Properties

Label 576.4.k.b.433.7
Level $576$
Weight $4$
Character 576.433
Analytic conductor $33.985$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(145,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.145"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.7
Character \(\chi\) \(=\) 576.433
Dual form 576.4.k.b.145.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.644922 - 0.644922i) q^{5} -7.13926i q^{7} +(25.4455 + 25.4455i) q^{11} +(-14.6030 + 14.6030i) q^{13} -71.4024 q^{17} +(43.6238 - 43.6238i) q^{19} +211.845i q^{23} -124.168i q^{25} +(-5.84463 + 5.84463i) q^{29} +107.807 q^{31} +(-4.60426 + 4.60426i) q^{35} +(-184.865 - 184.865i) q^{37} +360.146i q^{41} +(312.475 + 312.475i) q^{43} +343.892 q^{47} +292.031 q^{49} +(249.900 + 249.900i) q^{53} -32.8207i q^{55} +(-152.755 - 152.755i) q^{59} +(-525.985 + 525.985i) q^{61} +18.8355 q^{65} +(35.3052 - 35.3052i) q^{67} +784.715i q^{71} +800.215i q^{73} +(181.662 - 181.662i) q^{77} -548.062 q^{79} +(464.431 - 464.431i) q^{83} +(46.0489 + 46.0489i) q^{85} +302.977i q^{89} +(104.254 + 104.254i) q^{91} -56.2679 q^{95} +1567.24 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 40 q^{11} - 24 q^{19} - 400 q^{29} + 744 q^{31} - 456 q^{35} + 16 q^{37} - 1240 q^{43} - 1176 q^{49} - 752 q^{53} - 1376 q^{59} - 912 q^{61} - 976 q^{65} + 2256 q^{67} - 1904 q^{77} - 5992 q^{79}+ \cdots - 7728 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.644922 0.644922i −0.0576835 0.0576835i 0.677677 0.735360i \(-0.262987\pi\)
−0.735360 + 0.677677i \(0.762987\pi\)
\(6\) 0 0
\(7\) 7.13926i 0.385484i −0.981249 0.192742i \(-0.938262\pi\)
0.981249 0.192742i \(-0.0617380\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 25.4455 + 25.4455i 0.697464 + 0.697464i 0.963863 0.266399i \(-0.0858338\pi\)
−0.266399 + 0.963863i \(0.585834\pi\)
\(12\) 0 0
\(13\) −14.6030 + 14.6030i −0.311549 + 0.311549i −0.845509 0.533961i \(-0.820703\pi\)
0.533961 + 0.845509i \(0.320703\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −71.4024 −1.01868 −0.509342 0.860564i \(-0.670111\pi\)
−0.509342 + 0.860564i \(0.670111\pi\)
\(18\) 0 0
\(19\) 43.6238 43.6238i 0.526736 0.526736i −0.392861 0.919598i \(-0.628515\pi\)
0.919598 + 0.392861i \(0.128515\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 211.845i 1.92056i 0.279045 + 0.960278i \(0.409982\pi\)
−0.279045 + 0.960278i \(0.590018\pi\)
\(24\) 0 0
\(25\) 124.168i 0.993345i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.84463 + 5.84463i −0.0374248 + 0.0374248i −0.725572 0.688147i \(-0.758425\pi\)
0.688147 + 0.725572i \(0.258425\pi\)
\(30\) 0 0
\(31\) 107.807 0.624604 0.312302 0.949983i \(-0.398900\pi\)
0.312302 + 0.949983i \(0.398900\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.60426 + 4.60426i −0.0222361 + 0.0222361i
\(36\) 0 0
\(37\) −184.865 184.865i −0.821395 0.821395i 0.164913 0.986308i \(-0.447266\pi\)
−0.986308 + 0.164913i \(0.947266\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 360.146i 1.37184i 0.727679 + 0.685918i \(0.240599\pi\)
−0.727679 + 0.685918i \(0.759401\pi\)
\(42\) 0 0
\(43\) 312.475 + 312.475i 1.10818 + 1.10818i 0.993389 + 0.114795i \(0.0366213\pi\)
0.114795 + 0.993389i \(0.463379\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 343.892 1.06727 0.533636 0.845715i \(-0.320825\pi\)
0.533636 + 0.845715i \(0.320825\pi\)
\(48\) 0 0
\(49\) 292.031 0.851402
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 249.900 + 249.900i 0.647667 + 0.647667i 0.952429 0.304762i \(-0.0985768\pi\)
−0.304762 + 0.952429i \(0.598577\pi\)
\(54\) 0 0
\(55\) 32.8207i 0.0804644i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −152.755 152.755i −0.337067 0.337067i 0.518195 0.855262i \(-0.326604\pi\)
−0.855262 + 0.518195i \(0.826604\pi\)
\(60\) 0 0
\(61\) −525.985 + 525.985i −1.10402 + 1.10402i −0.110104 + 0.993920i \(0.535118\pi\)
−0.993920 + 0.110104i \(0.964882\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 18.8355 0.0359425
\(66\) 0 0
\(67\) 35.3052 35.3052i 0.0643764 0.0643764i −0.674186 0.738562i \(-0.735505\pi\)
0.738562 + 0.674186i \(0.235505\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 784.715i 1.31167i 0.754905 + 0.655834i \(0.227683\pi\)
−0.754905 + 0.655834i \(0.772317\pi\)
\(72\) 0 0
\(73\) 800.215i 1.28299i 0.767128 + 0.641494i \(0.221685\pi\)
−0.767128 + 0.641494i \(0.778315\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 181.662 181.662i 0.268861 0.268861i
\(78\) 0 0
\(79\) −548.062 −0.780530 −0.390265 0.920703i \(-0.627617\pi\)
−0.390265 + 0.920703i \(0.627617\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 464.431 464.431i 0.614191 0.614191i −0.329844 0.944035i \(-0.606996\pi\)
0.944035 + 0.329844i \(0.106996\pi\)
\(84\) 0 0
\(85\) 46.0489 + 46.0489i 0.0587613 + 0.0587613i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 302.977i 0.360849i 0.983589 + 0.180424i \(0.0577471\pi\)
−0.983589 + 0.180424i \(0.942253\pi\)
\(90\) 0 0
\(91\) 104.254 + 104.254i 0.120097 + 0.120097i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −56.2679 −0.0607680
\(96\) 0 0
\(97\) 1567.24 1.64050 0.820252 0.572002i \(-0.193833\pi\)
0.820252 + 0.572002i \(0.193833\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −59.6129 59.6129i −0.0587297 0.0587297i 0.677132 0.735862i \(-0.263223\pi\)
−0.735862 + 0.677132i \(0.763223\pi\)
\(102\) 0 0
\(103\) 1762.59i 1.68615i 0.537795 + 0.843076i \(0.319257\pi\)
−0.537795 + 0.843076i \(0.680743\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 656.579 + 656.579i 0.593214 + 0.593214i 0.938498 0.345284i \(-0.112218\pi\)
−0.345284 + 0.938498i \(0.612218\pi\)
\(108\) 0 0
\(109\) −327.776 + 327.776i −0.288030 + 0.288030i −0.836301 0.548271i \(-0.815286\pi\)
0.548271 + 0.836301i \(0.315286\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1349.18 1.12319 0.561593 0.827414i \(-0.310189\pi\)
0.561593 + 0.827414i \(0.310189\pi\)
\(114\) 0 0
\(115\) 136.624 136.624i 0.110784 0.110784i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 509.761i 0.392686i
\(120\) 0 0
\(121\) 36.0534i 0.0270875i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −160.694 + 160.694i −0.114983 + 0.114983i
\(126\) 0 0
\(127\) −52.2111 −0.0364802 −0.0182401 0.999834i \(-0.505806\pi\)
−0.0182401 + 0.999834i \(0.505806\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −387.958 + 387.958i −0.258749 + 0.258749i −0.824545 0.565796i \(-0.808569\pi\)
0.565796 + 0.824545i \(0.308569\pi\)
\(132\) 0 0
\(133\) −311.442 311.442i −0.203048 0.203048i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 795.048i 0.495807i 0.968785 + 0.247903i \(0.0797415\pi\)
−0.968785 + 0.247903i \(0.920258\pi\)
\(138\) 0 0
\(139\) −1708.70 1708.70i −1.04266 1.04266i −0.999048 0.0436142i \(-0.986113\pi\)
−0.0436142 0.999048i \(-0.513887\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −743.160 −0.434588
\(144\) 0 0
\(145\) 7.53865 0.00431759
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 69.6301 + 69.6301i 0.0382840 + 0.0382840i 0.725990 0.687706i \(-0.241382\pi\)
−0.687706 + 0.725990i \(0.741382\pi\)
\(150\) 0 0
\(151\) 1567.48i 0.844768i 0.906417 + 0.422384i \(0.138807\pi\)
−0.906417 + 0.422384i \(0.861193\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −69.5271 69.5271i −0.0360294 0.0360294i
\(156\) 0 0
\(157\) 1738.35 1738.35i 0.883667 0.883667i −0.110238 0.993905i \(-0.535161\pi\)
0.993905 + 0.110238i \(0.0351614\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1512.42 0.740344
\(162\) 0 0
\(163\) 2685.71 2685.71i 1.29056 1.29056i 0.356116 0.934442i \(-0.384101\pi\)
0.934442 0.356116i \(-0.115899\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 27.5126i 0.0127484i −0.999980 0.00637422i \(-0.997971\pi\)
0.999980 0.00637422i \(-0.00202899\pi\)
\(168\) 0 0
\(169\) 1770.51i 0.805875i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3044.87 + 3044.87i −1.33813 + 1.33813i −0.440267 + 0.897867i \(0.645116\pi\)
−0.897867 + 0.440267i \(0.854884\pi\)
\(174\) 0 0
\(175\) −886.469 −0.382919
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −365.808 + 365.808i −0.152747 + 0.152747i −0.779344 0.626597i \(-0.784447\pi\)
0.626597 + 0.779344i \(0.284447\pi\)
\(180\) 0 0
\(181\) −1737.10 1737.10i −0.713359 0.713359i 0.253877 0.967236i \(-0.418294\pi\)
−0.967236 + 0.253877i \(0.918294\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 238.447i 0.0947620i
\(186\) 0 0
\(187\) −1816.87 1816.87i −0.710495 0.710495i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1709.44 −0.647595 −0.323798 0.946126i \(-0.604960\pi\)
−0.323798 + 0.946126i \(0.604960\pi\)
\(192\) 0 0
\(193\) 2404.54 0.896800 0.448400 0.893833i \(-0.351994\pi\)
0.448400 + 0.893833i \(0.351994\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2772.54 2772.54i −1.00272 1.00272i −0.999996 0.00271983i \(-0.999134\pi\)
−0.00271983 0.999996i \(-0.500866\pi\)
\(198\) 0 0
\(199\) 1506.90i 0.536790i 0.963309 + 0.268395i \(0.0864932\pi\)
−0.963309 + 0.268395i \(0.913507\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 41.7263 + 41.7263i 0.0144267 + 0.0144267i
\(204\) 0 0
\(205\) 232.266 232.266i 0.0791324 0.0791324i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2220.06 0.734760
\(210\) 0 0
\(211\) 1965.22 1965.22i 0.641190 0.641190i −0.309658 0.950848i \(-0.600215\pi\)
0.950848 + 0.309658i \(0.100215\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 403.043i 0.127848i
\(216\) 0 0
\(217\) 769.663i 0.240775i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1042.69 1042.69i 0.317370 0.317370i
\(222\) 0 0
\(223\) −85.7869 −0.0257610 −0.0128805 0.999917i \(-0.504100\pi\)
−0.0128805 + 0.999917i \(0.504100\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2526.02 2526.02i 0.738582 0.738582i −0.233722 0.972304i \(-0.575090\pi\)
0.972304 + 0.233722i \(0.0750905\pi\)
\(228\) 0 0
\(229\) −1116.65 1116.65i −0.322227 0.322227i 0.527394 0.849621i \(-0.323169\pi\)
−0.849621 + 0.527394i \(0.823169\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5754.25i 1.61791i −0.587869 0.808956i \(-0.700033\pi\)
0.587869 0.808956i \(-0.299967\pi\)
\(234\) 0 0
\(235\) −221.783 221.783i −0.0615640 0.0615640i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −641.784 −0.173697 −0.0868484 0.996222i \(-0.527680\pi\)
−0.0868484 + 0.996222i \(0.527680\pi\)
\(240\) 0 0
\(241\) −2887.45 −0.771771 −0.385885 0.922547i \(-0.626104\pi\)
−0.385885 + 0.922547i \(0.626104\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −188.337 188.337i −0.0491119 0.0491119i
\(246\) 0 0
\(247\) 1274.07i 0.328208i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2367.55 2367.55i −0.595372 0.595372i 0.343706 0.939077i \(-0.388318\pi\)
−0.939077 + 0.343706i \(0.888318\pi\)
\(252\) 0 0
\(253\) −5390.51 + 5390.51i −1.33952 + 1.33952i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5112.43 −1.24087 −0.620437 0.784256i \(-0.713045\pi\)
−0.620437 + 0.784256i \(0.713045\pi\)
\(258\) 0 0
\(259\) −1319.80 + 1319.80i −0.316635 + 0.316635i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5496.36i 1.28867i −0.764744 0.644334i \(-0.777134\pi\)
0.764744 0.644334i \(-0.222866\pi\)
\(264\) 0 0
\(265\) 322.331i 0.0747194i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2474.35 2474.35i 0.560831 0.560831i −0.368712 0.929544i \(-0.620201\pi\)
0.929544 + 0.368712i \(0.120201\pi\)
\(270\) 0 0
\(271\) 1718.58 0.385226 0.192613 0.981275i \(-0.438304\pi\)
0.192613 + 0.981275i \(0.438304\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3159.52 3159.52i 0.692823 0.692823i
\(276\) 0 0
\(277\) −4722.69 4722.69i −1.02440 1.02440i −0.999695 0.0247055i \(-0.992135\pi\)
−0.0247055 0.999695i \(-0.507865\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2543.21i 0.539911i 0.962873 + 0.269955i \(0.0870090\pi\)
−0.962873 + 0.269955i \(0.912991\pi\)
\(282\) 0 0
\(283\) 3206.82 + 3206.82i 0.673589 + 0.673589i 0.958542 0.284952i \(-0.0919778\pi\)
−0.284952 + 0.958542i \(0.591978\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2571.17 0.528821
\(288\) 0 0
\(289\) 185.302 0.0377167
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5911.40 5911.40i −1.17866 1.17866i −0.980086 0.198575i \(-0.936369\pi\)
−0.198575 0.980086i \(-0.563631\pi\)
\(294\) 0 0
\(295\) 197.030i 0.0388865i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3093.57 3093.57i −0.598347 0.598347i
\(300\) 0 0
\(301\) 2230.84 2230.84i 0.427187 0.427187i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 678.438 0.127368
\(306\) 0 0
\(307\) −1162.25 + 1162.25i −0.216068 + 0.216068i −0.806839 0.590771i \(-0.798824\pi\)
0.590771 + 0.806839i \(0.298824\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2357.28i 0.429805i 0.976636 + 0.214902i \(0.0689433\pi\)
−0.976636 + 0.214902i \(0.931057\pi\)
\(312\) 0 0
\(313\) 3785.95i 0.683689i −0.939757 0.341844i \(-0.888948\pi\)
0.939757 0.341844i \(-0.111052\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3135.51 3135.51i 0.555545 0.555545i −0.372491 0.928036i \(-0.621496\pi\)
0.928036 + 0.372491i \(0.121496\pi\)
\(318\) 0 0
\(319\) −297.439 −0.0522050
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3114.85 + 3114.85i −0.536578 + 0.536578i
\(324\) 0 0
\(325\) 1813.22 + 1813.22i 0.309476 + 0.309476i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2455.13i 0.411416i
\(330\) 0 0
\(331\) 1734.12 + 1734.12i 0.287963 + 0.287963i 0.836274 0.548312i \(-0.184729\pi\)
−0.548312 + 0.836274i \(0.684729\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −45.5382 −0.00742691
\(336\) 0 0
\(337\) 5828.89 0.942196 0.471098 0.882081i \(-0.343858\pi\)
0.471098 + 0.882081i \(0.343858\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2743.21 + 2743.21i 0.435639 + 0.435639i
\(342\) 0 0
\(343\) 4533.65i 0.713686i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −716.234 716.234i −0.110805 0.110805i 0.649530 0.760336i \(-0.274966\pi\)
−0.760336 + 0.649530i \(0.774966\pi\)
\(348\) 0 0
\(349\) −4388.39 + 4388.39i −0.673081 + 0.673081i −0.958425 0.285344i \(-0.907892\pi\)
0.285344 + 0.958425i \(0.407892\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9348.76 −1.40959 −0.704794 0.709412i \(-0.748960\pi\)
−0.704794 + 0.709412i \(0.748960\pi\)
\(354\) 0 0
\(355\) 506.079 506.079i 0.0756617 0.0756617i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12531.1i 1.84224i 0.389275 + 0.921122i \(0.372726\pi\)
−0.389275 + 0.921122i \(0.627274\pi\)
\(360\) 0 0
\(361\) 3052.92i 0.445097i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 516.076 516.076i 0.0740073 0.0740073i
\(366\) 0 0
\(367\) −9276.83 −1.31947 −0.659736 0.751497i \(-0.729332\pi\)
−0.659736 + 0.751497i \(0.729332\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1784.10 1784.10i 0.249665 0.249665i
\(372\) 0 0
\(373\) 1765.32 + 1765.32i 0.245053 + 0.245053i 0.818937 0.573884i \(-0.194564\pi\)
−0.573884 + 0.818937i \(0.694564\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 170.698i 0.0233193i
\(378\) 0 0
\(379\) −2909.05 2909.05i −0.394269 0.394269i 0.481937 0.876206i \(-0.339933\pi\)
−0.876206 + 0.481937i \(0.839933\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1520.26 0.202824 0.101412 0.994845i \(-0.467664\pi\)
0.101412 + 0.994845i \(0.467664\pi\)
\(384\) 0 0
\(385\) −234.316 −0.0310177
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8093.35 + 8093.35i 1.05488 + 1.05488i 0.998404 + 0.0564785i \(0.0179872\pi\)
0.0564785 + 0.998404i \(0.482013\pi\)
\(390\) 0 0
\(391\) 15126.3i 1.95644i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 353.457 + 353.457i 0.0450237 + 0.0450237i
\(396\) 0 0
\(397\) 8897.26 8897.26i 1.12479 1.12479i 0.133776 0.991012i \(-0.457290\pi\)
0.991012 0.133776i \(-0.0427101\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4199.74 0.523004 0.261502 0.965203i \(-0.415782\pi\)
0.261502 + 0.965203i \(0.415782\pi\)
\(402\) 0 0
\(403\) −1574.30 + 1574.30i −0.194595 + 0.194595i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9407.97i 1.14579i
\(408\) 0 0
\(409\) 7881.87i 0.952894i −0.879203 0.476447i \(-0.841924\pi\)
0.879203 0.476447i \(-0.158076\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1090.56 + 1090.56i −0.129934 + 0.129934i
\(414\) 0 0
\(415\) −599.043 −0.0708575
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5502.69 + 5502.69i −0.641585 + 0.641585i −0.950945 0.309360i \(-0.899885\pi\)
0.309360 + 0.950945i \(0.399885\pi\)
\(420\) 0 0
\(421\) 11302.2 + 11302.2i 1.30840 + 1.30840i 0.922573 + 0.385823i \(0.126082\pi\)
0.385823 + 0.922573i \(0.373918\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 8865.90i 1.01190i
\(426\) 0 0
\(427\) 3755.14 + 3755.14i 0.425584 + 0.425584i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5428.20 −0.606652 −0.303326 0.952887i \(-0.598097\pi\)
−0.303326 + 0.952887i \(0.598097\pi\)
\(432\) 0 0
\(433\) −5143.78 −0.570888 −0.285444 0.958395i \(-0.592141\pi\)
−0.285444 + 0.958395i \(0.592141\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9241.50 + 9241.50i 1.01163 + 1.01163i
\(438\) 0 0
\(439\) 2183.50i 0.237386i −0.992931 0.118693i \(-0.962130\pi\)
0.992931 0.118693i \(-0.0378705\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 561.821 + 561.821i 0.0602549 + 0.0602549i 0.736592 0.676337i \(-0.236434\pi\)
−0.676337 + 0.736592i \(0.736434\pi\)
\(444\) 0 0
\(445\) 195.397 195.397i 0.0208150 0.0208150i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2639.02 0.277378 0.138689 0.990336i \(-0.455711\pi\)
0.138689 + 0.990336i \(0.455711\pi\)
\(450\) 0 0
\(451\) −9164.08 + 9164.08i −0.956807 + 0.956807i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 134.472i 0.0138552i
\(456\) 0 0
\(457\) 5546.69i 0.567753i 0.958861 + 0.283876i \(0.0916205\pi\)
−0.958861 + 0.283876i \(0.908379\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8475.23 + 8475.23i −0.856249 + 0.856249i −0.990894 0.134645i \(-0.957011\pi\)
0.134645 + 0.990894i \(0.457011\pi\)
\(462\) 0 0
\(463\) 16410.6 1.64722 0.823612 0.567154i \(-0.191956\pi\)
0.823612 + 0.567154i \(0.191956\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6689.53 + 6689.53i −0.662858 + 0.662858i −0.956053 0.293195i \(-0.905281\pi\)
0.293195 + 0.956053i \(0.405281\pi\)
\(468\) 0 0
\(469\) −252.053 252.053i −0.0248161 0.0248161i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15902.1i 1.54584i
\(474\) 0 0
\(475\) −5416.69 5416.69i −0.523231 0.523231i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7188.55 0.685707 0.342853 0.939389i \(-0.388607\pi\)
0.342853 + 0.939389i \(0.388607\pi\)
\(480\) 0 0
\(481\) 5399.16 0.511810
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1010.75 1010.75i −0.0946301 0.0946301i
\(486\) 0 0
\(487\) 11181.6i 1.04042i 0.854038 + 0.520210i \(0.174146\pi\)
−0.854038 + 0.520210i \(0.825854\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11679.8 + 11679.8i 1.07353 + 1.07353i 0.997073 + 0.0764529i \(0.0243595\pi\)
0.0764529 + 0.997073i \(0.475641\pi\)
\(492\) 0 0
\(493\) 417.321 417.321i 0.0381241 0.0381241i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5602.28 0.505627
\(498\) 0 0
\(499\) 2094.26 2094.26i 0.187880 0.187880i −0.606899 0.794779i \(-0.707587\pi\)
0.794779 + 0.606899i \(0.207587\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4293.63i 0.380604i −0.981726 0.190302i \(-0.939053\pi\)
0.981726 0.190302i \(-0.0609466\pi\)
\(504\) 0 0
\(505\) 76.8912i 0.00677548i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9115.13 9115.13i 0.793755 0.793755i −0.188348 0.982102i \(-0.560313\pi\)
0.982102 + 0.188348i \(0.0603132\pi\)
\(510\) 0 0
\(511\) 5712.95 0.494571
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1136.73 1136.73i 0.0972631 0.0972631i
\(516\) 0 0
\(517\) 8750.49 + 8750.49i 0.744383 + 0.744383i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 23150.3i 1.94671i −0.229309 0.973354i \(-0.573647\pi\)
0.229309 0.973354i \(-0.426353\pi\)
\(522\) 0 0
\(523\) 8510.52 + 8510.52i 0.711547 + 0.711547i 0.966859 0.255312i \(-0.0821781\pi\)
−0.255312 + 0.966859i \(0.582178\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7697.69 −0.636274
\(528\) 0 0
\(529\) −32711.4 −2.68854
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5259.19 5259.19i −0.427394 0.427394i
\(534\) 0 0
\(535\) 846.884i 0.0684373i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7430.87 + 7430.87i 0.593822 + 0.593822i
\(540\) 0 0
\(541\) 3403.84 3403.84i 0.270504 0.270504i −0.558799 0.829303i \(-0.688738\pi\)
0.829303 + 0.558799i \(0.188738\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 422.780 0.0332292
\(546\) 0 0
\(547\) −15672.4 + 15672.4i −1.22505 + 1.22505i −0.259237 + 0.965814i \(0.583471\pi\)
−0.965814 + 0.259237i \(0.916529\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 509.930i 0.0394261i
\(552\) 0 0
\(553\) 3912.76i 0.300882i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6285.58 + 6285.58i −0.478149 + 0.478149i −0.904539 0.426391i \(-0.859785\pi\)
0.426391 + 0.904539i \(0.359785\pi\)
\(558\) 0 0
\(559\) −9126.11 −0.690507
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1763.14 + 1763.14i −0.131985 + 0.131985i −0.770013 0.638028i \(-0.779750\pi\)
0.638028 + 0.770013i \(0.279750\pi\)
\(564\) 0 0
\(565\) −870.114 870.114i −0.0647894 0.0647894i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1150.05i 0.0847323i 0.999102 + 0.0423662i \(0.0134896\pi\)
−0.999102 + 0.0423662i \(0.986510\pi\)
\(570\) 0 0
\(571\) 4853.30 + 4853.30i 0.355699 + 0.355699i 0.862225 0.506526i \(-0.169070\pi\)
−0.506526 + 0.862225i \(0.669070\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 26304.4 1.90778
\(576\) 0 0
\(577\) −5152.84 −0.371777 −0.185889 0.982571i \(-0.559516\pi\)
−0.185889 + 0.982571i \(0.559516\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3315.69 3315.69i −0.236761 0.236761i
\(582\) 0 0
\(583\) 12717.6i 0.903449i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12549.2 + 12549.2i 0.882387 + 0.882387i 0.993777 0.111390i \(-0.0355302\pi\)
−0.111390 + 0.993777i \(0.535530\pi\)
\(588\) 0 0
\(589\) 4702.96 4702.96i 0.329002 0.329002i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1116.75 0.0773347 0.0386674 0.999252i \(-0.487689\pi\)
0.0386674 + 0.999252i \(0.487689\pi\)
\(594\) 0 0
\(595\) 328.756 328.756i 0.0226515 0.0226515i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15827.4i 1.07962i −0.841788 0.539808i \(-0.818497\pi\)
0.841788 0.539808i \(-0.181503\pi\)
\(600\) 0 0
\(601\) 12216.9i 0.829180i 0.910008 + 0.414590i \(0.136075\pi\)
−0.910008 + 0.414590i \(0.863925\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −23.2516 + 23.2516i −0.00156250 + 0.00156250i
\(606\) 0 0
\(607\) 24175.5 1.61656 0.808282 0.588795i \(-0.200398\pi\)
0.808282 + 0.588795i \(0.200398\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5021.84 + 5021.84i −0.332507 + 0.332507i
\(612\) 0 0
\(613\) 12893.7 + 12893.7i 0.849544 + 0.849544i 0.990076 0.140532i \(-0.0448812\pi\)
−0.140532 + 0.990076i \(0.544881\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13762.7i 0.897998i −0.893532 0.448999i \(-0.851781\pi\)
0.893532 0.448999i \(-0.148219\pi\)
\(618\) 0 0
\(619\) 326.797 + 326.797i 0.0212199 + 0.0212199i 0.717637 0.696417i \(-0.245224\pi\)
−0.696417 + 0.717637i \(0.745224\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2163.04 0.139101
\(624\) 0 0
\(625\) −15313.7 −0.980080
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13199.8 + 13199.8i 0.836742 + 0.836742i
\(630\) 0 0
\(631\) 12260.2i 0.773487i −0.922187 0.386744i \(-0.873600\pi\)
0.922187 0.386744i \(-0.126400\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 33.6721 + 33.6721i 0.00210431 + 0.00210431i
\(636\) 0 0
\(637\) −4264.52 + 4264.52i −0.265253 + 0.265253i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10329.4 −0.636485 −0.318242 0.948009i \(-0.603093\pi\)
−0.318242 + 0.948009i \(0.603093\pi\)
\(642\) 0 0
\(643\) 19299.9 19299.9i 1.18369 1.18369i 0.204911 0.978781i \(-0.434309\pi\)
0.978781 0.204911i \(-0.0656905\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8657.07i 0.526035i 0.964791 + 0.263017i \(0.0847177\pi\)
−0.964791 + 0.263017i \(0.915282\pi\)
\(648\) 0 0
\(649\) 7773.84i 0.470185i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5966.31 + 5966.31i −0.357549 + 0.357549i −0.862909 0.505360i \(-0.831360\pi\)
0.505360 + 0.862909i \(0.331360\pi\)
\(654\) 0 0
\(655\) 500.405 0.0298511
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7127.52 7127.52i 0.421318 0.421318i −0.464339 0.885657i \(-0.653708\pi\)
0.885657 + 0.464339i \(0.153708\pi\)
\(660\) 0 0
\(661\) 2386.19 + 2386.19i 0.140412 + 0.140412i 0.773819 0.633407i \(-0.218344\pi\)
−0.633407 + 0.773819i \(0.718344\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 401.711i 0.0234251i
\(666\) 0 0
\(667\) −1238.16 1238.16i −0.0718765 0.0718765i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −26767.9 −1.54003
\(672\) 0 0
\(673\) −3709.39 −0.212461 −0.106231 0.994342i \(-0.533878\pi\)
−0.106231 + 0.994342i \(0.533878\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1602.20 + 1602.20i 0.0909564 + 0.0909564i 0.751121 0.660165i \(-0.229513\pi\)
−0.660165 + 0.751121i \(0.729513\pi\)
\(678\) 0 0
\(679\) 11188.9i 0.632388i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15495.9 15495.9i −0.868130 0.868130i 0.124135 0.992265i \(-0.460384\pi\)
−0.992265 + 0.124135i \(0.960384\pi\)
\(684\) 0 0
\(685\) 512.743 512.743i 0.0285999 0.0285999i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7298.55 −0.403560
\(690\) 0 0
\(691\) −6337.43 + 6337.43i −0.348896 + 0.348896i −0.859698 0.510802i \(-0.829348\pi\)
0.510802 + 0.859698i \(0.329348\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2203.96i 0.120289i
\(696\) 0 0
\(697\) 25715.3i 1.39747i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 952.656 952.656i 0.0513285 0.0513285i −0.680977 0.732305i \(-0.738444\pi\)
0.732305 + 0.680977i \(0.238444\pi\)
\(702\) 0 0
\(703\) −16129.0 −0.865318
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −425.592 + 425.592i −0.0226394 + 0.0226394i
\(708\) 0 0
\(709\) −20781.1 20781.1i −1.10078 1.10078i −0.994317 0.106461i \(-0.966048\pi\)
−0.106461 0.994317i \(-0.533952\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 22838.4i 1.19959i
\(714\) 0 0
\(715\) 479.280 + 479.280i 0.0250686 + 0.0250686i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1927.96 −0.100001 −0.0500006 0.998749i \(-0.515922\pi\)
−0.0500006 + 0.998749i \(0.515922\pi\)
\(720\) 0 0
\(721\) 12583.6 0.649984
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 725.717 + 725.717i 0.0371758 + 0.0371758i
\(726\) 0 0
\(727\) 5482.27i 0.279678i −0.990174 0.139839i \(-0.955341\pi\)
0.990174 0.139839i \(-0.0446585\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −22311.4 22311.4i −1.12889 1.12889i
\(732\) 0 0
\(733\) 15048.8 15048.8i 0.758311 0.758311i −0.217704 0.976015i \(-0.569857\pi\)
0.976015 + 0.217704i \(0.0698568\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1796.72 0.0898004
\(738\) 0 0
\(739\) −12622.3 + 12622.3i −0.628306 + 0.628306i −0.947642 0.319335i \(-0.896540\pi\)
0.319335 + 0.947642i \(0.396540\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2335.45i 0.115315i −0.998336 0.0576576i \(-0.981637\pi\)
0.998336 0.0576576i \(-0.0183632\pi\)
\(744\) 0 0
\(745\) 89.8119i 0.00441672i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4687.49 4687.49i 0.228674 0.228674i
\(750\) 0 0
\(751\) 3513.73 0.170729 0.0853647 0.996350i \(-0.472794\pi\)
0.0853647 + 0.996350i \(0.472794\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1010.90 1010.90i 0.0487292 0.0487292i
\(756\) 0 0
\(757\) −10416.0 10416.0i −0.500102 0.500102i 0.411368 0.911470i \(-0.365051\pi\)
−0.911470 + 0.411368i \(0.865051\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17937.9i 0.854464i 0.904142 + 0.427232i \(0.140511\pi\)
−0.904142 + 0.427232i \(0.859489\pi\)
\(762\) 0 0
\(763\) 2340.08 + 2340.08i 0.111031 + 0.111031i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4461.34 0.210026
\(768\) 0 0
\(769\) 32224.0 1.51109 0.755544 0.655097i \(-0.227372\pi\)
0.755544 + 0.655097i \(0.227372\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −13719.5 13719.5i −0.638365 0.638365i 0.311787 0.950152i \(-0.399072\pi\)
−0.950152 + 0.311787i \(0.899072\pi\)
\(774\) 0 0
\(775\) 13386.2i 0.620448i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15710.9 + 15710.9i 0.722596 + 0.722596i
\(780\) 0 0
\(781\) −19967.5 + 19967.5i −0.914842 + 0.914842i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2242.20 −0.101946
\(786\) 0 0
\(787\) 9919.72 9919.72i 0.449301 0.449301i −0.445821 0.895122i \(-0.647088\pi\)
0.895122 + 0.445821i \(0.147088\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9632.14i 0.432970i
\(792\) 0 0
\(793\) 15361.9i 0.687915i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20018.0 20018.0i 0.889679 0.889679i −0.104813 0.994492i \(-0.533424\pi\)
0.994492 + 0.104813i \(0.0334243\pi\)
\(798\) 0 0
\(799\) −24554.7 −1.08721
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20361.9 + 20361.9i −0.894838 + 0.894838i
\(804\) 0 0
\(805\) −975.392 975.392i −0.0427056 0.0427056i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9967.99i 0.433196i −0.976261 0.216598i \(-0.930504\pi\)
0.976261 0.216598i \(-0.0694961\pi\)
\(810\) 0 0
\(811\) −16080.2 16080.2i −0.696243 0.696243i 0.267355 0.963598i \(-0.413850\pi\)
−0.963598 + 0.267355i \(0.913850\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3464.14 −0.148888
\(816\) 0 0
\(817\) 27262.7 1.16744
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8235.64 8235.64i −0.350092 0.350092i 0.510051 0.860144i \(-0.329626\pi\)
−0.860144 + 0.510051i \(0.829626\pi\)
\(822\) 0 0
\(823\) 21762.8i 0.921752i −0.887464 0.460876i \(-0.847535\pi\)
0.887464 0.460876i \(-0.152465\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30211.4 30211.4i −1.27032 1.27032i −0.945921 0.324396i \(-0.894839\pi\)
−0.324396 0.945921i \(-0.605161\pi\)
\(828\) 0 0
\(829\) −16821.1 + 16821.1i −0.704729 + 0.704729i −0.965422 0.260692i \(-0.916049\pi\)
0.260692 + 0.965422i \(0.416049\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −20851.7 −0.867310
\(834\) 0 0
\(835\) −17.7435 + 17.7435i −0.000735375 + 0.000735375i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21686.9i 0.892389i 0.894936 + 0.446194i \(0.147221\pi\)
−0.894936 + 0.446194i \(0.852779\pi\)
\(840\) 0 0
\(841\) 24320.7i 0.997199i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1141.84 1141.84i 0.0464857 0.0464857i
\(846\) 0 0
\(847\) −257.395 −0.0104418
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 39162.8 39162.8i 1.57754 1.57754i
\(852\) 0 0
\(853\) 12612.5 + 12612.5i 0.506266 + 0.506266i 0.913378 0.407112i \(-0.133464\pi\)
−0.407112 + 0.913378i \(0.633464\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46080.3i 1.83672i −0.395741 0.918362i \(-0.629512\pi\)
0.395741 0.918362i \(-0.370488\pi\)
\(858\) 0 0
\(859\) −8935.85 8935.85i −0.354933 0.354933i 0.507008 0.861941i \(-0.330751\pi\)
−0.861941 + 0.507008i \(0.830751\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19360.8 0.763674 0.381837 0.924230i \(-0.375292\pi\)
0.381837 + 0.924230i \(0.375292\pi\)
\(864\) 0 0
\(865\) 3927.40 0.154377
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13945.7 13945.7i −0.544391 0.544391i
\(870\) 0 0
\(871\) 1031.12i 0.0401128i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1147.24 + 1147.24i 0.0443242 + 0.0443242i
\(876\) 0 0
\(877\) 19139.4 19139.4i 0.736933 0.736933i −0.235050 0.971983i \(-0.575525\pi\)
0.971983 + 0.235050i \(0.0755254\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4836.79 −0.184967 −0.0924833 0.995714i \(-0.529480\pi\)
−0.0924833 + 0.995714i \(0.529480\pi\)
\(882\) 0 0
\(883\) 7730.89 7730.89i 0.294638 0.294638i −0.544271 0.838909i \(-0.683194\pi\)
0.838909 + 0.544271i \(0.183194\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12163.5i 0.460442i 0.973138 + 0.230221i \(0.0739448\pi\)
−0.973138 + 0.230221i \(0.926055\pi\)
\(888\) 0 0
\(889\) 372.749i 0.0140625i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15001.9 15001.9i 0.562171 0.562171i
\(894\) 0 0
\(895\) 471.835 0.0176220
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −630.093 + 630.093i −0.0233757 + 0.0233757i
\(900\) 0 0
\(901\) −17843.4 17843.4i −0.659768 0.659768i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2240.59i 0.0822981i
\(906\) 0 0
\(907\) 8264.83 + 8264.83i 0.302568 + 0.302568i 0.842018 0.539450i \(-0.181368\pi\)
−0.539450 + 0.842018i \(0.681368\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −41364.8 −1.50437 −0.752183 0.658955i \(-0.770999\pi\)
−0.752183 + 0.658955i \(0.770999\pi\)
\(912\) 0 0
\(913\) 23635.3 0.856753
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2769.74 + 2769.74i 0.0997434 + 0.0997434i
\(918\) 0 0
\(919\) 36966.7i 1.32690i 0.748221 + 0.663449i \(0.230908\pi\)
−0.748221 + 0.663449i \(0.769092\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11459.2 11459.2i −0.408649 0.408649i
\(924\) 0 0
\(925\) −22954.4 + 22954.4i −0.815929 + 0.815929i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 18882.5 0.666862 0.333431 0.942774i \(-0.391794\pi\)
0.333431 + 0.942774i \(0.391794\pi\)
\(930\) 0 0
\(931\) 12739.5 12739.5i 0.448464 0.448464i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2343.48i 0.0819678i
\(936\) 0 0
\(937\) 8581.23i 0.299185i 0.988748 + 0.149593i \(0.0477962\pi\)
−0.988748 + 0.149593i \(0.952204\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5618.83 5618.83i 0.194653 0.194653i −0.603050 0.797703i \(-0.706048\pi\)
0.797703 + 0.603050i \(0.206048\pi\)
\(942\) 0 0
\(943\) −76295.1 −2.63469
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18722.7 18722.7i 0.642456 0.642456i −0.308702 0.951159i \(-0.599895\pi\)
0.951159 + 0.308702i \(0.0998947\pi\)
\(948\) 0 0
\(949\) −11685.5 11685.5i −0.399713 0.399713i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17197.8i 0.584565i −0.956332 0.292282i \(-0.905585\pi\)
0.956332 0.292282i \(-0.0944147\pi\)
\(954\) 0 0
\(955\) 1102.45 + 1102.45i 0.0373556 + 0.0373556i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5676.06 0.191126
\(960\) 0 0
\(961\) −18168.6 −0.609870
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1550.74 1550.74i −0.0517306 0.0517306i
\(966\) 0 0
\(967\) 58259.3i 1.93743i 0.248182 + 0.968713i \(0.420167\pi\)
−0.248182 + 0.968713i \(0.579833\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19203.8 19203.8i −0.634685 0.634685i 0.314555 0.949239i \(-0.398145\pi\)
−0.949239 + 0.314555i \(0.898145\pi\)
\(972\) 0 0
\(973\) −12198.9 + 12198.9i −0.401930 + 0.401930i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16691.4 0.546578 0.273289 0.961932i \(-0.411888\pi\)
0.273289 + 0.961932i \(0.411888\pi\)
\(978\) 0 0
\(979\) −7709.41 + 7709.41i −0.251679 + 0.251679i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36043.6i 1.16949i −0.811216 0.584747i \(-0.801194\pi\)
0.811216 0.584747i \(-0.198806\pi\)
\(984\) 0 0
\(985\) 3576.14i 0.115680i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −66196.3 + 66196.3i −2.12833 + 2.12833i
\(990\) 0 0
\(991\) 48948.9 1.56904 0.784518 0.620107i \(-0.212911\pi\)
0.784518 + 0.620107i \(0.212911\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 971.831 971.831i 0.0309639 0.0309639i
\(996\) 0 0
\(997\) −22542.1 22542.1i −0.716062 0.716062i 0.251734 0.967796i \(-0.418999\pi\)
−0.967796 + 0.251734i \(0.918999\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.4.k.b.433.7 24
3.2 odd 2 192.4.j.a.49.3 24
4.3 odd 2 144.4.k.b.37.3 24
12.11 even 2 48.4.j.a.37.10 yes 24
16.3 odd 4 144.4.k.b.109.3 24
16.13 even 4 inner 576.4.k.b.145.7 24
24.5 odd 2 384.4.j.a.97.9 24
24.11 even 2 384.4.j.b.97.4 24
48.5 odd 4 384.4.j.a.289.9 24
48.11 even 4 384.4.j.b.289.4 24
48.29 odd 4 192.4.j.a.145.3 24
48.35 even 4 48.4.j.a.13.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.10 24 48.35 even 4
48.4.j.a.37.10 yes 24 12.11 even 2
144.4.k.b.37.3 24 4.3 odd 2
144.4.k.b.109.3 24 16.3 odd 4
192.4.j.a.49.3 24 3.2 odd 2
192.4.j.a.145.3 24 48.29 odd 4
384.4.j.a.97.9 24 24.5 odd 2
384.4.j.a.289.9 24 48.5 odd 4
384.4.j.b.97.4 24 24.11 even 2
384.4.j.b.289.4 24 48.11 even 4
576.4.k.b.145.7 24 16.13 even 4 inner
576.4.k.b.433.7 24 1.1 even 1 trivial