pi\)
\(318\) 0 0
\(319\) 6.00000 + 4.69042i 0.335936 + 0.262613i
\(320\) 0 0
\(321\) 8.03751i 0.448610i
\(322\) 0 0
\(323\) −3.46700 −0.192909
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 6.55240i 0.362349i
\(328\) 0 0
\(329\) 9.82861i 0.541869i
\(330\) 0 0
\(331\) 9.45172i 0.519514i 0.965674 + 0.259757i \(0.0836424\pi\)
−0.965674 + 0.259757i \(0.916358\pi\)
\(332\) 0 0
\(333\) 7.51884i 0.412030i
\(334\) 0 0
\(335\) 8.94987 0.488984
\(336\) 0 0
\(337\) 22.1088i 1.20434i 0.798368 + 0.602170i \(0.205697\pi\)
−0.798368 + 0.602170i \(0.794303\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) −6.63325 −0.359211
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0.447775i 0.0241074i
\(346\) 0 0
\(347\) −19.5831 −1.05128 −0.525639 0.850708i \(-0.676174\pi\)
−0.525639 + 0.850708i \(0.676174\pi\)
\(348\) 0 0
\(349\) 11.8997 0.636979 0.318489 0.947926i \(-0.396824\pi\)
0.318489 + 0.947926i \(0.396824\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20.6332 1.09820 0.549099 0.835758i \(-0.314971\pi\)
0.549099 + 0.835758i \(0.314971\pi\)
\(354\) 0 0
\(355\) −6.63325 −0.352056
\(356\) 0 0
\(357\) 6.10025 0.322860
\(358\) 0 0
\(359\) 11.2428i 0.593373i 0.954975 + 0.296687i \(0.0958817\pi\)
−0.954975 + 0.296687i \(0.904118\pi\)
\(360\) 0 0
\(361\) 15.5330 0.817526
\(362\) 0 0
\(363\) 12.7279i 0.668043i
\(364\) 0 0
\(365\) 13.6235i 0.713085i
\(366\) 0 0
\(367\) 11.8324i 0.617645i −0.951120 0.308822i \(-0.900065\pi\)
0.951120 0.308822i \(-0.0999349\pi\)
\(368\) 0 0
\(369\) 3.27620i 0.170552i
\(370\) 0 0
\(371\) −20.0000 −1.03835
\(372\) 0 0
\(373\) −2.00000 −0.103556 −0.0517780 0.998659i \(-0.516489\pi\)
−0.0517780 + 0.998659i \(0.516489\pi\)
\(374\) 0 0
\(375\) 1.41421i 0.0730297i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.4519i 0.845077i 0.906345 + 0.422539i \(0.138861\pi\)
−0.906345 + 0.422539i \(0.861139\pi\)
\(380\) 0 0
\(381\) −0.733501 −0.0375784
\(382\) 0 0
\(383\) −6.94987 −0.355122 −0.177561 0.984110i \(-0.556821\pi\)
−0.177561 + 0.984110i \(0.556821\pi\)
\(384\) 0 0
\(385\) 3.27620i 0.166971i
\(386\) 0 0
\(387\) 7.96662i 0.404966i
\(388\) 0 0
\(389\) 1.34333i 0.0681093i −0.999420 0.0340546i \(-0.989158\pi\)
0.999420 0.0340546i \(-0.0108420\pi\)
\(390\) 0 0
\(391\) 0.589552i 0.0298149i
\(392\) 0 0
\(393\) 13.3668 0.674263
\(394\) 0 0
\(395\) 13.6235i 0.685471i
\(396\) 0 0
\(397\) 14.6332 0.734422 0.367211 0.930138i \(-0.380313\pi\)
0.367211 + 0.930138i \(0.380313\pi\)
\(398\) 0 0
\(399\) 6.10025 0.305395
\(400\) 0 0
\(401\) 5.26650 0.262996 0.131498 0.991316i \(-0.458021\pi\)
0.131498 + 0.991316i \(0.458021\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −5.00000 −0.248452
\(406\) 0 0
\(407\) −10.6332 −0.527071
\(408\) 0 0
\(409\) 0.447775i 0.0221411i −0.999939 0.0110705i \(-0.996476\pi\)
0.999939 0.0110705i \(-0.00352393\pi\)
\(410\) 0 0
\(411\) 1.36675 0.0674168
\(412\) 0 0
\(413\) −6.10025 −0.300174
\(414\) 0 0
\(415\) −2.31662 −0.113719
\(416\) 0 0
\(417\) 4.76130i 0.233162i
\(418\) 0 0
\(419\) −10.6332 −0.519468 −0.259734 0.965680i \(-0.583635\pi\)
−0.259734 + 0.965680i \(0.583635\pi\)
\(420\) 0 0
\(421\) 6.10463i 0.297521i −0.988873 0.148761i \(-0.952472\pi\)
0.988873 0.148761i \(-0.0475284\pi\)
\(422\) 0 0
\(423\) 4.24264i 0.206284i
\(424\) 0 0
\(425\) 1.86199i 0.0903197i
\(426\) 0 0
\(427\) 7.58973i 0.367293i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −37.8997 −1.82557 −0.912783 0.408444i \(-0.866071\pi\)
−0.912783 + 0.408444i \(0.866071\pi\)
\(432\) 0 0
\(433\) 4.69042i 0.225407i 0.993629 + 0.112703i \(0.0359510\pi\)
−0.993629 + 0.112703i \(0.964049\pi\)
\(434\) 0 0
\(435\) 6.00000 + 4.69042i 0.287678 + 0.224888i
\(436\) 0 0
\(437\) 0.589552i 0.0282021i
\(438\) 0 0
\(439\) −19.8997 −0.949763 −0.474882 0.880050i \(-0.657509\pi\)
−0.474882 + 0.880050i \(0.657509\pi\)
\(440\) 0 0
\(441\) −1.63325 −0.0777738
\(442\) 0 0
\(443\) 29.5567i 1.40428i 0.712038 + 0.702141i \(0.247772\pi\)
−0.712038 + 0.702141i \(0.752228\pi\)
\(444\) 0 0
\(445\) 11.3137i 0.536321i
\(446\) 0 0
\(447\) 21.5901i 1.02118i
\(448\) 0 0
\(449\) 29.6276i 1.39821i 0.715018 + 0.699106i \(0.246419\pi\)
−0.715018 + 0.699106i \(0.753581\pi\)
\(450\) 0 0
\(451\) 4.63325 0.218171
\(452\) 0 0
\(453\) 2.82843i 0.132891i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.36675 0.157490 0.0787450 0.996895i \(-0.474909\pi\)
0.0787450 + 0.996895i \(0.474909\pi\)
\(458\) 0 0
\(459\) 10.5330 0.491638
\(460\) 0 0
\(461\) 23.5230i 1.09557i 0.836618 + 0.547787i \(0.184530\pi\)
−0.836618 + 0.547787i \(0.815470\pi\)
\(462\) 0 0
\(463\) −33.5831 −1.56074 −0.780370 0.625318i \(-0.784969\pi\)
−0.780370 + 0.625318i \(0.784969\pi\)
\(464\) 0 0
\(465\) −6.63325 −0.307610
\(466\) 0 0
\(467\) 41.9077i 1.93926i −0.244578 0.969630i \(-0.578650\pi\)
0.244578 0.969630i \(-0.421350\pi\)
\(468\) 0 0
\(469\) 20.7335 0.957384
\(470\) 0 0
\(471\) −19.2665 −0.887753
\(472\) 0 0
\(473\) −11.2665 −0.518034
\(474\) 0 0
\(475\) 1.86199i 0.0854339i
\(476\) 0 0
\(477\) −8.63325 −0.395289
\(478\) 0 0
\(479\) 40.8704i 1.86742i −0.358034 0.933709i \(-0.616553\pi\)
0.358034 0.933709i \(-0.383447\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.03733i 0.0472000i
\(484\) 0 0
\(485\) 4.24264i 0.192648i
\(486\) 0 0
\(487\) −35.5831 −1.61243 −0.806213 0.591626i \(-0.798486\pi\)
−0.806213 + 0.591626i \(0.798486\pi\)
\(488\) 0 0
\(489\) −4.73350 −0.214056
\(490\) 0 0
\(491\) 34.7658i 1.56896i −0.620155 0.784479i \(-0.712930\pi\)
0.620155 0.784479i \(-0.287070\pi\)
\(492\) 0 0
\(493\) −7.89975 6.17552i −0.355787 0.278131i
\(494\) 0 0
\(495\) 1.41421i 0.0635642i
\(496\) 0 0
\(497\) −15.3668 −0.689293
\(498\) 0 0
\(499\) 35.7995 1.60261 0.801303 0.598259i \(-0.204141\pi\)
0.801303 + 0.598259i \(0.204141\pi\)
\(500\) 0 0
\(501\) 6.10463i 0.272735i
\(502\) 0 0
\(503\) 4.24264i 0.189170i 0.995517 + 0.0945850i \(0.0301524\pi\)
−0.995517 + 0.0945850i \(0.969848\pi\)
\(504\) 0 0
\(505\) 12.2093i 0.543305i
\(506\) 0 0
\(507\) 18.3848i 0.816497i
\(508\) 0 0
\(509\) 42.5330 1.88524 0.942621 0.333865i \(-0.108353\pi\)
0.942621 + 0.333865i \(0.108353\pi\)
\(510\) 0 0
\(511\) 31.5605i 1.39615i
\(512\) 0 0
\(513\) 10.5330 0.465043
\(514\) 0 0
\(515\) −0.949874 −0.0418565
\(516\) 0 0
\(517\) −6.00000 −0.263880
\(518\) 0 0
\(519\) 17.8661i 0.784235i
\(520\) 0 0
\(521\) 2.73350 0.119757 0.0598784 0.998206i \(-0.480929\pi\)
0.0598784 + 0.998206i \(0.480929\pi\)
\(522\) 0 0
\(523\) 0.949874 0.0415351 0.0207676 0.999784i \(-0.493389\pi\)
0.0207676 + 0.999784i \(0.493389\pi\)
\(524\) 0 0
\(525\) 3.27620i 0.142985i
\(526\) 0 0
\(527\) 8.73350 0.380437
\(528\) 0 0
\(529\) −22.8997 −0.995641
\(530\) 0 0
\(531\) −2.63325 −0.114273
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 5.68338 0.245714
\(536\) 0 0
\(537\) 6.55240i 0.282757i
\(538\) 0 0
\(539\) 2.30976i 0.0994886i
\(540\) 0 0
\(541\) 24.5603i 1.05593i 0.849266 + 0.527965i \(0.177045\pi\)
−0.849266 + 0.527965i \(0.822955\pi\)
\(542\) 0 0
\(543\) 7.44795i 0.319622i
\(544\) 0 0
\(545\) −4.63325 −0.198467
\(546\) 0 0
\(547\) −34.9499 −1.49435 −0.747174 0.664628i \(-0.768590\pi\)
−0.747174 + 0.664628i \(0.768590\pi\)
\(548\) 0 0
\(549\) 3.27620i 0.139825i
\(550\) 0 0
\(551\) −7.89975 6.17552i −0.336541 0.263086i
\(552\) 0 0
\(553\) 31.5605i 1.34209i
\(554\) 0 0
\(555\) −10.6332 −0.451356
\(556\) 0 0
\(557\) −7.89975 −0.334723 −0.167362 0.985896i \(-0.553525\pi\)
−0.167362 + 0.985896i \(0.553525\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 3.72398i 0.157226i
\(562\) 0 0
\(563\) 19.2803i 0.812569i 0.913747 + 0.406284i \(0.133176\pi\)
−0.913747 + 0.406284i \(0.866824\pi\)
\(564\) 0 0
\(565\) 12.7279i 0.535468i
\(566\) 0 0
\(567\) −11.5831 −0.486445
\(568\) 0 0
\(569\) 12.7988i 0.536554i 0.963342 + 0.268277i \(0.0864543\pi\)
−0.963342 + 0.268277i \(0.913546\pi\)
\(570\) 0 0
\(571\) 44.6332 1.86784 0.933922 0.357478i \(-0.116363\pi\)
0.933922 + 0.357478i \(0.116363\pi\)
\(572\) 0 0
\(573\) 18.0000 0.751961
\(574\) 0 0
\(575\) 0.316625 0.0132042
\(576\) 0 0
\(577\) 41.3182i 1.72010i −0.510211 0.860049i \(-0.670433\pi\)
0.510211 0.860049i \(-0.329567\pi\)
\(578\) 0 0
\(579\) 1.36675 0.0568002
\(580\) 0 0
\(581\) −5.36675 −0.222650
\(582\) 0 0
\(583\) 12.2093i 0.505656i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −30.2164 −1.24716 −0.623582 0.781758i \(-0.714323\pi\)
−0.623582 + 0.781758i \(0.714323\pi\)
\(588\) 0 0
\(589\) 8.73350 0.359858
\(590\) 0 0
\(591\) 13.2466i 0.544892i
\(592\) 0 0
\(593\) 38.5330 1.58236 0.791180 0.611583i \(-0.209467\pi\)
0.791180 + 0.611583i \(0.209467\pi\)
\(594\) 0 0
\(595\) 4.31353i 0.176837i
\(596\) 0 0
\(597\) 14.1421i 0.578799i
\(598\) 0 0
\(599\) 14.6608i 0.599024i −0.954093 0.299512i \(-0.903176\pi\)
0.954093 0.299512i \(-0.0968239\pi\)
\(600\) 0 0
\(601\) 25.9036i 1.05663i 0.849048 + 0.528315i \(0.177176\pi\)
−0.849048 + 0.528315i \(0.822824\pi\)
\(602\) 0 0
\(603\) 8.94987 0.364467
\(604\) 0 0
\(605\) 9.00000 0.365902
\(606\) 0 0
\(607\) 6.03374i 0.244902i 0.992475 + 0.122451i \(0.0390754\pi\)
−0.992475 + 0.122451i \(0.960925\pi\)
\(608\) 0 0
\(609\) 13.8997 + 10.8659i 0.563246 + 0.440310i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −30.0000 −1.21169 −0.605844 0.795583i \(-0.707165\pi\)
−0.605844 + 0.795583i \(0.707165\pi\)
\(614\) 0 0
\(615\) 4.63325 0.186831
\(616\) 0 0
\(617\) 6.17552i 0.248617i −0.992244 0.124308i \(-0.960329\pi\)
0.992244 0.124308i \(-0.0396712\pi\)
\(618\) 0 0
\(619\) 3.34709i 0.134531i 0.997735 + 0.0672655i \(0.0214274\pi\)
−0.997735 + 0.0672655i \(0.978573\pi\)
\(620\) 0 0
\(621\) 1.79110i 0.0718744i
\(622\) 0 0
\(623\) 26.2096i 1.05007i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 3.72398i 0.148721i
\(628\) 0 0
\(629\) 14.0000 0.558217
\(630\) 0 0
\(631\) 33.2665 1.32432 0.662159 0.749363i \(-0.269640\pi\)
0.662159 + 0.749363i \(0.269640\pi\)
\(632\) 0 0
\(633\) −27.2665 −1.08375
\(634\) 0 0
\(635\) 0.518663i 0.0205825i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −6.63325 −0.262407
\(640\) 0 0
\(641\) 39.9040i 1.57611i 0.615603 + 0.788056i \(0.288912\pi\)
−0.615603 + 0.788056i \(0.711088\pi\)
\(642\) 0 0
\(643\) 8.31662 0.327976 0.163988 0.986462i \(-0.447564\pi\)
0.163988 + 0.986462i \(0.447564\pi\)
\(644\) 0 0
\(645\) −11.2665 −0.443618
\(646\) 0 0
\(647\) −6.31662 −0.248332 −0.124166 0.992261i \(-0.539626\pi\)
−0.124166 + 0.992261i \(0.539626\pi\)
\(648\) 0 0
\(649\) 3.72398i 0.146179i
\(650\) 0 0
\(651\) −15.3668 −0.602270
\(652\) 0 0
\(653\) 34.3180i 1.34297i 0.741019 + 0.671484i \(0.234343\pi\)
−0.741019 + 0.671484i \(0.765657\pi\)
\(654\) 0 0
\(655\) 9.45172i 0.369309i
\(656\) 0 0
\(657\) 13.6235i 0.531502i
\(658\) 0 0
\(659\) 34.7658i 1.35428i 0.735853 + 0.677141i \(0.236781\pi\)
−0.735853 + 0.677141i \(0.763219\pi\)
\(660\) 0 0
\(661\) −42.5330 −1.65434 −0.827171 0.561950i \(-0.810051\pi\)
−0.827171 + 0.561950i \(0.810051\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.31353i 0.167271i
\(666\) 0 0
\(667\) 1.05013 1.34333i 0.0406610 0.0520138i
\(668\) 0 0
\(669\) 5.20908i 0.201395i
\(670\) 0 0
\(671\) 4.63325 0.178865
\(672\) 0 0
\(673\) −31.8997 −1.22964 −0.614822 0.788666i \(-0.710772\pi\)
−0.614822 + 0.788666i \(0.710772\pi\)
\(674\) 0 0
\(675\) 5.65685i 0.217732i
\(676\) 0 0
\(677\) 20.1759i 0.775422i −0.921781 0.387711i \(-0.873266\pi\)
0.921781 0.387711i \(-0.126734\pi\)
\(678\) 0 0
\(679\) 9.82861i 0.377187i
\(680\) 0 0
\(681\) 11.7615i 0.450701i
\(682\) 0 0
\(683\) 23.6834 0.906219 0.453110 0.891455i \(-0.350315\pi\)
0.453110 + 0.891455i \(0.350315\pi\)
\(684\) 0 0
\(685\) 0.966438i 0.0369257i
\(686\) 0 0
\(687\) 12.0000 0.457829
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −27.8997 −1.06136 −0.530678 0.847573i \(-0.678063\pi\)
−0.530678 + 0.847573i \(0.678063\pi\)
\(692\) 0 0
\(693\) 3.27620i 0.124453i
\(694\) 0 0
\(695\) −3.36675 −0.127708
\(696\) 0 0
\(697\) −6.10025 −0.231063
\(698\) 0 0
\(699\) 1.93288i 0.0731081i
\(700\) 0 0
\(701\) 51.7995 1.95644 0.978220 0.207571i \(-0.0665557\pi\)
0.978220 + 0.207571i \(0.0665557\pi\)
\(702\) 0 0
\(703\) 14.0000 0.528020
\(704\) 0 0
\(705\) −6.00000 −0.225973
\(706\) 0 0
\(707\) 28.2843i 1.06374i
\(708\) 0 0
\(709\) 20.0000 0.751116 0.375558 0.926799i \(-0.377451\pi\)
0.375558 + 0.926799i \(0.377451\pi\)
\(710\) 0 0
\(711\) 13.6235i 0.510920i
\(712\) 0 0
\(713\) 1.48510i 0.0556175i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 28.1425i 1.05100i
\(718\) 0 0
\(719\) −20.7335 −0.773229 −0.386615 0.922241i \(-0.626356\pi\)
−0.386615 + 0.922241i \(0.626356\pi\)
\(720\) 0 0
\(721\) −2.20050 −0.0819510
\(722\) 0 0
\(723\) 25.4558i 0.946713i
\(724\) 0 0
\(725\) 3.31662 4.24264i 0.123176 0.157568i
\(726\) 0 0
\(727\) 23.0043i 0.853182i −0.904445 0.426591i \(-0.859714\pi\)
0.904445 0.426591i \(-0.140286\pi\)
\(728\) 0 0
\(729\) −29.0000 −1.07407
\(730\) 0 0
\(731\) 14.8338 0.548646
\(732\) 0 0
\(733\) 40.4226i 1.49304i −0.665361 0.746522i \(-0.731722\pi\)
0.665361 0.746522i \(-0.268278\pi\)
\(734\) 0 0
\(735\) 2.30976i 0.0851969i
\(736\) 0 0
\(737\) 12.6570i 0.466228i
\(738\) 0 0
\(739\) 20.7654i 0.763869i 0.924189 + 0.381934i \(0.124742\pi\)
−0.924189 + 0.381934i \(0.875258\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.7283i 0.980566i 0.871563 + 0.490283i \(0.163106\pi\)
−0.871563 + 0.490283i \(0.836894\pi\)
\(744\) 0 0
\(745\) −15.2665 −0.559321
\(746\) 0 0
\(747\) −2.31662 −0.0847609
\(748\) 0 0
\(749\) 13.1662 0.481084
\(750\) 0 0
\(751\) 47.1168i 1.71932i 0.510869 + 0.859659i \(0.329324\pi\)
−0.510869 + 0.859659i \(0.670676\pi\)
\(752\) 0 0
\(753\) −15.2665 −0.556342
\(754\) 0 0
\(755\) 2.00000 0.0727875
\(756\) 0 0
\(757\) 24.7954i 0.901204i 0.892725 + 0.450602i \(0.148791\pi\)
−0.892725 + 0.450602i \(0.851209\pi\)
\(758\) 0 0
\(759\) −0.633250 −0.0229855
\(760\) 0 0
\(761\) −17.3668 −0.629544 −0.314772 0.949167i \(-0.601928\pi\)
−0.314772 + 0.949167i \(0.601928\pi\)
\(762\) 0 0
\(763\) −10.7335 −0.388579
\(764\) 0 0
\(765\) 1.86199i 0.0673203i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 25.4558i 0.917961i 0.888446 + 0.458981i \(0.151785\pi\)
−0.888446 + 0.458981i \(0.848215\pi\)
\(770\) 0 0
\(771\) 0.895550i 0.0322525i
\(772\) 0 0
\(773\) 20.6237i 0.741781i 0.928677 + 0.370891i \(0.120948\pi\)
−0.928677 + 0.370891i \(0.879052\pi\)
\(774\) 0 0
\(775\) 4.69042i 0.168485i
\(776\) 0 0
\(777\) −24.6332 −0.883713
\(778\) 0 0
\(779\) −6.10025 −0.218564
\(780\) 0 0
\(781\) 9.38083i 0.335673i
\(782\) 0 0
\(783\) 24.0000 + 18.7617i 0.857690 + 0.670487i
\(784\) 0 0
\(785\) 13.6235i 0.486243i
\(786\) 0 0
\(787\) −14.9499 −0.532905 −0.266453 0.963848i \(-0.585852\pi\)
−0.266453 + 0.963848i \(0.585852\pi\)
\(788\) 0 0
\(789\) 2.00000 0.0712019
\(790\) 0 0
\(791\) 29.4858i 1.04840i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 12.2093i 0.433018i
\(796\) 0 0
\(797\) 45.6317i 1.61636i 0.588937 + 0.808179i \(0.299547\pi\)
−0.588937 + 0.808179i \(0.700453\pi\)
\(798\) 0 0
\(799\) 7.89975 0.279473
\(800\) 0 0
\(801\) 11.3137i 0.399750i
\(802\) 0 0
\(803\) 19.2665 0.679900
\(804\) 0 0
\(805\) 0.733501 0.0258525
\(806\) 0 0
\(807\) 9.89975 0.348488
\(808\) 0 0
\(809\) 13.1048i 0.460741i 0.973103 + 0.230370i \(0.0739937\pi\)
−0.973103 + 0.230370i \(0.926006\pi\)
\(810\) 0 0
\(811\) 25.8997 0.909463 0.454732 0.890629i \(-0.349735\pi\)
0.454732 + 0.890629i \(0.349735\pi\)
\(812\) 0 0
\(813\) 7.26650 0.254847
\(814\) 0 0
\(815\) 3.34709i 0.117243i
\(816\) 0 0
\(817\) 14.8338 0.518967
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 27.2665 0.951607 0.475804 0.879552i \(-0.342157\pi\)
0.475804 + 0.879552i \(0.342157\pi\)
\(822\) 0 0
\(823\) 16.4519i 0.573477i −0.958009 0.286739i \(-0.907429\pi\)
0.958009 0.286739i \(-0.0925711\pi\)
\(824\) 0 0
\(825\) −2.00000 −0.0696311
\(826\) 0 0
\(827\) 8.86217i 0.308168i 0.988058 + 0.154084i \(0.0492426\pi\)
−0.988058 + 0.154084i \(0.950757\pi\)
\(828\) 0 0
\(829\) 30.5231i 1.06011i 0.847962 + 0.530056i \(0.177829\pi\)
−0.847962 + 0.530056i \(0.822171\pi\)
\(830\) 0 0
\(831\) 12.2093i 0.423534i
\(832\) 0 0
\(833\) 3.04109i 0.105368i
\(834\) 0 0
\(835\) 4.31662 0.149383
\(836\) 0 0
\(837\) −26.5330 −0.917115
\(838\) 0 0
\(839\) 4.24264i 0.146472i 0.997315 + 0.0732361i \(0.0233327\pi\)
−0.997315 + 0.0732361i \(0.976667\pi\)
\(840\) 0 0
\(841\) −7.00000 28.1425i −0.241379 0.970431i
\(842\) 0 0
\(843\) 29.1798i 1.00501i
\(844\) 0 0
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) 20.8496 0.716402
\(848\) 0 0
\(849\) 41.8369i 1.43584i
\(850\) 0 0
\(851\) 2.38065i 0.0816077i
\(852\) 0 0
\(853\) 40.4226i 1.38404i −0.721876 0.692022i \(-0.756720\pi\)
0.721876 0.692022i \(-0.243280\pi\)
\(854\) 0 0
\(855\) 1.86199i 0.0636787i
\(856\) 0 0
\(857\) 23.3668 0.798193 0.399096 0.916909i \(-0.369324\pi\)
0.399096 + 0.916909i \(0.369324\pi\)
\(858\) 0 0
\(859\) 23.0043i 0.784897i 0.919774 + 0.392448i \(0.128372\pi\)
−0.919774 + 0.392448i \(0.871628\pi\)
\(860\) 0 0
\(861\) 10.7335 0.365797
\(862\) 0 0
\(863\) 55.5831 1.89207 0.946036 0.324062i \(-0.105049\pi\)
0.946036 + 0.324062i \(0.105049\pi\)
\(864\) 0 0
\(865\) −12.6332 −0.429543
\(866\) 0 0
\(867\) 19.1385i 0.649979i
\(868\) 0 0
\(869\) 19.2665 0.653571
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 4.24264i 0.143592i
\(874\) 0 0
\(875\) 2.31662 0.0783162
\(876\) 0 0
\(877\) 19.1662 0.647198 0.323599 0.946194i \(-0.395107\pi\)
0.323599 + 0.946194i \(0.395107\pi\)
\(878\) 0 0
\(879\) −2.00000 −0.0674583
\(880\) 0 0
\(881\) 40.0458i 1.34918i 0.738195 + 0.674588i \(0.235679\pi\)
−0.738195 + 0.674588i \(0.764321\pi\)
\(882\) 0 0
\(883\) 30.9499 1.04155 0.520773 0.853695i \(-0.325644\pi\)
0.520773 + 0.853695i \(0.325644\pi\)
\(884\) 0 0
\(885\) 3.72398i 0.125180i
\(886\) 0 0
\(887\) 57.8410i 1.94211i 0.238856 + 0.971055i \(0.423228\pi\)
−0.238856 + 0.971055i \(0.576772\pi\)
\(888\) 0 0
\(889\) 1.20155i 0.0402986i
\(890\) 0 0
\(891\) 7.07107i 0.236890i
\(892\) 0 0
\(893\) 7.89975 0.264355
\(894\) 0 0
\(895\) −4.63325 −0.154872
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 19.8997 + 15.5563i 0.663694 + 0.518833i
\(900\) 0 0
\(901\) 16.0750i 0.535536i
\(902\) 0 0
\(903\) −26.1003 −0.868562
\(904\) 0 0
\(905\) 5.26650 0.175064
\(906\) 0 0
\(907\) 34.3180i 1.13951i −0.821814 0.569755i \(-0.807038\pi\)
0.821814 0.569755i \(-0.192962\pi\)
\(908\) 0 0
\(909\) 12.2093i 0.404956i
\(910\) 0 0
\(911\) 8.41439i 0.278781i 0.990237 + 0.139391i \(0.0445144\pi\)
−0.990237 + 0.139391i \(0.955486\pi\)
\(912\) 0 0
\(913\) 3.27620i 0.108426i
\(914\) 0 0
\(915\) 4.63325 0.153171
\(916\) 0 0
\(917\) 21.8961i 0.723073i
\(918\) 0 0
\(919\) 13.3668 0.440928 0.220464 0.975395i \(-0.429243\pi\)
0.220464 + 0.975395i \(0.429243\pi\)
\(920\) 0 0
\(921\) −18.0000 −0.593120
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 7.51884i 0.247218i
\(926\) 0 0
\(927\) −0.949874 −0.0311980
\(928\) 0 0
\(929\) −11.2665 −0.369642 −0.184821 0.982772i \(-0.559171\pi\)
−0.184821 + 0.982772i \(0.559171\pi\)
\(930\) 0 0
\(931\) 3.04109i 0.0996678i
\(932\) 0 0
\(933\) 43.8997 1.43721
\(934\) 0 0
\(935\) 2.63325 0.0861165
\(936\) 0 0
\(937\) 41.2665 1.34812 0.674059 0.738678i \(-0.264549\pi\)
0.674059 + 0.738678i \(0.264549\pi\)
\(938\) 0 0
\(939\) 31.8665i 1.03992i
\(940\) 0 0
\(941\) −28.5330 −0.930149 −0.465075 0.885272i \(-0.653972\pi\)
−0.465075 + 0.885272i \(0.653972\pi\)
\(942\) 0 0
\(943\) 1.03733i 0.0337800i
\(944\) 0 0
\(945\) 13.1048i 0.426299i
\(946\) 0 0
\(947\) 43.6988i 1.42002i −0.704191 0.710011i \(-0.748690\pi\)
0.704191 0.710011i \(-0.251310\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −8.10025 −0.262669
\(952\) 0 0
\(953\) 16.7335 0.542051 0.271026 0.962572i \(-0.412637\pi\)
0.271026 + 0.962572i \(0.412637\pi\)
\(954\) 0 0
\(955\) 12.7279i 0.411866i
\(956\) 0 0
\(957\) −6.63325 + 8.48528i −0.214423 + 0.274290i
\(958\) 0 0
\(959\) 2.23888i 0.0722971i
\(960\) 0 0
\(961\) 9.00000 0.290323
\(962\) 0 0
\(963\) 5.68338 0.183144
\(964\) 0 0
\(965\) 0.966438i 0.0311108i
\(966\) 0 0
\(967\) 30.5940i 0.983838i 0.870641 + 0.491919i \(0.163704\pi\)
−0.870641 + 0.491919i \(0.836296\pi\)
\(968\) 0 0
\(969\) 4.90308i 0.157510i
\(970\) 0 0
\(971\) 42.3555i 1.35925i −0.733558 0.679627i \(-0.762142\pi\)
0.733558 0.679627i \(-0.237858\pi\)
\(972\) 0 0
\(973\) −7.79950 −0.250040
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.8997 1.21252 0.606260 0.795266i \(-0.292669\pi\)
0.606260 + 0.795266i \(0.292669\pi\)
\(978\) 0 0
\(979\) 16.0000 0.511362
\(980\) 0 0
\(981\) −4.63325 −0.147928
\(982\) 0 0
\(983\) 22.2505i 0.709682i 0.934927 + 0.354841i \(0.115465\pi\)
−0.934927 + 0.354841i \(0.884535\pi\)
\(984\) 0 0
\(985\) −9.36675 −0.298449
\(986\) 0 0
\(987\) −13.8997 −0.442434
\(988\) 0 0
\(989\) 2.52243i 0.0802086i
\(990\) 0 0
\(991\) 8.73350 0.277429 0.138714 0.990332i \(-0.455703\pi\)
0.138714 + 0.990332i \(0.455703\pi\)
\(992\) 0 0
\(993\) −13.3668 −0.424181
\(994\) 0 0
\(995\) −10.0000 −0.317021
\(996\) 0 0
\(997\) 25.0790i 0.794259i −0.917763 0.397129i \(-0.870006\pi\)
0.917763 0.397129i \(-0.129994\pi\)
\(998\) 0 0
\(999\) −42.5330 −1.34568
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 580.2.d.c.521.4 yes 4
3.2 odd 2 5220.2.l.d.3421.3 4
4.3 odd 2 2320.2.g.h.1681.1 4
5.2 odd 4 2900.2.f.c.1449.7 8
5.3 odd 4 2900.2.f.c.1449.2 8
5.4 even 2 2900.2.d.d.1101.1 4
29.28 even 2 inner 580.2.d.c.521.2 4
87.86 odd 2 5220.2.l.d.3421.4 4
116.115 odd 2 2320.2.g.h.1681.3 4
145.28 odd 4 2900.2.f.c.1449.6 8
145.57 odd 4 2900.2.f.c.1449.3 8
145.144 even 2 2900.2.d.d.1101.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
580.2.d.c.521.2 4 29.28 even 2 inner
580.2.d.c.521.4 yes 4 1.1 even 1 trivial
2320.2.g.h.1681.1 4 4.3 odd 2
2320.2.g.h.1681.3 4 116.115 odd 2
2900.2.d.d.1101.1 4 5.4 even 2
2900.2.d.d.1101.3 4 145.144 even 2
2900.2.f.c.1449.2 8 5.3 odd 4
2900.2.f.c.1449.3 8 145.57 odd 4
2900.2.f.c.1449.6 8 145.28 odd 4
2900.2.f.c.1449.7 8 5.2 odd 4
5220.2.l.d.3421.3 4 3.2 odd 2
5220.2.l.d.3421.4 4 87.86 odd 2