Properties

Label 576.5.b.c.415.4
Level $576$
Weight $5$
Character 576.415
Analytic conductor $59.541$
Analytic rank $0$
Dimension $4$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,5,Mod(415,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.415");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 576.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.5410987363\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 415.4
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 576.415
Dual form 576.5.b.c.415.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.5959i q^{5} +2.00000i q^{7} +O(q^{10})\) \(q+19.5959i q^{5} +2.00000i q^{7} +195.959 q^{11} +241.000 q^{25} -1469.69i q^{29} +478.000i q^{31} -39.1918 q^{35} +2397.00 q^{49} +4605.04i q^{53} +3840.00i q^{55} +1175.76 q^{59} +8158.00 q^{73} +391.918i q^{77} +9118.00i q^{79} -13129.3 q^{83} +17282.0 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 964 q^{25} + 9588 q^{49} + 32632 q^{73} + 69128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 19.5959i 0.783837i 0.920000 + 0.391918i \(0.128188\pi\)
−0.920000 + 0.391918i \(0.871812\pi\)
\(6\) 0 0
\(7\) 2.00000i 0.0408163i 0.999792 + 0.0204082i \(0.00649657\pi\)
−0.999792 + 0.0204082i \(0.993503\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 195.959 1.61950 0.809749 0.586777i \(-0.199603\pi\)
0.809749 + 0.586777i \(0.199603\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 241.000 0.385600
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 1469.69i − 1.74756i −0.486326 0.873778i \(-0.661663\pi\)
0.486326 0.873778i \(-0.338337\pi\)
\(30\) 0 0
\(31\) 478.000i 0.497399i 0.968581 + 0.248699i \(0.0800031\pi\)
−0.968581 + 0.248699i \(0.919997\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −39.1918 −0.0319933
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 2397.00 0.998334
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4605.04i 1.63939i 0.572802 + 0.819694i \(0.305857\pi\)
−0.572802 + 0.819694i \(0.694143\pi\)
\(54\) 0 0
\(55\) 3840.00i 1.26942i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1175.76 0.337764 0.168882 0.985636i \(-0.445984\pi\)
0.168882 + 0.985636i \(0.445984\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 8158.00 1.53087 0.765434 0.643514i \(-0.222524\pi\)
0.765434 + 0.643514i \(0.222524\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 391.918i 0.0661019i
\(78\) 0 0
\(79\) 9118.00i 1.46098i 0.682921 + 0.730492i \(0.260709\pi\)
−0.682921 + 0.730492i \(0.739291\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −13129.3 −1.90583 −0.952915 0.303237i \(-0.901933\pi\)
−0.952915 + 0.303237i \(0.901933\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 17282.0 1.83675 0.918376 0.395709i \(-0.129501\pi\)
0.918376 + 0.395709i \(0.129501\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 13031.3i − 1.27745i −0.769434 0.638726i \(-0.779462\pi\)
0.769434 0.638726i \(-0.220538\pi\)
\(102\) 0 0
\(103\) 21118.0i 1.99057i 0.0969729 + 0.995287i \(0.469084\pi\)
−0.0969729 + 0.995287i \(0.530916\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16852.5 1.47196 0.735981 0.677002i \(-0.236721\pi\)
0.735981 + 0.677002i \(0.236721\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 23759.0 1.62277
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 16970.1i 1.08608i
\(126\) 0 0
\(127\) 20642.0i 1.27981i 0.768455 + 0.639903i \(0.221026\pi\)
−0.768455 + 0.639903i \(0.778974\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 19595.9 1.14189 0.570943 0.820989i \(-0.306578\pi\)
0.570943 + 0.820989i \(0.306578\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 28800.0 1.36980
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 19889.9i − 0.895899i −0.894059 0.447950i \(-0.852154\pi\)
0.894059 0.447950i \(-0.147846\pi\)
\(150\) 0 0
\(151\) 43202.0i 1.89474i 0.320139 + 0.947371i \(0.396271\pi\)
−0.320139 + 0.947371i \(0.603729\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9366.85 −0.389879
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 28561.0 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 15774.7i − 0.527071i −0.964650 0.263536i \(-0.915111\pi\)
0.964650 0.263536i \(-0.0848886\pi\)
\(174\) 0 0
\(175\) 482.000i 0.0157388i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −63098.9 −1.96932 −0.984658 0.174495i \(-0.944171\pi\)
−0.984658 + 0.174495i \(0.944171\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 9602.00 0.257779 0.128889 0.991659i \(-0.458859\pi\)
0.128889 + 0.991659i \(0.458859\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 66528.1i 1.71425i 0.515112 + 0.857123i \(0.327750\pi\)
−0.515112 + 0.857123i \(0.672250\pi\)
\(198\) 0 0
\(199\) 38398.0i 0.969622i 0.874619 + 0.484811i \(0.161112\pi\)
−0.874619 + 0.484811i \(0.838888\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2939.39 0.0713288
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −956.000 −0.0203020
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 46558.0i − 0.936234i −0.883666 0.468117i \(-0.844933\pi\)
0.883666 0.468117i \(-0.155067\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 101703. 1.97370 0.986850 0.161637i \(-0.0516774\pi\)
0.986850 + 0.161637i \(0.0516774\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −29762.0 −0.512422 −0.256211 0.966621i \(-0.582474\pi\)
−0.256211 + 0.966621i \(0.582474\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 46971.4i 0.782531i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −82890.7 −1.31571 −0.657853 0.753147i \(-0.728535\pi\)
−0.657853 + 0.753147i \(0.728535\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) −90240.0 −1.28501
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 139033.i − 1.92138i −0.277622 0.960690i \(-0.589546\pi\)
0.277622 0.960690i \(-0.410454\pi\)
\(270\) 0 0
\(271\) − 143518.i − 1.95419i −0.212793 0.977097i \(-0.568256\pi\)
0.212793 0.977097i \(-0.431744\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 47226.2 0.624478
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −83521.0 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 170191.i − 1.98244i −0.132221 0.991220i \(-0.542211\pi\)
0.132221 0.991220i \(-0.457789\pi\)
\(294\) 0 0
\(295\) 23040.0i 0.264752i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −84962.0 −0.867234 −0.433617 0.901097i \(-0.642763\pi\)
−0.433617 + 0.901097i \(0.642763\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 179989.i 1.79113i 0.444934 + 0.895563i \(0.353227\pi\)
−0.444934 + 0.895563i \(0.646773\pi\)
\(318\) 0 0
\(319\) − 288000.i − 2.83016i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −191038. −1.68213 −0.841066 0.540933i \(-0.818071\pi\)
−0.841066 + 0.540933i \(0.818071\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 93668.5i 0.805536i
\(342\) 0 0
\(343\) 9596.00i 0.0815647i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 72700.9 0.603783 0.301891 0.953342i \(-0.402382\pi\)
0.301891 + 0.953342i \(0.402382\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −130321. −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 159863.i 1.19995i
\(366\) 0 0
\(367\) − 234722.i − 1.74270i −0.490665 0.871348i \(-0.663246\pi\)
0.490665 0.871348i \(-0.336754\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −9210.08 −0.0669138
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) −7680.00 −0.0518131
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 143344.i − 0.947285i −0.880717 0.473643i \(-0.842939\pi\)
0.880717 0.473643i \(-0.157061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −178676. −1.14517
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −180962. −1.08178 −0.540892 0.841092i \(-0.681913\pi\)
−0.540892 + 0.841092i \(0.681913\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2351.51i 0.0137863i
\(414\) 0 0
\(415\) − 257280.i − 1.49386i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −300405. −1.71112 −0.855559 0.517706i \(-0.826786\pi\)
−0.855559 + 0.517706i \(0.826786\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) −73922.0 −0.394274 −0.197137 0.980376i \(-0.563164\pi\)
−0.197137 + 0.980376i \(0.563164\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 308158.i 1.59899i 0.600676 + 0.799493i \(0.294898\pi\)
−0.600676 + 0.799493i \(0.705102\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 75836.2 0.386428 0.193214 0.981157i \(-0.438109\pi\)
0.193214 + 0.981157i \(0.438109\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 136798. 0.655009 0.327505 0.944850i \(-0.393792\pi\)
0.327505 + 0.944850i \(0.393792\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 399855.i − 1.88148i −0.339124 0.940742i \(-0.610131\pi\)
0.339124 0.940742i \(-0.389869\pi\)
\(462\) 0 0
\(463\) − 366238.i − 1.70845i −0.519906 0.854223i \(-0.674033\pi\)
0.519906 0.854223i \(-0.325967\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 434833. 1.99383 0.996917 0.0784588i \(-0.0249999\pi\)
0.996917 + 0.0784588i \(0.0249999\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 338657.i 1.43971i
\(486\) 0 0
\(487\) 466562.i 1.96721i 0.180327 + 0.983607i \(0.442284\pi\)
−0.180327 + 0.983607i \(0.557716\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 405244. 1.68094 0.840472 0.541855i \(-0.182278\pi\)
0.840472 + 0.541855i \(0.182278\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 255360. 1.00131
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 128647.i 0.496552i 0.968689 + 0.248276i \(0.0798640\pi\)
−0.968689 + 0.248276i \(0.920136\pi\)
\(510\) 0 0
\(511\) 16316.0i 0.0624844i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −413827. −1.56029
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 279841. 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 330240.i 1.15378i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 469714. 1.61680
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −18236.0 −0.0596320
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 582097.i − 1.87622i −0.346331 0.938112i \(-0.612573\pi\)
0.346331 0.938112i \(-0.387427\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −351355. −1.10848 −0.554242 0.832356i \(-0.686992\pi\)
−0.554242 + 0.832356i \(0.686992\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 581758. 1.74739 0.873697 0.486471i \(-0.161716\pi\)
0.873697 + 0.486471i \(0.161716\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 26258.5i − 0.0777890i
\(582\) 0 0
\(583\) 902400.i 2.65498i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −685073. −1.98820 −0.994102 0.108451i \(-0.965411\pi\)
−0.994102 + 0.108451i \(0.965411\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 712802. 1.97342 0.986711 0.162485i \(-0.0519509\pi\)
0.986711 + 0.162485i \(0.0519509\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 465579.i 1.27199i
\(606\) 0 0
\(607\) − 203998.i − 0.553667i −0.960918 0.276833i \(-0.910715\pi\)
0.960918 0.276833i \(-0.0892850\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −181919. −0.465713
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 736322.i 1.84931i 0.380809 + 0.924654i \(0.375645\pi\)
−0.380809 + 0.924654i \(0.624355\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −404499. −1.00316
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 230400. 0.547007
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 837823.i 1.96484i 0.186696 + 0.982418i \(0.440222\pi\)
−0.186696 + 0.982418i \(0.559778\pi\)
\(654\) 0 0
\(655\) 384000.i 0.895053i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 801081. 1.84461 0.922307 0.386457i \(-0.126301\pi\)
0.922307 + 0.386457i \(0.126301\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 869758. 1.92030 0.960148 0.279491i \(-0.0901658\pi\)
0.960148 + 0.279491i \(0.0901658\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 197821.i − 0.431613i −0.976436 0.215807i \(-0.930762\pi\)
0.976436 0.215807i \(-0.0692381\pi\)
\(678\) 0 0
\(679\) 34564.0i 0.0749695i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 392114. 0.840565 0.420282 0.907393i \(-0.361931\pi\)
0.420282 + 0.907393i \(0.361931\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 70055.4i − 0.142563i −0.997456 0.0712813i \(-0.977291\pi\)
0.997456 0.0712813i \(-0.0227088\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26062.6 0.0521409
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) −42236.0 −0.0812479
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 354196.i − 0.673857i
\(726\) 0 0
\(727\) 1.04544e6i 1.97802i 0.147842 + 0.989011i \(0.452767\pi\)
−0.147842 + 0.989011i \(0.547233\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 389760. 0.702239
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33705.0i 0.0600801i
\(750\) 0 0
\(751\) − 837602.i − 1.48511i −0.669787 0.742554i \(-0.733614\pi\)
0.669787 0.742554i \(-0.266386\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −846583. −1.48517
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −439678. −0.743502 −0.371751 0.928333i \(-0.621242\pi\)
−0.371751 + 0.928333i \(0.621242\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 1.18722e6i − 1.98688i −0.114353 0.993440i \(-0.536479\pi\)
0.114353 0.993440i \(-0.463521\pi\)
\(774\) 0 0
\(775\) 115198.i 0.191797i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1.20446e6i − 1.89617i −0.318020 0.948084i \(-0.603018\pi\)
0.318020 0.948084i \(-0.396982\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.59863e6 2.47924
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.00439e6i 1.49010i 0.667008 + 0.745050i \(0.267575\pi\)
−0.667008 + 0.745050i \(0.732425\pi\)
\(822\) 0 0
\(823\) − 1.13376e6i − 1.67387i −0.547305 0.836933i \(-0.684346\pi\)
0.547305 0.836933i \(-0.315654\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −908859. −1.32888 −0.664439 0.747342i \(-0.731330\pi\)
−0.664439 + 0.747342i \(0.731330\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −1.45272e6 −2.05395
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 559679.i 0.783837i
\(846\) 0 0
\(847\) 47518.0i 0.0662356i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) 309120. 0.413138
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.78676e6i 2.36606i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −33940.1 −0.0443300
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −41284.0 −0.0522370
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) − 1.23648e6i − 1.54362i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 702514. 0.869231
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −2.57280e6 −3.08649
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 39191.8i 0.0466076i
\(918\) 0 0
\(919\) − 1.25088e6i − 1.48110i −0.672002 0.740549i \(-0.734565\pi\)
0.672002 0.740549i \(-0.265435\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −464162. −0.528677 −0.264338 0.964430i \(-0.585154\pi\)
−0.264338 + 0.964430i \(0.585154\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 787854.i − 0.889747i −0.895593 0.444873i \(-0.853249\pi\)
0.895593 0.444873i \(-0.146751\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.79146e6 −1.99759 −0.998796 0.0490528i \(-0.984380\pi\)
−0.998796 + 0.0490528i \(0.984380\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 695037. 0.752595
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 188160.i 0.202056i
\(966\) 0 0
\(967\) − 1.77792e6i − 1.90134i −0.310204 0.950670i \(-0.600397\pi\)
0.310204 0.950670i \(-0.399603\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −416021. −0.441242 −0.220621 0.975360i \(-0.570808\pi\)
−0.220621 + 0.975360i \(0.570808\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −1.30368e6 −1.34369
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 54238.0i 0.0552276i 0.999619 + 0.0276138i \(0.00879087\pi\)
−0.999619 + 0.0276138i \(0.991209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −752444. −0.760025
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.5.b.c.415.4 yes 4
3.2 odd 2 inner 576.5.b.c.415.2 yes 4
4.3 odd 2 inner 576.5.b.c.415.3 yes 4
8.3 odd 2 inner 576.5.b.c.415.1 4
8.5 even 2 inner 576.5.b.c.415.2 yes 4
12.11 even 2 inner 576.5.b.c.415.1 4
24.5 odd 2 CM 576.5.b.c.415.4 yes 4
24.11 even 2 inner 576.5.b.c.415.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
576.5.b.c.415.1 4 8.3 odd 2 inner
576.5.b.c.415.1 4 12.11 even 2 inner
576.5.b.c.415.2 yes 4 3.2 odd 2 inner
576.5.b.c.415.2 yes 4 8.5 even 2 inner
576.5.b.c.415.3 yes 4 4.3 odd 2 inner
576.5.b.c.415.3 yes 4 24.11 even 2 inner
576.5.b.c.415.4 yes 4 1.1 even 1 trivial
576.5.b.c.415.4 yes 4 24.5 odd 2 CM