Properties

Label 576.3.o.g.319.1
Level $576$
Weight $3$
Character 576.319
Analytic conductor $15.695$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,3,Mod(319,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.319"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 7 x^{14} - 30 x^{13} + 76 x^{12} - 144 x^{11} + 424 x^{10} - 912 x^{9} + \cdots + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 319.1
Root \(-0.523926 - 1.93016i\) of defining polynomial
Character \(\chi\) \(=\) 576.319
Dual form 576.3.o.g.511.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.76570 + 1.16229i) q^{3} +(4.03104 - 6.98197i) q^{5} +(3.90254 - 2.25313i) q^{7} +(6.29815 - 6.42910i) q^{9} +(3.25842 - 1.88125i) q^{11} +(3.52605 - 6.10730i) q^{13} +(-3.03354 + 23.9953i) q^{15} +0.517890 q^{17} +16.4164i q^{19} +(-8.17444 + 10.7674i) q^{21} +(-27.7049 - 15.9954i) q^{23} +(-19.9986 - 34.6387i) q^{25} +(-9.94627 + 25.1012i) q^{27} +(-9.48394 - 16.4267i) q^{29} +(13.1355 + 7.58377i) q^{31} +(-6.82524 + 8.99021i) q^{33} -36.3299i q^{35} -0.592061 q^{37} +(-2.65351 + 20.9892i) q^{39} +(12.3766 - 21.4369i) q^{41} +(27.8686 - 16.0900i) q^{43} +(-19.4997 - 69.8895i) q^{45} +(52.4682 - 30.2925i) q^{47} +(-14.3468 + 24.8493i) q^{49} +(-1.43233 + 0.601940i) q^{51} +0.664765 q^{53} -30.3336i q^{55} +(-19.0807 - 45.4029i) q^{57} +(-30.5921 - 17.6623i) q^{59} +(-33.7750 - 58.5000i) q^{61} +(10.0932 - 39.2804i) q^{63} +(-28.4273 - 49.2376i) q^{65} +(-74.4692 - 42.9948i) q^{67} +(95.2148 + 12.0373i) q^{69} -56.4434i q^{71} +131.921 q^{73} +(95.5705 + 72.5557i) q^{75} +(8.47743 - 14.6833i) q^{77} +(-126.869 + 73.2481i) q^{79} +(-1.66664 - 80.9829i) q^{81} +(87.1029 - 50.2889i) q^{83} +(2.08764 - 3.61589i) q^{85} +(45.3223 + 34.4081i) q^{87} -25.8362 q^{89} -31.7786i q^{91} +(-45.1433 - 5.70713i) q^{93} +(114.619 + 66.1754i) q^{95} +(-48.2534 - 83.5773i) q^{97} +(8.42728 - 32.7971i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{5} + 18 q^{9} + 46 q^{13} + 12 q^{17} + 66 q^{21} - 30 q^{25} - 42 q^{29} - 168 q^{33} - 56 q^{37} + 84 q^{41} - 174 q^{45} + 58 q^{49} + 72 q^{53} + 366 q^{57} + 34 q^{61} - 30 q^{65} + 54 q^{69}+ \cdots - 148 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.76570 + 1.16229i −0.921899 + 0.387431i
\(4\) 0 0
\(5\) 4.03104 6.98197i 0.806209 1.39639i −0.109263 0.994013i \(-0.534849\pi\)
0.915472 0.402382i \(-0.131818\pi\)
\(6\) 0 0
\(7\) 3.90254 2.25313i 0.557506 0.321876i −0.194638 0.980875i \(-0.562353\pi\)
0.752144 + 0.658999i \(0.229020\pi\)
\(8\) 0 0
\(9\) 6.29815 6.42910i 0.699794 0.714344i
\(10\) 0 0
\(11\) 3.25842 1.88125i 0.296220 0.171023i −0.344523 0.938778i \(-0.611959\pi\)
0.640744 + 0.767755i \(0.278626\pi\)
\(12\) 0 0
\(13\) 3.52605 6.10730i 0.271235 0.469792i −0.697944 0.716153i \(-0.745901\pi\)
0.969178 + 0.246361i \(0.0792348\pi\)
\(14\) 0 0
\(15\) −3.03354 + 23.9953i −0.202236 + 1.59968i
\(16\) 0 0
\(17\) 0.517890 0.0304641 0.0152321 0.999884i \(-0.495151\pi\)
0.0152321 + 0.999884i \(0.495151\pi\)
\(18\) 0 0
\(19\) 16.4164i 0.864023i 0.901868 + 0.432012i \(0.142196\pi\)
−0.901868 + 0.432012i \(0.857804\pi\)
\(20\) 0 0
\(21\) −8.17444 + 10.7674i −0.389259 + 0.512733i
\(22\) 0 0
\(23\) −27.7049 15.9954i −1.20456 0.695454i −0.242996 0.970027i \(-0.578130\pi\)
−0.961566 + 0.274573i \(0.911463\pi\)
\(24\) 0 0
\(25\) −19.9986 34.6387i −0.799946 1.38555i
\(26\) 0 0
\(27\) −9.94627 + 25.1012i −0.368380 + 0.929675i
\(28\) 0 0
\(29\) −9.48394 16.4267i −0.327032 0.566437i 0.654889 0.755725i \(-0.272715\pi\)
−0.981922 + 0.189288i \(0.939382\pi\)
\(30\) 0 0
\(31\) 13.1355 + 7.58377i 0.423725 + 0.244638i 0.696670 0.717392i \(-0.254664\pi\)
−0.272945 + 0.962030i \(0.587998\pi\)
\(32\) 0 0
\(33\) −6.82524 + 8.99021i −0.206826 + 0.272431i
\(34\) 0 0
\(35\) 36.3299i 1.03800i
\(36\) 0 0
\(37\) −0.592061 −0.0160017 −0.00800083 0.999968i \(-0.502547\pi\)
−0.00800083 + 0.999968i \(0.502547\pi\)
\(38\) 0 0
\(39\) −2.65351 + 20.9892i −0.0680387 + 0.538185i
\(40\) 0 0
\(41\) 12.3766 21.4369i 0.301868 0.522850i −0.674691 0.738100i \(-0.735723\pi\)
0.976559 + 0.215250i \(0.0690565\pi\)
\(42\) 0 0
\(43\) 27.8686 16.0900i 0.648107 0.374185i −0.139623 0.990205i \(-0.544589\pi\)
0.787731 + 0.616020i \(0.211256\pi\)
\(44\) 0 0
\(45\) −19.4997 69.8895i −0.433326 1.55310i
\(46\) 0 0
\(47\) 52.4682 30.2925i 1.11634 0.644521i 0.175879 0.984412i \(-0.443723\pi\)
0.940465 + 0.339890i \(0.110390\pi\)
\(48\) 0 0
\(49\) −14.3468 + 24.8493i −0.292791 + 0.507129i
\(50\) 0 0
\(51\) −1.43233 + 0.601940i −0.0280848 + 0.0118027i
\(52\) 0 0
\(53\) 0.664765 0.0125427 0.00627137 0.999980i \(-0.498004\pi\)
0.00627137 + 0.999980i \(0.498004\pi\)
\(54\) 0 0
\(55\) 30.3336i 0.551521i
\(56\) 0 0
\(57\) −19.0807 45.4029i −0.334749 0.796542i
\(58\) 0 0
\(59\) −30.5921 17.6623i −0.518510 0.299362i 0.217815 0.975990i \(-0.430107\pi\)
−0.736325 + 0.676628i \(0.763440\pi\)
\(60\) 0 0
\(61\) −33.7750 58.5000i −0.553688 0.959016i −0.998004 0.0631460i \(-0.979887\pi\)
0.444316 0.895870i \(-0.353447\pi\)
\(62\) 0 0
\(63\) 10.0932 39.2804i 0.160209 0.623499i
\(64\) 0 0
\(65\) −28.4273 49.2376i −0.437343 0.757501i
\(66\) 0 0
\(67\) −74.4692 42.9948i −1.11148 0.641714i −0.172269 0.985050i \(-0.555110\pi\)
−0.939213 + 0.343336i \(0.888443\pi\)
\(68\) 0 0
\(69\) 95.2148 + 12.0373i 1.37992 + 0.174454i
\(70\) 0 0
\(71\) 56.4434i 0.794977i −0.917607 0.397489i \(-0.869882\pi\)
0.917607 0.397489i \(-0.130118\pi\)
\(72\) 0 0
\(73\) 131.921 1.80713 0.903567 0.428447i \(-0.140939\pi\)
0.903567 + 0.428447i \(0.140939\pi\)
\(74\) 0 0
\(75\) 95.5705 + 72.5557i 1.27427 + 0.967410i
\(76\) 0 0
\(77\) 8.47743 14.6833i 0.110096 0.190693i
\(78\) 0 0
\(79\) −126.869 + 73.2481i −1.60594 + 0.927191i −0.615677 + 0.787999i \(0.711117\pi\)
−0.990265 + 0.139192i \(0.955549\pi\)
\(80\) 0 0
\(81\) −1.66664 80.9829i −0.0205758 0.999788i
\(82\) 0 0
\(83\) 87.1029 50.2889i 1.04943 0.605890i 0.126942 0.991910i \(-0.459484\pi\)
0.922491 + 0.386020i \(0.126150\pi\)
\(84\) 0 0
\(85\) 2.08764 3.61589i 0.0245604 0.0425399i
\(86\) 0 0
\(87\) 45.3223 + 34.4081i 0.520946 + 0.395495i
\(88\) 0 0
\(89\) −25.8362 −0.290295 −0.145147 0.989410i \(-0.546366\pi\)
−0.145147 + 0.989410i \(0.546366\pi\)
\(90\) 0 0
\(91\) 31.7786i 0.349216i
\(92\) 0 0
\(93\) −45.1433 5.70713i −0.485412 0.0613670i
\(94\) 0 0
\(95\) 114.619 + 66.1754i 1.20652 + 0.696583i
\(96\) 0 0
\(97\) −48.2534 83.5773i −0.497457 0.861621i 0.502538 0.864555i \(-0.332400\pi\)
−0.999996 + 0.00293363i \(0.999066\pi\)
\(98\) 0 0
\(99\) 8.42728 32.7971i 0.0851241 0.331284i
\(100\) 0 0
\(101\) 21.6600 + 37.5163i 0.214456 + 0.371448i 0.953104 0.302643i \(-0.0978689\pi\)
−0.738648 + 0.674091i \(0.764536\pi\)
\(102\) 0 0
\(103\) −125.439 72.4223i −1.21786 0.703129i −0.253397 0.967362i \(-0.581548\pi\)
−0.964459 + 0.264233i \(0.914881\pi\)
\(104\) 0 0
\(105\) 42.2260 + 100.478i 0.402153 + 0.956929i
\(106\) 0 0
\(107\) 54.9861i 0.513889i 0.966426 + 0.256944i \(0.0827158\pi\)
−0.966426 + 0.256944i \(0.917284\pi\)
\(108\) 0 0
\(109\) 63.9235 0.586454 0.293227 0.956043i \(-0.405271\pi\)
0.293227 + 0.956043i \(0.405271\pi\)
\(110\) 0 0
\(111\) 1.63746 0.688149i 0.0147519 0.00619954i
\(112\) 0 0
\(113\) 17.8239 30.8720i 0.157734 0.273203i −0.776317 0.630342i \(-0.782914\pi\)
0.934051 + 0.357139i \(0.116248\pi\)
\(114\) 0 0
\(115\) −223.360 + 128.957i −1.94226 + 1.12136i
\(116\) 0 0
\(117\) −17.0568 61.1340i −0.145785 0.522513i
\(118\) 0 0
\(119\) 2.02109 1.16688i 0.0169839 0.00980568i
\(120\) 0 0
\(121\) −53.4218 + 92.5292i −0.441502 + 0.764704i
\(122\) 0 0
\(123\) −9.31394 + 73.6731i −0.0757231 + 0.598968i
\(124\) 0 0
\(125\) −120.909 −0.967276
\(126\) 0 0
\(127\) 9.81219i 0.0772613i 0.999254 + 0.0386307i \(0.0122996\pi\)
−0.999254 + 0.0386307i \(0.987700\pi\)
\(128\) 0 0
\(129\) −58.3749 + 76.8914i −0.452518 + 0.596057i
\(130\) 0 0
\(131\) 101.561 + 58.6365i 0.775278 + 0.447607i 0.834754 0.550623i \(-0.185610\pi\)
−0.0594761 + 0.998230i \(0.518943\pi\)
\(132\) 0 0
\(133\) 36.9884 + 64.0659i 0.278109 + 0.481698i
\(134\) 0 0
\(135\) 135.162 + 170.629i 1.00120 + 1.26392i
\(136\) 0 0
\(137\) 125.606 + 217.556i 0.916831 + 1.58800i 0.804198 + 0.594362i \(0.202595\pi\)
0.112634 + 0.993637i \(0.464071\pi\)
\(138\) 0 0
\(139\) −133.073 76.8298i −0.957361 0.552732i −0.0620009 0.998076i \(-0.519748\pi\)
−0.895360 + 0.445344i \(0.853081\pi\)
\(140\) 0 0
\(141\) −109.902 + 144.763i −0.779448 + 1.02669i
\(142\) 0 0
\(143\) 26.5335i 0.185549i
\(144\) 0 0
\(145\) −152.921 −1.05463
\(146\) 0 0
\(147\) 10.7966 85.4009i 0.0734462 0.580958i
\(148\) 0 0
\(149\) 45.8643 79.4393i 0.307814 0.533150i −0.670070 0.742298i \(-0.733736\pi\)
0.977884 + 0.209148i \(0.0670691\pi\)
\(150\) 0 0
\(151\) −36.0215 + 20.7970i −0.238553 + 0.137729i −0.614512 0.788908i \(-0.710647\pi\)
0.375958 + 0.926637i \(0.377314\pi\)
\(152\) 0 0
\(153\) 3.26175 3.32957i 0.0213186 0.0217619i
\(154\) 0 0
\(155\) 105.899 61.1410i 0.683222 0.394458i
\(156\) 0 0
\(157\) −112.909 + 195.565i −0.719167 + 1.24563i 0.242163 + 0.970236i \(0.422143\pi\)
−0.961330 + 0.275399i \(0.911190\pi\)
\(158\) 0 0
\(159\) −1.83854 + 0.772652i −0.0115631 + 0.00485945i
\(160\) 0 0
\(161\) −144.160 −0.895401
\(162\) 0 0
\(163\) 125.175i 0.767945i 0.923344 + 0.383973i \(0.125444\pi\)
−0.923344 + 0.383973i \(0.874556\pi\)
\(164\) 0 0
\(165\) 35.2566 + 83.8936i 0.213676 + 0.508446i
\(166\) 0 0
\(167\) −154.373 89.1274i −0.924390 0.533697i −0.0393573 0.999225i \(-0.512531\pi\)
−0.885033 + 0.465528i \(0.845864\pi\)
\(168\) 0 0
\(169\) 59.6340 + 103.289i 0.352864 + 0.611178i
\(170\) 0 0
\(171\) 105.543 + 103.393i 0.617210 + 0.604638i
\(172\) 0 0
\(173\) 75.5904 + 130.926i 0.436939 + 0.756800i 0.997452 0.0713455i \(-0.0227293\pi\)
−0.560513 + 0.828146i \(0.689396\pi\)
\(174\) 0 0
\(175\) −156.091 90.1193i −0.891949 0.514967i
\(176\) 0 0
\(177\) 105.137 + 13.2917i 0.593995 + 0.0750944i
\(178\) 0 0
\(179\) 276.827i 1.54652i −0.634088 0.773261i \(-0.718624\pi\)
0.634088 0.773261i \(-0.281376\pi\)
\(180\) 0 0
\(181\) 104.729 0.578612 0.289306 0.957237i \(-0.406575\pi\)
0.289306 + 0.957237i \(0.406575\pi\)
\(182\) 0 0
\(183\) 161.405 + 122.537i 0.881997 + 0.669600i
\(184\) 0 0
\(185\) −2.38663 + 4.13376i −0.0129007 + 0.0223446i
\(186\) 0 0
\(187\) 1.68751 0.974282i 0.00902409 0.00521006i
\(188\) 0 0
\(189\) 17.7407 + 120.369i 0.0938662 + 0.636873i
\(190\) 0 0
\(191\) 192.972 111.413i 1.01033 0.583312i 0.0990389 0.995084i \(-0.468423\pi\)
0.911287 + 0.411772i \(0.135090\pi\)
\(192\) 0 0
\(193\) 56.6790 98.1709i 0.293674 0.508657i −0.681002 0.732282i \(-0.738455\pi\)
0.974675 + 0.223624i \(0.0717888\pi\)
\(194\) 0 0
\(195\) 135.850 + 103.135i 0.696666 + 0.528899i
\(196\) 0 0
\(197\) 120.998 0.614201 0.307100 0.951677i \(-0.400641\pi\)
0.307100 + 0.951677i \(0.400641\pi\)
\(198\) 0 0
\(199\) 82.2364i 0.413248i 0.978420 + 0.206624i \(0.0662477\pi\)
−0.978420 + 0.206624i \(0.933752\pi\)
\(200\) 0 0
\(201\) 255.932 + 32.3556i 1.27329 + 0.160973i
\(202\) 0 0
\(203\) −74.0230 42.7372i −0.364645 0.210528i
\(204\) 0 0
\(205\) −99.7811 172.826i −0.486737 0.843053i
\(206\) 0 0
\(207\) −277.326 + 77.3760i −1.33974 + 0.373797i
\(208\) 0 0
\(209\) 30.8835 + 53.4917i 0.147768 + 0.255941i
\(210\) 0 0
\(211\) 93.5819 + 54.0295i 0.443516 + 0.256064i 0.705088 0.709120i \(-0.250907\pi\)
−0.261572 + 0.965184i \(0.584241\pi\)
\(212\) 0 0
\(213\) 65.6038 + 156.105i 0.307999 + 0.732889i
\(214\) 0 0
\(215\) 259.437i 1.20668i
\(216\) 0 0
\(217\) 68.3490 0.314972
\(218\) 0 0
\(219\) −364.853 + 153.331i −1.66599 + 0.700140i
\(220\) 0 0
\(221\) 1.82611 3.16291i 0.00826292 0.0143118i
\(222\) 0 0
\(223\) 141.400 81.6371i 0.634079 0.366086i −0.148251 0.988950i \(-0.547364\pi\)
0.782330 + 0.622864i \(0.214031\pi\)
\(224\) 0 0
\(225\) −348.650 89.5862i −1.54955 0.398161i
\(226\) 0 0
\(227\) 9.56722 5.52364i 0.0421463 0.0243332i −0.478779 0.877936i \(-0.658920\pi\)
0.520925 + 0.853602i \(0.325587\pi\)
\(228\) 0 0
\(229\) 16.1725 28.0116i 0.0706222 0.122321i −0.828552 0.559912i \(-0.810835\pi\)
0.899174 + 0.437591i \(0.144168\pi\)
\(230\) 0 0
\(231\) −6.37965 + 50.4629i −0.0276175 + 0.218454i
\(232\) 0 0
\(233\) 181.049 0.777036 0.388518 0.921441i \(-0.372987\pi\)
0.388518 + 0.921441i \(0.372987\pi\)
\(234\) 0 0
\(235\) 488.442i 2.07848i
\(236\) 0 0
\(237\) 265.746 350.041i 1.12129 1.47697i
\(238\) 0 0
\(239\) 39.6432 + 22.8880i 0.165871 + 0.0957658i 0.580638 0.814162i \(-0.302803\pi\)
−0.414766 + 0.909928i \(0.636137\pi\)
\(240\) 0 0
\(241\) 169.216 + 293.090i 0.702140 + 1.21614i 0.967714 + 0.252052i \(0.0811054\pi\)
−0.265573 + 0.964091i \(0.585561\pi\)
\(242\) 0 0
\(243\) 98.7353 + 222.037i 0.406318 + 0.913732i
\(244\) 0 0
\(245\) 115.665 + 200.338i 0.472102 + 0.817704i
\(246\) 0 0
\(247\) 100.260 + 57.8852i 0.405911 + 0.234353i
\(248\) 0 0
\(249\) −182.450 + 240.323i −0.732730 + 0.965152i
\(250\) 0 0
\(251\) 282.587i 1.12585i −0.826510 0.562923i \(-0.809677\pi\)
0.826510 0.562923i \(-0.190323\pi\)
\(252\) 0 0
\(253\) −120.366 −0.475754
\(254\) 0 0
\(255\) −1.57104 + 12.4269i −0.00616095 + 0.0487330i
\(256\) 0 0
\(257\) 38.8897 67.3589i 0.151322 0.262097i −0.780392 0.625291i \(-0.784980\pi\)
0.931714 + 0.363194i \(0.118314\pi\)
\(258\) 0 0
\(259\) −2.31055 + 1.33399i −0.00892102 + 0.00515056i
\(260\) 0 0
\(261\) −165.340 42.4844i −0.633486 0.162775i
\(262\) 0 0
\(263\) 195.201 112.700i 0.742211 0.428516i −0.0806619 0.996742i \(-0.525703\pi\)
0.822873 + 0.568226i \(0.192370\pi\)
\(264\) 0 0
\(265\) 2.67970 4.64138i 0.0101121 0.0175146i
\(266\) 0 0
\(267\) 71.4552 30.0293i 0.267622 0.112469i
\(268\) 0 0
\(269\) −425.808 −1.58293 −0.791465 0.611214i \(-0.790681\pi\)
−0.791465 + 0.611214i \(0.790681\pi\)
\(270\) 0 0
\(271\) 56.3665i 0.207995i −0.994578 0.103997i \(-0.966837\pi\)
0.994578 0.103997i \(-0.0331633\pi\)
\(272\) 0 0
\(273\) 36.9361 + 87.8901i 0.135297 + 0.321942i
\(274\) 0 0
\(275\) −130.328 75.2450i −0.473920 0.273618i
\(276\) 0 0
\(277\) 209.641 + 363.109i 0.756828 + 1.31086i 0.944461 + 0.328625i \(0.106585\pi\)
−0.187633 + 0.982239i \(0.560082\pi\)
\(278\) 0 0
\(279\) 131.486 36.6856i 0.471276 0.131489i
\(280\) 0 0
\(281\) −73.9638 128.109i −0.263216 0.455904i 0.703878 0.710320i \(-0.251450\pi\)
−0.967095 + 0.254416i \(0.918117\pi\)
\(282\) 0 0
\(283\) 229.852 + 132.705i 0.812198 + 0.468923i 0.847719 0.530446i \(-0.177976\pi\)
−0.0355207 + 0.999369i \(0.511309\pi\)
\(284\) 0 0
\(285\) −393.917 49.8000i −1.38216 0.174737i
\(286\) 0 0
\(287\) 111.544i 0.388656i
\(288\) 0 0
\(289\) −288.732 −0.999072
\(290\) 0 0
\(291\) 230.595 + 175.065i 0.792424 + 0.601597i
\(292\) 0 0
\(293\) −124.844 + 216.236i −0.426088 + 0.738006i −0.996521 0.0833379i \(-0.973442\pi\)
0.570433 + 0.821344i \(0.306775\pi\)
\(294\) 0 0
\(295\) −246.636 + 142.395i −0.836054 + 0.482696i
\(296\) 0 0
\(297\) 14.8126 + 100.502i 0.0498740 + 0.338390i
\(298\) 0 0
\(299\) −195.378 + 112.801i −0.653438 + 0.377262i
\(300\) 0 0
\(301\) 72.5056 125.583i 0.240883 0.417221i
\(302\) 0 0
\(303\) −103.510 78.5833i −0.341617 0.259351i
\(304\) 0 0
\(305\) −544.594 −1.78555
\(306\) 0 0
\(307\) 259.968i 0.846801i 0.905943 + 0.423401i \(0.139164\pi\)
−0.905943 + 0.423401i \(0.860836\pi\)
\(308\) 0 0
\(309\) 431.102 + 54.5010i 1.39515 + 0.176379i
\(310\) 0 0
\(311\) 16.5959 + 9.58164i 0.0533630 + 0.0308091i 0.526444 0.850210i \(-0.323525\pi\)
−0.473081 + 0.881019i \(0.656858\pi\)
\(312\) 0 0
\(313\) −21.9358 37.9939i −0.0700823 0.121386i 0.828855 0.559464i \(-0.188993\pi\)
−0.898937 + 0.438078i \(0.855660\pi\)
\(314\) 0 0
\(315\) −233.569 228.811i −0.741488 0.726385i
\(316\) 0 0
\(317\) −68.9690 119.458i −0.217568 0.376838i 0.736496 0.676442i \(-0.236479\pi\)
−0.954064 + 0.299603i \(0.903146\pi\)
\(318\) 0 0
\(319\) −61.8054 35.6834i −0.193747 0.111860i
\(320\) 0 0
\(321\) −63.9100 152.075i −0.199097 0.473754i
\(322\) 0 0
\(323\) 8.50191i 0.0263217i
\(324\) 0 0
\(325\) −282.065 −0.867892
\(326\) 0 0
\(327\) −176.793 + 74.2978i −0.540651 + 0.227211i
\(328\) 0 0
\(329\) 136.506 236.436i 0.414912 0.718649i
\(330\) 0 0
\(331\) −51.7490 + 29.8773i −0.156341 + 0.0902638i −0.576130 0.817358i \(-0.695438\pi\)
0.419788 + 0.907622i \(0.362104\pi\)
\(332\) 0 0
\(333\) −3.72889 + 3.80642i −0.0111979 + 0.0114307i
\(334\) 0 0
\(335\) −600.378 + 346.628i −1.79217 + 1.03471i
\(336\) 0 0
\(337\) 224.356 388.595i 0.665743 1.15310i −0.313340 0.949641i \(-0.601448\pi\)
0.979083 0.203460i \(-0.0652188\pi\)
\(338\) 0 0
\(339\) −13.4133 + 106.099i −0.0395673 + 0.312977i
\(340\) 0 0
\(341\) 57.0679 0.167355
\(342\) 0 0
\(343\) 350.108i 1.02072i
\(344\) 0 0
\(345\) 467.859 616.264i 1.35611 1.78627i
\(346\) 0 0
\(347\) 500.441 + 288.930i 1.44219 + 0.832651i 0.997996 0.0632779i \(-0.0201555\pi\)
0.444198 + 0.895929i \(0.353489\pi\)
\(348\) 0 0
\(349\) −66.1311 114.542i −0.189487 0.328202i 0.755592 0.655042i \(-0.227349\pi\)
−0.945079 + 0.326841i \(0.894016\pi\)
\(350\) 0 0
\(351\) 118.230 + 149.253i 0.336837 + 0.425222i
\(352\) 0 0
\(353\) 270.562 + 468.628i 0.766465 + 1.32756i 0.939468 + 0.342636i \(0.111320\pi\)
−0.173003 + 0.984921i \(0.555347\pi\)
\(354\) 0 0
\(355\) −394.086 227.526i −1.11010 0.640918i
\(356\) 0 0
\(357\) −4.23346 + 5.57632i −0.0118584 + 0.0156199i
\(358\) 0 0
\(359\) 292.754i 0.815470i 0.913100 + 0.407735i \(0.133681\pi\)
−0.913100 + 0.407735i \(0.866319\pi\)
\(360\) 0 0
\(361\) 91.5006 0.253464
\(362\) 0 0
\(363\) 40.2023 318.000i 0.110750 0.876032i
\(364\) 0 0
\(365\) 531.779 921.067i 1.45693 2.52347i
\(366\) 0 0
\(367\) 378.870 218.741i 1.03234 0.596024i 0.114689 0.993401i \(-0.463413\pi\)
0.917655 + 0.397377i \(0.130080\pi\)
\(368\) 0 0
\(369\) −59.8702 214.583i −0.162250 0.581525i
\(370\) 0 0
\(371\) 2.59428 1.49781i 0.00699266 0.00403721i
\(372\) 0 0
\(373\) 352.979 611.377i 0.946323 1.63908i 0.193243 0.981151i \(-0.438099\pi\)
0.753080 0.657929i \(-0.228567\pi\)
\(374\) 0 0
\(375\) 334.399 140.532i 0.891730 0.374753i
\(376\) 0 0
\(377\) −133.763 −0.354810
\(378\) 0 0
\(379\) 541.432i 1.42858i 0.699850 + 0.714290i \(0.253250\pi\)
−0.699850 + 0.714290i \(0.746750\pi\)
\(380\) 0 0
\(381\) −11.4046 27.1375i −0.0299334 0.0712271i
\(382\) 0 0
\(383\) 311.941 + 180.099i 0.814467 + 0.470233i 0.848505 0.529188i \(-0.177503\pi\)
−0.0340377 + 0.999421i \(0.510837\pi\)
\(384\) 0 0
\(385\) −68.3458 118.378i −0.177521 0.307476i
\(386\) 0 0
\(387\) 72.0768 280.507i 0.186245 0.724824i
\(388\) 0 0
\(389\) 43.9057 + 76.0468i 0.112868 + 0.195493i 0.916926 0.399058i \(-0.130663\pi\)
−0.804057 + 0.594552i \(0.797330\pi\)
\(390\) 0 0
\(391\) −14.3481 8.28388i −0.0366959 0.0211864i
\(392\) 0 0
\(393\) −349.041 44.1266i −0.888145 0.112281i
\(394\) 0 0
\(395\) 1181.07i 2.99004i
\(396\) 0 0
\(397\) 48.4128 0.121947 0.0609733 0.998139i \(-0.480580\pi\)
0.0609733 + 0.998139i \(0.480580\pi\)
\(398\) 0 0
\(399\) −176.762 134.195i −0.443013 0.336329i
\(400\) 0 0
\(401\) 217.859 377.343i 0.543290 0.941005i −0.455423 0.890275i \(-0.650512\pi\)
0.998712 0.0507299i \(-0.0161548\pi\)
\(402\) 0 0
\(403\) 92.6326 53.4815i 0.229858 0.132708i
\(404\) 0 0
\(405\) −572.138 314.809i −1.41269 0.777306i
\(406\) 0 0
\(407\) −1.92919 + 1.11382i −0.00474002 + 0.00273665i
\(408\) 0 0
\(409\) −27.1145 + 46.9636i −0.0662945 + 0.114825i −0.897267 0.441487i \(-0.854451\pi\)
0.830973 + 0.556313i \(0.187784\pi\)
\(410\) 0 0
\(411\) −600.251 455.702i −1.46047 1.10876i
\(412\) 0 0
\(413\) −159.182 −0.385430
\(414\) 0 0
\(415\) 810.867i 1.95390i
\(416\) 0 0
\(417\) 457.339 + 57.8179i 1.09674 + 0.138652i
\(418\) 0 0
\(419\) −552.029 318.714i −1.31749 0.760655i −0.334168 0.942514i \(-0.608455\pi\)
−0.983325 + 0.181859i \(0.941789\pi\)
\(420\) 0 0
\(421\) 95.7757 + 165.888i 0.227496 + 0.394034i 0.957065 0.289873i \(-0.0936129\pi\)
−0.729570 + 0.683907i \(0.760280\pi\)
\(422\) 0 0
\(423\) 135.699 528.110i 0.320801 1.24849i
\(424\) 0 0
\(425\) −10.3571 17.9390i −0.0243696 0.0422095i
\(426\) 0 0
\(427\) −263.617 152.199i −0.617369 0.356438i
\(428\) 0 0
\(429\) 30.8398 + 73.3837i 0.0718876 + 0.171058i
\(430\) 0 0
\(431\) 481.190i 1.11645i 0.829689 + 0.558225i \(0.188518\pi\)
−0.829689 + 0.558225i \(0.811482\pi\)
\(432\) 0 0
\(433\) −360.347 −0.832209 −0.416105 0.909317i \(-0.636605\pi\)
−0.416105 + 0.909317i \(0.636605\pi\)
\(434\) 0 0
\(435\) 422.932 177.739i 0.972258 0.408595i
\(436\) 0 0
\(437\) 262.588 454.816i 0.600888 1.04077i
\(438\) 0 0
\(439\) −488.267 + 281.901i −1.11223 + 0.642144i −0.939405 0.342809i \(-0.888622\pi\)
−0.172821 + 0.984953i \(0.555288\pi\)
\(440\) 0 0
\(441\) 69.4008 + 248.742i 0.157371 + 0.564040i
\(442\) 0 0
\(443\) 569.917 329.042i 1.28649 0.742757i 0.308467 0.951235i \(-0.400184\pi\)
0.978027 + 0.208478i \(0.0668509\pi\)
\(444\) 0 0
\(445\) −104.147 + 180.388i −0.234038 + 0.405366i
\(446\) 0 0
\(447\) −34.5150 + 273.013i −0.0772147 + 0.610767i
\(448\) 0 0
\(449\) 227.569 0.506836 0.253418 0.967357i \(-0.418445\pi\)
0.253418 + 0.967357i \(0.418445\pi\)
\(450\) 0 0
\(451\) 93.1339i 0.206505i
\(452\) 0 0
\(453\) 75.4523 99.3858i 0.166561 0.219395i
\(454\) 0 0
\(455\) −221.878 128.101i −0.487643 0.281541i
\(456\) 0 0
\(457\) −358.879 621.596i −0.785292 1.36017i −0.928824 0.370520i \(-0.879179\pi\)
0.143532 0.989646i \(-0.454154\pi\)
\(458\) 0 0
\(459\) −5.15107 + 12.9997i −0.0112224 + 0.0283217i
\(460\) 0 0
\(461\) 200.873 + 347.922i 0.435733 + 0.754712i 0.997355 0.0726819i \(-0.0231558\pi\)
−0.561622 + 0.827394i \(0.689822\pi\)
\(462\) 0 0
\(463\) 396.754 + 229.066i 0.856920 + 0.494743i 0.862980 0.505239i \(-0.168595\pi\)
−0.00605956 + 0.999982i \(0.501929\pi\)
\(464\) 0 0
\(465\) −221.822 + 292.184i −0.477036 + 0.628352i
\(466\) 0 0
\(467\) 204.395i 0.437677i −0.975761 0.218838i \(-0.929773\pi\)
0.975761 0.218838i \(-0.0702267\pi\)
\(468\) 0 0
\(469\) −387.493 −0.826210
\(470\) 0 0
\(471\) 84.9693 672.106i 0.180402 1.42698i
\(472\) 0 0
\(473\) 60.5385 104.856i 0.127988 0.221682i
\(474\) 0 0
\(475\) 568.643 328.306i 1.19714 0.691172i
\(476\) 0 0
\(477\) 4.18679 4.27384i 0.00877734 0.00895984i
\(478\) 0 0
\(479\) −78.4548 + 45.2959i −0.163789 + 0.0945634i −0.579654 0.814863i \(-0.696812\pi\)
0.415865 + 0.909426i \(0.363479\pi\)
\(480\) 0 0
\(481\) −2.08764 + 3.61589i −0.00434020 + 0.00751745i
\(482\) 0 0
\(483\) 398.701 167.556i 0.825469 0.346906i
\(484\) 0 0
\(485\) −778.046 −1.60422
\(486\) 0 0
\(487\) 301.289i 0.618663i 0.950954 + 0.309332i \(0.100105\pi\)
−0.950954 + 0.309332i \(0.899895\pi\)
\(488\) 0 0
\(489\) −145.490 346.196i −0.297526 0.707968i
\(490\) 0 0
\(491\) 389.556 + 224.911i 0.793394 + 0.458066i 0.841156 0.540792i \(-0.181876\pi\)
−0.0477620 + 0.998859i \(0.515209\pi\)
\(492\) 0 0
\(493\) −4.91164 8.50721i −0.00996276 0.0172560i
\(494\) 0 0
\(495\) −195.018 191.046i −0.393976 0.385951i
\(496\) 0 0
\(497\) −127.175 220.273i −0.255884 0.443205i
\(498\) 0 0
\(499\) 552.630 + 319.061i 1.10748 + 0.639401i 0.938174 0.346163i \(-0.112516\pi\)
0.169301 + 0.985564i \(0.445849\pi\)
\(500\) 0 0
\(501\) 530.541 + 67.0724i 1.05897 + 0.133877i
\(502\) 0 0
\(503\) 182.179i 0.362185i −0.983466 0.181093i \(-0.942037\pi\)
0.983466 0.181093i \(-0.0579634\pi\)
\(504\) 0 0
\(505\) 349.250 0.691585
\(506\) 0 0
\(507\) −284.982 216.354i −0.562094 0.426734i
\(508\) 0 0
\(509\) −471.123 + 816.009i −0.925585 + 1.60316i −0.134968 + 0.990850i \(0.543093\pi\)
−0.790617 + 0.612311i \(0.790240\pi\)
\(510\) 0 0
\(511\) 514.827 297.235i 1.00749 0.581674i
\(512\) 0 0
\(513\) −412.073 163.282i −0.803261 0.318289i
\(514\) 0 0
\(515\) −1011.30 + 583.875i −1.96369 + 1.13374i
\(516\) 0 0
\(517\) 113.976 197.412i 0.220456 0.381841i
\(518\) 0 0
\(519\) −361.235 274.245i −0.696021 0.528409i
\(520\) 0 0
\(521\) −634.330 −1.21752 −0.608762 0.793353i \(-0.708334\pi\)
−0.608762 + 0.793353i \(0.708334\pi\)
\(522\) 0 0
\(523\) 534.777i 1.02252i −0.859426 0.511259i \(-0.829179\pi\)
0.859426 0.511259i \(-0.170821\pi\)
\(524\) 0 0
\(525\) 536.446 + 67.8188i 1.02180 + 0.129179i
\(526\) 0 0
\(527\) 6.80273 + 3.92756i 0.0129084 + 0.00745267i
\(528\) 0 0
\(529\) 247.208 + 428.178i 0.467313 + 0.809409i
\(530\) 0 0
\(531\) −306.226 + 85.4394i −0.576697 + 0.160903i
\(532\) 0 0
\(533\) −87.2809 151.175i −0.163754 0.283630i
\(534\) 0 0
\(535\) 383.912 + 221.652i 0.717592 + 0.414302i
\(536\) 0 0
\(537\) 321.755 + 765.620i 0.599170 + 1.42574i
\(538\) 0 0
\(539\) 107.960i 0.200296i
\(540\) 0 0
\(541\) 61.0097 0.112772 0.0563860 0.998409i \(-0.482042\pi\)
0.0563860 + 0.998409i \(0.482042\pi\)
\(542\) 0 0
\(543\) −289.648 + 121.726i −0.533422 + 0.224172i
\(544\) 0 0
\(545\) 257.678 446.312i 0.472805 0.818921i
\(546\) 0 0
\(547\) 104.430 60.2925i 0.190914 0.110224i −0.401497 0.915861i \(-0.631510\pi\)
0.592410 + 0.805637i \(0.298177\pi\)
\(548\) 0 0
\(549\) −588.822 151.299i −1.07254 0.275590i
\(550\) 0 0
\(551\) 269.667 155.693i 0.489415 0.282564i
\(552\) 0 0
\(553\) −330.076 + 571.708i −0.596882 + 1.03383i
\(554\) 0 0
\(555\) 1.79604 14.2067i 0.00323611 0.0255976i
\(556\) 0 0
\(557\) 527.461 0.946968 0.473484 0.880802i \(-0.342996\pi\)
0.473484 + 0.880802i \(0.342996\pi\)
\(558\) 0 0
\(559\) 226.936i 0.405967i
\(560\) 0 0
\(561\) −3.53473 + 4.65594i −0.00630076 + 0.00829936i
\(562\) 0 0
\(563\) −595.478 343.800i −1.05769 0.610656i −0.132896 0.991130i \(-0.542428\pi\)
−0.924792 + 0.380474i \(0.875761\pi\)
\(564\) 0 0
\(565\) −143.698 248.893i −0.254333 0.440518i
\(566\) 0 0
\(567\) −188.969 312.284i −0.333279 0.550765i
\(568\) 0 0
\(569\) 293.677 + 508.664i 0.516128 + 0.893961i 0.999825 + 0.0187248i \(0.00596063\pi\)
−0.483696 + 0.875236i \(0.660706\pi\)
\(570\) 0 0
\(571\) 742.245 + 428.535i 1.29990 + 0.750500i 0.980387 0.197081i \(-0.0631461\pi\)
0.319517 + 0.947581i \(0.396479\pi\)
\(572\) 0 0
\(573\) −404.209 + 532.424i −0.705425 + 0.929186i
\(574\) 0 0
\(575\) 1279.55i 2.22530i
\(576\) 0 0
\(577\) 871.732 1.51080 0.755401 0.655263i \(-0.227442\pi\)
0.755401 + 0.655263i \(0.227442\pi\)
\(578\) 0 0
\(579\) −42.6535 + 337.388i −0.0736675 + 0.582709i
\(580\) 0 0
\(581\) 226.615 392.509i 0.390044 0.675575i
\(582\) 0 0
\(583\) 2.16609 1.25059i 0.00371542 0.00214510i
\(584\) 0 0
\(585\) −495.593 127.343i −0.847167 0.217681i
\(586\) 0 0
\(587\) −700.071 + 404.186i −1.19263 + 0.688563i −0.958901 0.283740i \(-0.908425\pi\)
−0.233725 + 0.972303i \(0.575091\pi\)
\(588\) 0 0
\(589\) −124.498 + 215.638i −0.211373 + 0.366108i
\(590\) 0 0
\(591\) −334.642 + 140.635i −0.566231 + 0.237960i
\(592\) 0 0
\(593\) −445.123 −0.750628 −0.375314 0.926898i \(-0.622465\pi\)
−0.375314 + 0.926898i \(0.622465\pi\)
\(594\) 0 0
\(595\) 18.8149i 0.0316217i
\(596\) 0 0
\(597\) −95.5828 227.441i −0.160105 0.380973i
\(598\) 0 0
\(599\) −684.932 395.445i −1.14346 0.660176i −0.196174 0.980569i \(-0.562852\pi\)
−0.947285 + 0.320393i \(0.896185\pi\)
\(600\) 0 0
\(601\) 193.532 + 335.208i 0.322017 + 0.557750i 0.980904 0.194492i \(-0.0623057\pi\)
−0.658887 + 0.752242i \(0.728972\pi\)
\(602\) 0 0
\(603\) −745.436 + 207.982i −1.23621 + 0.344913i
\(604\) 0 0
\(605\) 430.691 + 745.979i 0.711886 + 1.23302i
\(606\) 0 0
\(607\) 902.512 + 521.066i 1.48684 + 0.858428i 0.999887 0.0150003i \(-0.00477491\pi\)
0.486953 + 0.873428i \(0.338108\pi\)
\(608\) 0 0
\(609\) 254.398 + 32.1617i 0.417731 + 0.0528106i
\(610\) 0 0
\(611\) 427.251i 0.699266i
\(612\) 0 0
\(613\) −256.336 −0.418166 −0.209083 0.977898i \(-0.567048\pi\)
−0.209083 + 0.977898i \(0.567048\pi\)
\(614\) 0 0
\(615\) 476.839 + 362.009i 0.775347 + 0.588633i
\(616\) 0 0
\(617\) −253.519 + 439.108i −0.410890 + 0.711683i −0.994987 0.100001i \(-0.968115\pi\)
0.584097 + 0.811684i \(0.301449\pi\)
\(618\) 0 0
\(619\) 662.787 382.660i 1.07074 0.618191i 0.142355 0.989816i \(-0.454532\pi\)
0.928383 + 0.371624i \(0.121199\pi\)
\(620\) 0 0
\(621\) 677.066 536.333i 1.09028 0.863660i
\(622\) 0 0
\(623\) −100.827 + 58.2125i −0.161841 + 0.0934390i
\(624\) 0 0
\(625\) 12.5746 21.7799i 0.0201194 0.0348479i
\(626\) 0 0
\(627\) −147.587 112.046i −0.235386 0.178702i
\(628\) 0 0
\(629\) −0.306623 −0.000487477
\(630\) 0 0
\(631\) 719.756i 1.14066i 0.821416 + 0.570330i \(0.193185\pi\)
−0.821416 + 0.570330i \(0.806815\pi\)
\(632\) 0 0
\(633\) −321.617 40.6597i −0.508084 0.0642333i
\(634\) 0 0
\(635\) 68.5084 + 39.5534i 0.107887 + 0.0622888i
\(636\) 0 0
\(637\) 101.175 + 175.240i 0.158830 + 0.275102i
\(638\) 0 0
\(639\) −362.880 355.489i −0.567888 0.556321i
\(640\) 0 0
\(641\) 351.516 + 608.844i 0.548388 + 0.949835i 0.998385 + 0.0568054i \(0.0180915\pi\)
−0.449998 + 0.893030i \(0.648575\pi\)
\(642\) 0 0
\(643\) 507.224 + 292.846i 0.788841 + 0.455437i 0.839554 0.543276i \(-0.182816\pi\)
−0.0507136 + 0.998713i \(0.516150\pi\)
\(644\) 0 0
\(645\) 301.542 + 717.525i 0.467507 + 1.11244i
\(646\) 0 0
\(647\) 791.553i 1.22342i −0.791082 0.611710i \(-0.790482\pi\)
0.791082 0.611710i \(-0.209518\pi\)
\(648\) 0 0
\(649\) −132.909 −0.204791
\(650\) 0 0
\(651\) −189.033 + 79.4416i −0.290373 + 0.122030i
\(652\) 0 0
\(653\) 196.385 340.148i 0.300742 0.520901i −0.675562 0.737303i \(-0.736099\pi\)
0.976304 + 0.216402i \(0.0694323\pi\)
\(654\) 0 0
\(655\) 818.797 472.733i 1.25007 0.721730i
\(656\) 0 0
\(657\) 830.857 848.132i 1.26462 1.29092i
\(658\) 0 0
\(659\) 372.557 215.096i 0.565337 0.326398i −0.189948 0.981794i \(-0.560832\pi\)
0.755285 + 0.655397i \(0.227499\pi\)
\(660\) 0 0
\(661\) −453.865 + 786.117i −0.686633 + 1.18928i 0.286287 + 0.958144i \(0.407579\pi\)
−0.972920 + 0.231140i \(0.925754\pi\)
\(662\) 0 0
\(663\) −1.37423 + 10.8701i −0.00207274 + 0.0163953i
\(664\) 0 0
\(665\) 596.408 0.896854
\(666\) 0 0
\(667\) 606.799i 0.909744i
\(668\) 0 0
\(669\) −296.182 + 390.131i −0.442724 + 0.583156i
\(670\) 0 0
\(671\) −220.106 127.078i −0.328027 0.189387i
\(672\) 0 0
\(673\) −34.8528 60.3668i −0.0517872 0.0896980i 0.838970 0.544178i \(-0.183158\pi\)
−0.890757 + 0.454480i \(0.849825\pi\)
\(674\) 0 0
\(675\) 1068.38 157.465i 1.58279 0.233282i
\(676\) 0 0
\(677\) 144.502 + 250.285i 0.213444 + 0.369697i 0.952790 0.303629i \(-0.0981984\pi\)
−0.739346 + 0.673326i \(0.764865\pi\)
\(678\) 0 0
\(679\) −376.622 217.443i −0.554671 0.320239i
\(680\) 0 0
\(681\) −20.0399 + 26.3966i −0.0294272 + 0.0387616i
\(682\) 0 0
\(683\) 522.729i 0.765343i 0.923884 + 0.382672i \(0.124996\pi\)
−0.923884 + 0.382672i \(0.875004\pi\)
\(684\) 0 0
\(685\) 2025.29 2.95663
\(686\) 0 0
\(687\) −12.1705 + 96.2687i −0.0177155 + 0.140129i
\(688\) 0 0
\(689\) 2.34400 4.05992i 0.00340203 0.00589248i
\(690\) 0 0
\(691\) −485.917 + 280.544i −0.703208 + 0.405997i −0.808541 0.588440i \(-0.799742\pi\)
0.105333 + 0.994437i \(0.466409\pi\)
\(692\) 0 0
\(693\) −41.0085 146.980i −0.0591753 0.212092i
\(694\) 0 0
\(695\) −1072.85 + 619.409i −1.54367 + 0.891236i
\(696\) 0 0
\(697\) 6.40971 11.1019i 0.00919614 0.0159282i
\(698\) 0 0
\(699\) −500.728 + 210.433i −0.716349 + 0.301048i
\(700\) 0 0
\(701\) −1203.11 −1.71627 −0.858137 0.513421i \(-0.828378\pi\)
−0.858137 + 0.513421i \(0.828378\pi\)
\(702\) 0 0
\(703\) 9.71954i 0.0138258i
\(704\) 0 0
\(705\) 567.713 + 1350.88i 0.805266 + 1.91614i
\(706\) 0 0
\(707\) 169.058 + 97.6059i 0.239121 + 0.138056i
\(708\) 0 0
\(709\) −89.2724 154.624i −0.125913 0.218088i 0.796176 0.605065i \(-0.206853\pi\)
−0.922090 + 0.386977i \(0.873519\pi\)
\(710\) 0 0
\(711\) −328.123 + 1276.98i −0.461495 + 1.79604i
\(712\) 0 0
\(713\) −242.611 420.215i −0.340269 0.589362i
\(714\) 0 0
\(715\) −185.257 106.958i −0.259100 0.149591i
\(716\) 0 0
\(717\) −136.244 17.2243i −0.190019 0.0240227i
\(718\) 0 0
\(719\) 53.0278i 0.0737521i 0.999320 + 0.0368760i \(0.0117407\pi\)
−0.999320 + 0.0368760i \(0.988259\pi\)
\(720\) 0 0
\(721\) −652.709 −0.905282
\(722\) 0 0
\(723\) −808.656 613.920i −1.11847 0.849129i
\(724\) 0 0
\(725\) −379.332 + 657.022i −0.523216 + 0.906238i
\(726\) 0 0
\(727\) 436.956 252.277i 0.601041 0.347011i −0.168410 0.985717i \(-0.553863\pi\)
0.769451 + 0.638706i \(0.220530\pi\)
\(728\) 0 0
\(729\) −531.144 499.327i −0.728592 0.684948i
\(730\) 0 0
\(731\) 14.4329 8.33283i 0.0197440 0.0113992i
\(732\) 0 0
\(733\) −410.964 + 711.811i −0.560660 + 0.971092i 0.436779 + 0.899569i \(0.356119\pi\)
−0.997439 + 0.0715233i \(0.977214\pi\)
\(734\) 0 0
\(735\) −552.745 419.636i −0.752034 0.570934i
\(736\) 0 0
\(737\) −323.536 −0.438991
\(738\) 0 0
\(739\) 190.298i 0.257507i 0.991677 + 0.128754i \(0.0410977\pi\)
−0.991677 + 0.128754i \(0.958902\pi\)
\(740\) 0 0
\(741\) −344.568 43.5612i −0.465005 0.0587870i
\(742\) 0 0
\(743\) 664.128 + 383.435i 0.893847 + 0.516063i 0.875199 0.483763i \(-0.160730\pi\)
0.0186481 + 0.999826i \(0.494064\pi\)
\(744\) 0 0
\(745\) −369.762 640.447i −0.496325 0.859660i
\(746\) 0 0
\(747\) 225.275 876.720i 0.301573 1.17366i
\(748\) 0 0
\(749\) 123.891 + 214.586i 0.165409 + 0.286496i
\(750\) 0 0
\(751\) −519.601 299.992i −0.691879 0.399456i 0.112437 0.993659i \(-0.464134\pi\)
−0.804315 + 0.594202i \(0.797468\pi\)
\(752\) 0 0
\(753\) 328.449 + 781.550i 0.436188 + 1.03792i
\(754\) 0 0
\(755\) 335.335i 0.444152i
\(756\) 0 0
\(757\) 343.082 0.453213 0.226606 0.973986i \(-0.427237\pi\)
0.226606 + 0.973986i \(0.427237\pi\)
\(758\) 0 0
\(759\) 332.895 139.900i 0.438597 0.184322i
\(760\) 0 0
\(761\) −149.365 + 258.708i −0.196275 + 0.339958i −0.947318 0.320295i \(-0.896218\pi\)
0.751043 + 0.660253i \(0.229551\pi\)
\(762\) 0 0
\(763\) 249.464 144.028i 0.326952 0.188766i
\(764\) 0 0
\(765\) −10.0987 36.1951i −0.0132009 0.0473138i
\(766\) 0 0
\(767\) −215.738 + 124.557i −0.281275 + 0.162394i
\(768\) 0 0
\(769\) −466.241 + 807.553i −0.606295 + 1.05013i 0.385550 + 0.922687i \(0.374012\pi\)
−0.991845 + 0.127447i \(0.959322\pi\)
\(770\) 0 0
\(771\) −29.2662 + 231.495i −0.0379588 + 0.300253i
\(772\) 0 0
\(773\) 173.239 0.224113 0.112056 0.993702i \(-0.464256\pi\)
0.112056 + 0.993702i \(0.464256\pi\)
\(774\) 0 0
\(775\) 606.660i 0.782787i
\(776\) 0 0
\(777\) 4.83977 6.37495i 0.00622880 0.00820457i
\(778\) 0 0
\(779\) 351.917 + 203.179i 0.451755 + 0.260821i
\(780\) 0 0
\(781\) −106.184 183.916i −0.135959 0.235488i
\(782\) 0 0
\(783\) 506.659 74.6746i 0.647075 0.0953699i
\(784\) 0 0
\(785\) 910.285 + 1576.66i 1.15960 + 2.00848i
\(786\) 0 0
\(787\) −43.1896 24.9355i −0.0548788 0.0316843i 0.472310 0.881433i \(-0.343420\pi\)
−0.527188 + 0.849748i \(0.676754\pi\)
\(788\) 0 0
\(789\) −408.878 + 538.574i −0.518223 + 0.682603i
\(790\) 0 0
\(791\) 160.639i 0.203083i
\(792\) 0 0
\(793\) −476.369 −0.600717
\(794\) 0 0
\(795\) −2.01659 + 15.9512i −0.00253660 + 0.0200644i
\(796\) 0 0
\(797\) 513.753 889.846i 0.644608 1.11649i −0.339784 0.940504i \(-0.610354\pi\)
0.984392 0.175991i \(-0.0563129\pi\)
\(798\) 0 0
\(799\) 27.1727 15.6882i 0.0340084 0.0196348i
\(800\) 0 0
\(801\) −162.720 + 166.104i −0.203147 + 0.207370i
\(802\) 0 0
\(803\) 429.854 248.176i 0.535310 0.309061i
\(804\) 0 0
\(805\) −581.114 + 1006.52i −0.721880 + 1.25033i
\(806\) 0 0
\(807\) 1177.66 494.914i 1.45930 0.613277i
\(808\) 0 0
\(809\) −637.363 −0.787841 −0.393920 0.919145i \(-0.628881\pi\)
−0.393920 + 0.919145i \(0.628881\pi\)
\(810\) 0 0
\(811\) 1486.54i 1.83298i −0.400061 0.916489i \(-0.631011\pi\)
0.400061 0.916489i \(-0.368989\pi\)
\(812\) 0 0
\(813\) 65.5144 + 155.893i 0.0805836 + 0.191750i
\(814\) 0 0
\(815\) 873.969 + 504.586i 1.07235 + 0.619124i
\(816\) 0 0
\(817\) 264.140 + 457.503i 0.323304 + 0.559980i
\(818\) 0 0
\(819\) −204.308 200.147i −0.249460 0.244379i
\(820\) 0 0
\(821\) −517.865 896.969i −0.630773 1.09253i −0.987394 0.158282i \(-0.949404\pi\)
0.356620 0.934249i \(-0.383929\pi\)
\(822\) 0 0
\(823\) 278.230 + 160.636i 0.338068 + 0.195184i 0.659417 0.751777i \(-0.270803\pi\)
−0.321349 + 0.946961i \(0.604136\pi\)
\(824\) 0 0
\(825\) 447.905 + 56.6252i 0.542915 + 0.0686366i
\(826\) 0 0
\(827\) 119.865i 0.144939i 0.997371 + 0.0724695i \(0.0230880\pi\)
−0.997371 + 0.0724695i \(0.976912\pi\)
\(828\) 0 0
\(829\) −810.947 −0.978223 −0.489112 0.872221i \(-0.662679\pi\)
−0.489112 + 0.872221i \(0.662679\pi\)
\(830\) 0 0
\(831\) −1001.84 760.585i −1.20559 0.915265i
\(832\) 0 0
\(833\) −7.43005 + 12.8692i −0.00891963 + 0.0154492i
\(834\) 0 0
\(835\) −1244.57 + 718.553i −1.49050 + 0.860543i
\(836\) 0 0
\(837\) −321.011 + 254.286i −0.383525 + 0.303807i
\(838\) 0 0
\(839\) 51.3491 29.6464i 0.0612027 0.0353354i −0.469086 0.883152i \(-0.655417\pi\)
0.530289 + 0.847817i \(0.322083\pi\)
\(840\) 0 0
\(841\) 240.610 416.748i 0.286100 0.495539i
\(842\) 0 0
\(843\) 353.462 + 268.343i 0.419290 + 0.318319i
\(844\) 0 0
\(845\) 961.549 1.13793
\(846\) 0 0
\(847\) 481.466i 0.568437i
\(848\) 0 0
\(849\) −789.943 99.8666i −0.930439 0.117628i
\(850\) 0 0
\(851\) 16.4030 + 9.47029i 0.0192750 + 0.0111284i
\(852\) 0 0
\(853\) −547.729 948.694i −0.642121 1.11219i −0.984959 0.172791i \(-0.944722\pi\)
0.342838 0.939395i \(-0.388612\pi\)
\(854\) 0 0
\(855\) 1147.34 320.115i 1.34191 0.374404i
\(856\) 0 0
\(857\) −692.162 1198.86i −0.807658 1.39890i −0.914482 0.404626i \(-0.867402\pi\)
0.106825 0.994278i \(-0.465932\pi\)
\(858\) 0 0
\(859\) −414.983 239.591i −0.483101 0.278918i 0.238607 0.971116i \(-0.423309\pi\)
−0.721708 + 0.692198i \(0.756643\pi\)
\(860\) 0 0
\(861\) 129.647 + 308.498i 0.150578 + 0.358302i
\(862\) 0 0
\(863\) 4.93230i 0.00571530i −0.999996 0.00285765i \(-0.999090\pi\)
0.999996 0.00285765i \(-0.000909619\pi\)
\(864\) 0 0
\(865\) 1218.83 1.40906
\(866\) 0 0
\(867\) 798.544 335.591i 0.921043 0.387072i
\(868\) 0 0
\(869\) −275.596 + 477.347i −0.317142 + 0.549306i
\(870\) 0 0
\(871\) −525.164 + 303.204i −0.602944 + 0.348110i
\(872\) 0 0
\(873\) −841.233 216.156i −0.963612 0.247602i
\(874\) 0 0
\(875\) −471.854 + 272.425i −0.539262 + 0.311343i
\(876\) 0 0
\(877\) 839.494 1454.05i 0.957234 1.65798i 0.228062 0.973647i \(-0.426761\pi\)
0.729172 0.684331i \(-0.239905\pi\)
\(878\) 0 0
\(879\) 93.9506 743.147i 0.106883 0.845446i
\(880\) 0 0
\(881\) 830.879 0.943109 0.471555 0.881837i \(-0.343693\pi\)
0.471555 + 0.881837i \(0.343693\pi\)
\(882\) 0 0
\(883\) 1228.46i 1.39123i 0.718414 + 0.695615i \(0.244868\pi\)
−0.718414 + 0.695615i \(0.755132\pi\)
\(884\) 0 0
\(885\) 516.615 680.486i 0.583746 0.768910i
\(886\) 0 0
\(887\) −660.079 381.097i −0.744170 0.429647i 0.0794134 0.996842i \(-0.474695\pi\)
−0.823584 + 0.567195i \(0.808029\pi\)
\(888\) 0 0
\(889\) 22.1082 + 38.2925i 0.0248686 + 0.0430737i
\(890\) 0 0
\(891\) −157.780 260.741i −0.177082 0.292639i
\(892\) 0 0
\(893\) 497.295 + 861.340i 0.556881 + 0.964547i
\(894\) 0 0
\(895\) −1932.80 1115.90i −2.15955 1.24682i
\(896\) 0 0
\(897\) 409.247 539.061i 0.456240 0.600960i
\(898\) 0 0
\(899\) 287.696i 0.320018i
\(900\) 0 0
\(901\) 0.344275 0.000382104
\(902\) 0 0
\(903\) −54.5638 + 431.598i −0.0604250 + 0.477961i
\(904\) 0 0
\(905\) 422.166 731.214i 0.466482 0.807971i
\(906\) 0 0
\(907\) 324.076 187.106i 0.357306 0.206291i −0.310592 0.950543i \(-0.600527\pi\)
0.667898 + 0.744253i \(0.267194\pi\)
\(908\) 0 0
\(909\) 377.614 + 97.0286i 0.415417 + 0.106742i
\(910\) 0 0
\(911\) 1265.50 730.639i 1.38914 0.802018i 0.395918 0.918286i \(-0.370426\pi\)
0.993218 + 0.116268i \(0.0370930\pi\)
\(912\) 0 0
\(913\) 189.212 327.725i 0.207242 0.358954i
\(914\) 0 0
\(915\) 1506.18 632.978i 1.64610 0.691779i
\(916\) 0 0
\(917\) 528.464 0.576296
\(918\) 0 0
\(919\) 1112.72i 1.21080i 0.795923 + 0.605398i \(0.206986\pi\)
−0.795923 + 0.605398i \(0.793014\pi\)
\(920\) 0 0
\(921\) −302.159 718.993i −0.328077 0.780665i
\(922\) 0 0
\(923\) −344.717 199.022i −0.373474 0.215625i
\(924\) 0 0
\(925\) 11.8404 + 20.5082i 0.0128005 + 0.0221710i
\(926\) 0 0
\(927\) −1255.64 + 350.334i −1.35452 + 0.377922i
\(928\) 0 0
\(929\) −508.204 880.234i −0.547044 0.947507i −0.998475 0.0552017i \(-0.982420\pi\)
0.451432 0.892306i \(-0.350914\pi\)
\(930\) 0 0
\(931\) −407.938 235.523i −0.438171 0.252978i
\(932\) 0 0
\(933\) −57.0358 7.21061i −0.0611317 0.00772842i
\(934\) 0 0
\(935\) 15.7095i 0.0168016i
\(936\) 0 0
\(937\) 170.282 0.181731 0.0908654 0.995863i \(-0.471037\pi\)
0.0908654 + 0.995863i \(0.471037\pi\)
\(938\) 0 0
\(939\) 104.828 + 79.5837i 0.111638 + 0.0847537i
\(940\) 0 0
\(941\) 150.929 261.417i 0.160392 0.277808i −0.774617 0.632430i \(-0.782057\pi\)
0.935009 + 0.354623i \(0.115391\pi\)
\(942\) 0 0
\(943\) −685.784 + 395.938i −0.727237 + 0.419870i
\(944\) 0 0
\(945\) 911.926 + 361.347i 0.965001 + 0.382378i
\(946\) 0 0
\(947\) 730.155 421.555i 0.771019 0.445148i −0.0622189 0.998063i \(-0.519818\pi\)
0.833238 + 0.552914i \(0.186484\pi\)
\(948\) 0 0
\(949\) 465.159 805.679i 0.490157 0.848977i
\(950\) 0 0
\(951\) 329.592 + 250.222i 0.346574 + 0.263114i
\(952\) 0 0
\(953\) 306.171 0.321270 0.160635 0.987014i \(-0.448646\pi\)
0.160635 + 0.987014i \(0.448646\pi\)
\(954\) 0 0
\(955\) 1796.44i 1.88109i
\(956\) 0 0
\(957\) 212.409 + 26.8533i 0.221953 + 0.0280599i
\(958\) 0 0
\(959\) 980.365 + 566.014i 1.02228 + 0.590213i
\(960\) 0 0
\(961\) −365.473 633.018i −0.380305 0.658707i
\(962\) 0 0
\(963\) 353.511 + 346.311i 0.367094 + 0.359617i
\(964\) 0 0
\(965\) −456.951 791.462i −0.473524 0.820168i
\(966\) 0 0
\(967\) 103.822 + 59.9417i 0.107365 + 0.0619873i 0.552721 0.833366i \(-0.313590\pi\)
−0.445356 + 0.895354i \(0.646923\pi\)
\(968\) 0 0
\(969\) −9.88171 23.5137i −0.0101978 0.0242659i
\(970\) 0 0
\(971\) 62.7602i 0.0646346i −0.999478 0.0323173i \(-0.989711\pi\)
0.999478 0.0323173i \(-0.0102887\pi\)
\(972\) 0 0
\(973\) −692.431 −0.711646
\(974\) 0 0
\(975\) 780.105 327.842i 0.800108 0.336248i
\(976\) 0 0
\(977\) 618.115 1070.61i 0.632666 1.09581i −0.354338 0.935117i \(-0.615294\pi\)
0.987004 0.160693i \(-0.0513728\pi\)
\(978\) 0 0
\(979\) −84.1854 + 48.6045i −0.0859912 + 0.0496471i
\(980\) 0 0
\(981\) 402.600 410.970i 0.410397 0.418930i
\(982\) 0 0
\(983\) −490.618 + 283.258i −0.499103 + 0.288157i −0.728343 0.685213i \(-0.759709\pi\)
0.229240 + 0.973370i \(0.426376\pi\)
\(984\) 0 0
\(985\) 487.746 844.801i 0.495174 0.857666i
\(986\) 0 0
\(987\) −102.727 + 812.569i −0.104080 + 0.823272i
\(988\) 0 0
\(989\) −1029.46 −1.04091
\(990\) 0 0
\(991\) 457.774i 0.461931i −0.972962 0.230966i \(-0.925812\pi\)
0.972962 0.230966i \(-0.0741885\pi\)
\(992\) 0 0
\(993\) 108.396 142.779i 0.109160 0.143786i
\(994\) 0 0
\(995\) 574.172 + 331.498i 0.577057 + 0.333164i
\(996\) 0 0
\(997\) −19.3798 33.5667i −0.0194381 0.0336677i 0.856143 0.516739i \(-0.172854\pi\)
−0.875581 + 0.483072i \(0.839521\pi\)
\(998\) 0 0
\(999\) 5.88880 14.8615i 0.00589470 0.0148763i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.3.o.g.319.1 16
3.2 odd 2 1728.3.o.g.1279.2 16
4.3 odd 2 inner 576.3.o.g.319.8 16
8.3 odd 2 36.3.f.c.31.1 yes 16
8.5 even 2 36.3.f.c.31.5 yes 16
9.2 odd 6 1728.3.o.g.127.1 16
9.7 even 3 inner 576.3.o.g.511.8 16
12.11 even 2 1728.3.o.g.1279.1 16
24.5 odd 2 108.3.f.c.91.4 16
24.11 even 2 108.3.f.c.91.8 16
36.7 odd 6 inner 576.3.o.g.511.1 16
36.11 even 6 1728.3.o.g.127.2 16
72.5 odd 6 324.3.d.g.163.3 8
72.11 even 6 108.3.f.c.19.4 16
72.13 even 6 324.3.d.i.163.6 8
72.29 odd 6 108.3.f.c.19.8 16
72.43 odd 6 36.3.f.c.7.5 yes 16
72.59 even 6 324.3.d.g.163.4 8
72.61 even 6 36.3.f.c.7.1 16
72.67 odd 6 324.3.d.i.163.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.3.f.c.7.1 16 72.61 even 6
36.3.f.c.7.5 yes 16 72.43 odd 6
36.3.f.c.31.1 yes 16 8.3 odd 2
36.3.f.c.31.5 yes 16 8.5 even 2
108.3.f.c.19.4 16 72.11 even 6
108.3.f.c.19.8 16 72.29 odd 6
108.3.f.c.91.4 16 24.5 odd 2
108.3.f.c.91.8 16 24.11 even 2
324.3.d.g.163.3 8 72.5 odd 6
324.3.d.g.163.4 8 72.59 even 6
324.3.d.i.163.5 8 72.67 odd 6
324.3.d.i.163.6 8 72.13 even 6
576.3.o.g.319.1 16 1.1 even 1 trivial
576.3.o.g.319.8 16 4.3 odd 2 inner
576.3.o.g.511.1 16 36.7 odd 6 inner
576.3.o.g.511.8 16 9.7 even 3 inner
1728.3.o.g.127.1 16 9.2 odd 6
1728.3.o.g.127.2 16 36.11 even 6
1728.3.o.g.1279.1 16 12.11 even 2
1728.3.o.g.1279.2 16 3.2 odd 2