Properties

Label 579.1.l.a
Level $579$
Weight $1$
Character orbit 579.l
Analytic conductor $0.289$
Analytic rank $0$
Dimension $4$
Projective image $D_{8}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [579,1,Mod(236,579)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(579, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("579.236");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 579 = 3 \cdot 193 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 579.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.288958642315\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.807953156406409617.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{8}^{2} q^{3} + \zeta_{8}^{2} q^{4} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{8}^{2} q^{3} + \zeta_{8}^{2} q^{4} + ( - \zeta_{8}^{3} + \zeta_{8}) q^{7} - q^{9} - q^{12} + ( - \zeta_{8} + 1) q^{13} - q^{16} + ( - \zeta_{8} - 1) q^{19} + (\zeta_{8}^{3} + \zeta_{8}) q^{21} + \zeta_{8} q^{25} - \zeta_{8}^{2} q^{27} + (\zeta_{8}^{3} + \zeta_{8}) q^{28} - \zeta_{8}^{2} q^{36} + ( - \zeta_{8} + 1) q^{37} + ( - \zeta_{8}^{3} + \zeta_{8}^{2}) q^{39} + (\zeta_{8}^{3} - \zeta_{8}) q^{43} - \zeta_{8}^{2} q^{48} + q^{49} + ( - \zeta_{8}^{3} + \zeta_{8}^{2}) q^{52} + ( - \zeta_{8}^{3} - \zeta_{8}^{2}) q^{57} + ( - \zeta_{8}^{3} + 1) q^{61} + (\zeta_{8}^{3} - \zeta_{8}) q^{63} - \zeta_{8}^{2} q^{64} + (\zeta_{8}^{2} + 1) q^{67} + ( - \zeta_{8}^{2} - \zeta_{8}) q^{73} + \zeta_{8}^{3} q^{75} + ( - \zeta_{8}^{3} - \zeta_{8}^{2}) q^{76} + ( - \zeta_{8}^{2} + \zeta_{8}) q^{79} + q^{81} + (\zeta_{8}^{3} - \zeta_{8}) q^{84} + ( - \zeta_{8}^{3} - \zeta_{8}^{2} + \cdots - 1) q^{91} + \cdots + 2 \zeta_{8}^{3} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{9} - 4 q^{12} + 4 q^{13} - 4 q^{16} - 4 q^{19} + 4 q^{37} + 4 q^{49} + 4 q^{61} + 4 q^{67} + 4 q^{81} - 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/579\mathbb{Z}\right)^\times\).

\(n\) \(194\) \(391\)
\(\chi(n)\) \(-1\) \(\zeta_{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
236.1
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
0 1.00000i 1.00000i 0 0 1.41421 0 −1.00000 0
377.1 0 1.00000i 1.00000i 0 0 −1.41421 0 −1.00000 0
395.1 0 1.00000i 1.00000i 0 0 1.41421 0 −1.00000 0
536.1 0 1.00000i 1.00000i 0 0 −1.41421 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
193.f even 8 1 inner
579.l odd 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 579.1.l.a 4
3.b odd 2 1 CM 579.1.l.a 4
193.f even 8 1 inner 579.1.l.a 4
579.l odd 8 1 inner 579.1.l.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
579.1.l.a 4 1.a even 1 1 trivial
579.1.l.a 4 3.b odd 2 1 CM
579.1.l.a 4 193.f even 8 1 inner
579.1.l.a 4 579.l odd 8 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(579, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$67$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$79$ \( T^{4} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + 16 \) Copy content Toggle raw display
show more
show less