Properties

Label 576.3.o.d.319.4
Level $576$
Weight $3$
Character 576.319
Analytic conductor $15.695$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,3,Mod(319,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.319"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.856615824.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 36x^{4} + 32x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 319.4
Root \(-2.33086i\) of defining polynomial
Character \(\chi\) \(=\) 576.319
Dual form 576.3.o.d.511.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.89248 + 0.795973i) q^{3} +(-0.355304 + 0.615405i) q^{5} +(-2.70480 + 1.56162i) q^{7} +(7.73285 + 4.60467i) q^{9} +(14.3822 - 8.30359i) q^{11} +(9.17743 - 15.8958i) q^{13} +(-1.51756 + 1.49723i) q^{15} -9.69321 q^{17} -8.20686i q^{19} +(-9.06659 + 2.36400i) q^{21} +(-1.94815 - 1.12477i) q^{23} +(12.2475 + 21.2133i) q^{25} +(18.7019 + 19.4740i) q^{27} +(20.8217 + 36.0642i) q^{29} +(21.6298 + 12.4879i) q^{31} +(48.2097 - 12.5701i) q^{33} -2.21940i q^{35} +40.3888 q^{37} +(39.1981 - 38.6732i) q^{39} +(25.6944 - 44.5040i) q^{41} +(-56.6621 + 32.7139i) q^{43} +(-5.58126 + 3.12278i) q^{45} +(-29.2894 + 16.9102i) q^{47} +(-19.6227 + 33.9875i) q^{49} +(-28.0374 - 7.71554i) q^{51} +90.6691 q^{53} +11.8012i q^{55} +(6.53244 - 23.7382i) q^{57} +(-66.2243 - 38.2346i) q^{59} +(-1.35822 - 2.35250i) q^{61} +(-28.1066 - 0.378955i) q^{63} +(6.52157 + 11.2957i) q^{65} +(-34.5422 - 19.9429i) q^{67} +(-4.73970 - 4.80403i) q^{69} -102.923i q^{71} +38.1741 q^{73} +(18.5404 + 71.1078i) q^{75} +(-25.9341 + 44.9192i) q^{77} +(-94.4994 + 54.5593i) q^{79} +(38.5940 + 71.2145i) q^{81} +(113.503 - 65.5311i) q^{83} +(3.44404 - 5.96526i) q^{85} +(31.5201 + 120.888i) q^{87} +38.0903 q^{89} +57.3266i q^{91} +(52.6235 + 53.3378i) q^{93} +(5.05055 + 2.91593i) q^{95} +(-12.1961 - 21.1243i) q^{97} +(149.451 + 2.01501i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{3} - 3 q^{5} - 3 q^{7} - 3 q^{9} + 18 q^{11} - 5 q^{13} + 21 q^{15} + 6 q^{17} + 33 q^{21} + 81 q^{23} - 23 q^{25} + 108 q^{27} - 69 q^{29} - 45 q^{31} + 72 q^{33} + 20 q^{37} + 141 q^{39} + 54 q^{41}+ \cdots + 585 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.89248 + 0.795973i 0.964159 + 0.265324i
\(4\) 0 0
\(5\) −0.355304 + 0.615405i −0.0710609 + 0.123081i −0.899367 0.437195i \(-0.855972\pi\)
0.828306 + 0.560277i \(0.189305\pi\)
\(6\) 0 0
\(7\) −2.70480 + 1.56162i −0.386401 + 0.223088i −0.680599 0.732656i \(-0.738281\pi\)
0.294199 + 0.955744i \(0.404947\pi\)
\(8\) 0 0
\(9\) 7.73285 + 4.60467i 0.859206 + 0.511630i
\(10\) 0 0
\(11\) 14.3822 8.30359i 1.30748 0.754872i 0.325802 0.945438i \(-0.394366\pi\)
0.981674 + 0.190566i \(0.0610325\pi\)
\(12\) 0 0
\(13\) 9.17743 15.8958i 0.705956 1.22275i −0.260389 0.965504i \(-0.583851\pi\)
0.966345 0.257248i \(-0.0828159\pi\)
\(14\) 0 0
\(15\) −1.51756 + 1.49723i −0.101170 + 0.0998156i
\(16\) 0 0
\(17\) −9.69321 −0.570189 −0.285095 0.958499i \(-0.592025\pi\)
−0.285095 + 0.958499i \(0.592025\pi\)
\(18\) 0 0
\(19\) 8.20686i 0.431940i −0.976400 0.215970i \(-0.930709\pi\)
0.976400 0.215970i \(-0.0692913\pi\)
\(20\) 0 0
\(21\) −9.06659 + 2.36400i −0.431742 + 0.112571i
\(22\) 0 0
\(23\) −1.94815 1.12477i −0.0847022 0.0489028i 0.457051 0.889441i \(-0.348906\pi\)
−0.541753 + 0.840538i \(0.682239\pi\)
\(24\) 0 0
\(25\) 12.2475 + 21.2133i 0.489901 + 0.848533i
\(26\) 0 0
\(27\) 18.7019 + 19.4740i 0.692663 + 0.721261i
\(28\) 0 0
\(29\) 20.8217 + 36.0642i 0.717989 + 1.24359i 0.961795 + 0.273770i \(0.0882707\pi\)
−0.243806 + 0.969824i \(0.578396\pi\)
\(30\) 0 0
\(31\) 21.6298 + 12.4879i 0.697734 + 0.402837i 0.806503 0.591230i \(-0.201358\pi\)
−0.108769 + 0.994067i \(0.534691\pi\)
\(32\) 0 0
\(33\) 48.2097 12.5701i 1.46090 0.380911i
\(34\) 0 0
\(35\) 2.21940i 0.0634115i
\(36\) 0 0
\(37\) 40.3888 1.09159 0.545794 0.837919i \(-0.316228\pi\)
0.545794 + 0.837919i \(0.316228\pi\)
\(38\) 0 0
\(39\) 39.1981 38.6732i 1.00508 0.991620i
\(40\) 0 0
\(41\) 25.6944 44.5040i 0.626692 1.08546i −0.361519 0.932365i \(-0.617742\pi\)
0.988211 0.153098i \(-0.0489251\pi\)
\(42\) 0 0
\(43\) −56.6621 + 32.7139i −1.31772 + 0.760787i −0.983362 0.181658i \(-0.941854\pi\)
−0.334360 + 0.942445i \(0.608520\pi\)
\(44\) 0 0
\(45\) −5.58126 + 3.12278i −0.124028 + 0.0693951i
\(46\) 0 0
\(47\) −29.2894 + 16.9102i −0.623179 + 0.359793i −0.778106 0.628133i \(-0.783819\pi\)
0.154927 + 0.987926i \(0.450486\pi\)
\(48\) 0 0
\(49\) −19.6227 + 33.9875i −0.400463 + 0.693622i
\(50\) 0 0
\(51\) −28.0374 7.71554i −0.549753 0.151285i
\(52\) 0 0
\(53\) 90.6691 1.71074 0.855369 0.518019i \(-0.173330\pi\)
0.855369 + 0.518019i \(0.173330\pi\)
\(54\) 0 0
\(55\) 11.8012i 0.214567i
\(56\) 0 0
\(57\) 6.53244 23.7382i 0.114604 0.416459i
\(58\) 0 0
\(59\) −66.2243 38.2346i −1.12245 0.648045i −0.180422 0.983589i \(-0.557746\pi\)
−0.942024 + 0.335545i \(0.891080\pi\)
\(60\) 0 0
\(61\) −1.35822 2.35250i −0.0222659 0.0385656i 0.854678 0.519159i \(-0.173755\pi\)
−0.876944 + 0.480593i \(0.840421\pi\)
\(62\) 0 0
\(63\) −28.1066 0.378955i −0.446136 0.00601516i
\(64\) 0 0
\(65\) 6.52157 + 11.2957i 0.100332 + 0.173780i
\(66\) 0 0
\(67\) −34.5422 19.9429i −0.515555 0.297656i 0.219559 0.975599i \(-0.429538\pi\)
−0.735114 + 0.677943i \(0.762871\pi\)
\(68\) 0 0
\(69\) −4.73970 4.80403i −0.0686913 0.0696237i
\(70\) 0 0
\(71\) 102.923i 1.44962i −0.688950 0.724809i \(-0.741928\pi\)
0.688950 0.724809i \(-0.258072\pi\)
\(72\) 0 0
\(73\) 38.1741 0.522933 0.261466 0.965213i \(-0.415794\pi\)
0.261466 + 0.965213i \(0.415794\pi\)
\(74\) 0 0
\(75\) 18.5404 + 71.1078i 0.247206 + 0.948103i
\(76\) 0 0
\(77\) −25.9341 + 44.9192i −0.336806 + 0.583366i
\(78\) 0 0
\(79\) −94.4994 + 54.5593i −1.19620 + 0.690624i −0.959705 0.281010i \(-0.909331\pi\)
−0.236491 + 0.971634i \(0.575997\pi\)
\(80\) 0 0
\(81\) 38.5940 + 71.2145i 0.476470 + 0.879191i
\(82\) 0 0
\(83\) 113.503 65.5311i 1.36751 0.789531i 0.376899 0.926254i \(-0.376990\pi\)
0.990609 + 0.136723i \(0.0436570\pi\)
\(84\) 0 0
\(85\) 3.44404 5.96526i 0.0405181 0.0701795i
\(86\) 0 0
\(87\) 31.5201 + 120.888i 0.362300 + 1.38952i
\(88\) 0 0
\(89\) 38.0903 0.427981 0.213991 0.976836i \(-0.431354\pi\)
0.213991 + 0.976836i \(0.431354\pi\)
\(90\) 0 0
\(91\) 57.3266i 0.629963i
\(92\) 0 0
\(93\) 52.6235 + 53.3378i 0.565844 + 0.573525i
\(94\) 0 0
\(95\) 5.05055 + 2.91593i 0.0531636 + 0.0306940i
\(96\) 0 0
\(97\) −12.1961 21.1243i −0.125733 0.217776i 0.796286 0.604920i \(-0.206795\pi\)
−0.922019 + 0.387144i \(0.873462\pi\)
\(98\) 0 0
\(99\) 149.451 + 2.01501i 1.50961 + 0.0203537i
\(100\) 0 0
\(101\) −98.1305 169.967i −0.971589 1.68284i −0.690760 0.723084i \(-0.742724\pi\)
−0.280829 0.959758i \(-0.590609\pi\)
\(102\) 0 0
\(103\) −104.472 60.3172i −1.01430 0.585604i −0.101849 0.994800i \(-0.532476\pi\)
−0.912446 + 0.409196i \(0.865809\pi\)
\(104\) 0 0
\(105\) 1.76658 6.41957i 0.0168246 0.0611387i
\(106\) 0 0
\(107\) 6.52440i 0.0609757i −0.999535 0.0304878i \(-0.990294\pi\)
0.999535 0.0304878i \(-0.00970609\pi\)
\(108\) 0 0
\(109\) −38.0272 −0.348873 −0.174437 0.984668i \(-0.555810\pi\)
−0.174437 + 0.984668i \(0.555810\pi\)
\(110\) 0 0
\(111\) 116.824 + 32.1484i 1.05247 + 0.289625i
\(112\) 0 0
\(113\) −53.5086 + 92.6795i −0.473527 + 0.820173i −0.999541 0.0303032i \(-0.990353\pi\)
0.526014 + 0.850476i \(0.323686\pi\)
\(114\) 0 0
\(115\) 1.38437 0.799268i 0.0120380 0.00695016i
\(116\) 0 0
\(117\) 144.163 80.6607i 1.23216 0.689408i
\(118\) 0 0
\(119\) 26.2182 15.1371i 0.220321 0.127203i
\(120\) 0 0
\(121\) 77.3992 134.059i 0.639662 1.10793i
\(122\) 0 0
\(123\) 109.744 108.275i 0.892231 0.880282i
\(124\) 0 0
\(125\) −35.1716 −0.281373
\(126\) 0 0
\(127\) 101.437i 0.798713i 0.916796 + 0.399357i \(0.130766\pi\)
−0.916796 + 0.399357i \(0.869234\pi\)
\(128\) 0 0
\(129\) −189.933 + 49.5226i −1.47235 + 0.383896i
\(130\) 0 0
\(131\) −162.820 94.0042i −1.24290 0.717589i −0.273217 0.961952i \(-0.588088\pi\)
−0.969684 + 0.244363i \(0.921421\pi\)
\(132\) 0 0
\(133\) 12.8160 + 22.1979i 0.0963608 + 0.166902i
\(134\) 0 0
\(135\) −18.6293 + 4.59004i −0.137995 + 0.0340003i
\(136\) 0 0
\(137\) 31.3271 + 54.2601i 0.228665 + 0.396059i 0.957413 0.288723i \(-0.0932307\pi\)
−0.728748 + 0.684782i \(0.759897\pi\)
\(138\) 0 0
\(139\) 40.5801 + 23.4289i 0.291943 + 0.168553i 0.638818 0.769358i \(-0.279424\pi\)
−0.346875 + 0.937911i \(0.612757\pi\)
\(140\) 0 0
\(141\) −98.1791 + 25.5989i −0.696305 + 0.181553i
\(142\) 0 0
\(143\) 304.822i 2.13163i
\(144\) 0 0
\(145\) −29.5922 −0.204084
\(146\) 0 0
\(147\) −83.8113 + 82.6889i −0.570145 + 0.562510i
\(148\) 0 0
\(149\) −53.9860 + 93.5064i −0.362322 + 0.627560i −0.988343 0.152247i \(-0.951349\pi\)
0.626021 + 0.779806i \(0.284683\pi\)
\(150\) 0 0
\(151\) 2.75240 1.58910i 0.0182278 0.0105238i −0.490858 0.871239i \(-0.663317\pi\)
0.509086 + 0.860716i \(0.329983\pi\)
\(152\) 0 0
\(153\) −74.9562 44.6340i −0.489910 0.291726i
\(154\) 0 0
\(155\) −15.3703 + 8.87405i −0.0991632 + 0.0572519i
\(156\) 0 0
\(157\) −128.215 + 222.075i −0.816656 + 1.41449i 0.0914764 + 0.995807i \(0.470841\pi\)
−0.908133 + 0.418683i \(0.862492\pi\)
\(158\) 0 0
\(159\) 262.258 + 72.1702i 1.64942 + 0.453901i
\(160\) 0 0
\(161\) 7.02582 0.0436386
\(162\) 0 0
\(163\) 201.100i 1.23374i 0.787065 + 0.616870i \(0.211600\pi\)
−0.787065 + 0.616870i \(0.788400\pi\)
\(164\) 0 0
\(165\) −9.39345 + 34.1347i −0.0569300 + 0.206877i
\(166\) 0 0
\(167\) 110.689 + 63.9062i 0.662807 + 0.382672i 0.793346 0.608771i \(-0.208337\pi\)
−0.130538 + 0.991443i \(0.541671\pi\)
\(168\) 0 0
\(169\) −83.9505 145.407i −0.496749 0.860394i
\(170\) 0 0
\(171\) 37.7899 63.4624i 0.220993 0.371125i
\(172\) 0 0
\(173\) −100.718 174.448i −0.582183 1.00837i −0.995220 0.0976562i \(-0.968865\pi\)
0.413037 0.910714i \(-0.364468\pi\)
\(174\) 0 0
\(175\) −66.2543 38.2519i −0.378596 0.218582i
\(176\) 0 0
\(177\) −161.119 163.306i −0.910275 0.922630i
\(178\) 0 0
\(179\) 5.83187i 0.0325803i 0.999867 + 0.0162901i \(0.00518554\pi\)
−0.999867 + 0.0162901i \(0.994814\pi\)
\(180\) 0 0
\(181\) −132.737 −0.733353 −0.366677 0.930348i \(-0.619504\pi\)
−0.366677 + 0.930348i \(0.619504\pi\)
\(182\) 0 0
\(183\) −2.05608 7.88566i −0.0112354 0.0430910i
\(184\) 0 0
\(185\) −14.3503 + 24.8555i −0.0775693 + 0.134354i
\(186\) 0 0
\(187\) −139.410 + 80.4885i −0.745509 + 0.430420i
\(188\) 0 0
\(189\) −80.9960 23.4682i −0.428551 0.124170i
\(190\) 0 0
\(191\) 36.0843 20.8333i 0.188923 0.109075i −0.402555 0.915396i \(-0.631878\pi\)
0.591478 + 0.806321i \(0.298545\pi\)
\(192\) 0 0
\(193\) −69.1927 + 119.845i −0.358511 + 0.620960i −0.987712 0.156283i \(-0.950049\pi\)
0.629201 + 0.777242i \(0.283382\pi\)
\(194\) 0 0
\(195\) 9.87242 + 37.8635i 0.0506278 + 0.194172i
\(196\) 0 0
\(197\) 109.421 0.555438 0.277719 0.960662i \(-0.410422\pi\)
0.277719 + 0.960662i \(0.410422\pi\)
\(198\) 0 0
\(199\) 87.0243i 0.437308i 0.975802 + 0.218654i \(0.0701666\pi\)
−0.975802 + 0.218654i \(0.929833\pi\)
\(200\) 0 0
\(201\) −84.0385 85.1792i −0.418102 0.423777i
\(202\) 0 0
\(203\) −112.637 65.0311i −0.554863 0.320350i
\(204\) 0 0
\(205\) 18.2587 + 31.6249i 0.0890666 + 0.154268i
\(206\) 0 0
\(207\) −9.88559 17.6682i −0.0477565 0.0853538i
\(208\) 0 0
\(209\) −68.1464 118.033i −0.326059 0.564751i
\(210\) 0 0
\(211\) −244.383 141.095i −1.15821 0.668695i −0.207339 0.978269i \(-0.566480\pi\)
−0.950875 + 0.309574i \(0.899814\pi\)
\(212\) 0 0
\(213\) 81.9239 297.702i 0.384619 1.39766i
\(214\) 0 0
\(215\) 46.4935i 0.216249i
\(216\) 0 0
\(217\) −78.0057 −0.359473
\(218\) 0 0
\(219\) 110.418 + 30.3855i 0.504190 + 0.138747i
\(220\) 0 0
\(221\) −88.9588 + 154.081i −0.402529 + 0.697200i
\(222\) 0 0
\(223\) −255.359 + 147.432i −1.14511 + 0.661129i −0.947691 0.319190i \(-0.896589\pi\)
−0.197419 + 0.980319i \(0.563256\pi\)
\(224\) 0 0
\(225\) −2.97208 + 220.435i −0.0132092 + 0.979712i
\(226\) 0 0
\(227\) 124.390 71.8164i 0.547972 0.316372i −0.200332 0.979728i \(-0.564202\pi\)
0.748304 + 0.663356i \(0.230869\pi\)
\(228\) 0 0
\(229\) 141.426 244.958i 0.617583 1.06968i −0.372343 0.928095i \(-0.621445\pi\)
0.989925 0.141590i \(-0.0452213\pi\)
\(230\) 0 0
\(231\) −110.768 + 109.285i −0.479516 + 0.473094i
\(232\) 0 0
\(233\) −25.9127 −0.111213 −0.0556067 0.998453i \(-0.517709\pi\)
−0.0556067 + 0.998453i \(0.517709\pi\)
\(234\) 0 0
\(235\) 24.0331i 0.102269i
\(236\) 0 0
\(237\) −316.765 + 82.5925i −1.33656 + 0.348491i
\(238\) 0 0
\(239\) −310.807 179.444i −1.30045 0.750813i −0.319966 0.947429i \(-0.603672\pi\)
−0.980481 + 0.196616i \(0.937005\pi\)
\(240\) 0 0
\(241\) 87.7048 + 151.909i 0.363920 + 0.630328i 0.988602 0.150551i \(-0.0481048\pi\)
−0.624682 + 0.780879i \(0.714771\pi\)
\(242\) 0 0
\(243\) 54.9476 + 236.706i 0.226122 + 0.974099i
\(244\) 0 0
\(245\) −13.9441 24.1518i −0.0569145 0.0985789i
\(246\) 0 0
\(247\) −130.454 75.3179i −0.528156 0.304931i
\(248\) 0 0
\(249\) 380.466 99.2017i 1.52798 0.398401i
\(250\) 0 0
\(251\) 410.044i 1.63364i −0.576891 0.816821i \(-0.695734\pi\)
0.576891 0.816821i \(-0.304266\pi\)
\(252\) 0 0
\(253\) −37.3583 −0.147661
\(254\) 0 0
\(255\) 14.7100 14.5130i 0.0576863 0.0569137i
\(256\) 0 0
\(257\) −86.4280 + 149.698i −0.336296 + 0.582481i −0.983733 0.179638i \(-0.942507\pi\)
0.647437 + 0.762119i \(0.275841\pi\)
\(258\) 0 0
\(259\) −109.244 + 63.0719i −0.421790 + 0.243521i
\(260\) 0 0
\(261\) −5.05276 + 374.756i −0.0193592 + 1.43585i
\(262\) 0 0
\(263\) −132.696 + 76.6118i −0.504546 + 0.291300i −0.730589 0.682818i \(-0.760754\pi\)
0.226043 + 0.974117i \(0.427421\pi\)
\(264\) 0 0
\(265\) −32.2151 + 55.7983i −0.121567 + 0.210559i
\(266\) 0 0
\(267\) 110.175 + 30.3189i 0.412642 + 0.113554i
\(268\) 0 0
\(269\) −12.6752 −0.0471198 −0.0235599 0.999722i \(-0.507500\pi\)
−0.0235599 + 0.999722i \(0.507500\pi\)
\(270\) 0 0
\(271\) 40.7101i 0.150222i 0.997175 + 0.0751108i \(0.0239311\pi\)
−0.997175 + 0.0751108i \(0.976069\pi\)
\(272\) 0 0
\(273\) −45.6305 + 165.816i −0.167145 + 0.607385i
\(274\) 0 0
\(275\) 352.293 + 203.397i 1.28107 + 0.739624i
\(276\) 0 0
\(277\) −184.143 318.945i −0.664776 1.15143i −0.979346 0.202191i \(-0.935194\pi\)
0.314570 0.949234i \(-0.398140\pi\)
\(278\) 0 0
\(279\) 109.757 + 196.165i 0.393394 + 0.703101i
\(280\) 0 0
\(281\) −238.310 412.765i −0.848078 1.46891i −0.882921 0.469521i \(-0.844427\pi\)
0.0348433 0.999393i \(-0.488907\pi\)
\(282\) 0 0
\(283\) 150.052 + 86.6323i 0.530217 + 0.306121i 0.741105 0.671389i \(-0.234302\pi\)
−0.210888 + 0.977510i \(0.567635\pi\)
\(284\) 0 0
\(285\) 12.2876 + 12.4544i 0.0431143 + 0.0436995i
\(286\) 0 0
\(287\) 160.499i 0.559231i
\(288\) 0 0
\(289\) −195.042 −0.674884
\(290\) 0 0
\(291\) −18.4626 70.8094i −0.0634455 0.243331i
\(292\) 0 0
\(293\) 2.91833 5.05470i 0.00996017 0.0172515i −0.861002 0.508601i \(-0.830163\pi\)
0.870963 + 0.491349i \(0.163496\pi\)
\(294\) 0 0
\(295\) 47.0596 27.1699i 0.159524 0.0921013i
\(296\) 0 0
\(297\) 430.680 + 124.787i 1.45010 + 0.420160i
\(298\) 0 0
\(299\) −35.7580 + 20.6449i −0.119592 + 0.0690465i
\(300\) 0 0
\(301\) 102.173 176.969i 0.339446 0.587937i
\(302\) 0 0
\(303\) −148.551 569.735i −0.490268 1.88031i
\(304\) 0 0
\(305\) 1.93032 0.00632893
\(306\) 0 0
\(307\) 371.717i 1.21080i −0.795920 0.605402i \(-0.793012\pi\)
0.795920 0.605402i \(-0.206988\pi\)
\(308\) 0 0
\(309\) −254.173 257.623i −0.822567 0.833733i
\(310\) 0 0
\(311\) 193.964 + 111.985i 0.623679 + 0.360081i 0.778300 0.627892i \(-0.216082\pi\)
−0.154621 + 0.987974i \(0.549416\pi\)
\(312\) 0 0
\(313\) 79.0960 + 136.998i 0.252703 + 0.437694i 0.964269 0.264925i \(-0.0853472\pi\)
−0.711566 + 0.702619i \(0.752014\pi\)
\(314\) 0 0
\(315\) 10.2196 17.1623i 0.0324432 0.0544835i
\(316\) 0 0
\(317\) 206.428 + 357.543i 0.651191 + 1.12790i 0.982834 + 0.184491i \(0.0590637\pi\)
−0.331643 + 0.943405i \(0.607603\pi\)
\(318\) 0 0
\(319\) 598.925 + 345.789i 1.87751 + 1.08398i
\(320\) 0 0
\(321\) 5.19325 18.8717i 0.0161783 0.0587903i
\(322\) 0 0
\(323\) 79.5508i 0.246287i
\(324\) 0 0
\(325\) 449.603 1.38339
\(326\) 0 0
\(327\) −109.993 30.2686i −0.336370 0.0925646i
\(328\) 0 0
\(329\) 52.8147 91.4778i 0.160531 0.278048i
\(330\) 0 0
\(331\) −126.937 + 73.2871i −0.383495 + 0.221411i −0.679338 0.733826i \(-0.737733\pi\)
0.295843 + 0.955237i \(0.404400\pi\)
\(332\) 0 0
\(333\) 312.320 + 185.977i 0.937899 + 0.558489i
\(334\) 0 0
\(335\) 24.5460 14.1716i 0.0732716 0.0423034i
\(336\) 0 0
\(337\) −47.3499 + 82.0124i −0.140504 + 0.243360i −0.927687 0.373360i \(-0.878206\pi\)
0.787182 + 0.616720i \(0.211539\pi\)
\(338\) 0 0
\(339\) −228.543 + 225.482i −0.674167 + 0.665139i
\(340\) 0 0
\(341\) 414.779 1.21636
\(342\) 0 0
\(343\) 275.611i 0.803532i
\(344\) 0 0
\(345\) 4.64046 1.20994i 0.0134506 0.00350708i
\(346\) 0 0
\(347\) −81.3438 46.9639i −0.234420 0.135343i 0.378189 0.925728i \(-0.376547\pi\)
−0.612609 + 0.790386i \(0.709880\pi\)
\(348\) 0 0
\(349\) 115.579 + 200.188i 0.331171 + 0.573605i 0.982742 0.184983i \(-0.0592229\pi\)
−0.651571 + 0.758588i \(0.725890\pi\)
\(350\) 0 0
\(351\) 481.191 118.560i 1.37091 0.337777i
\(352\) 0 0
\(353\) −48.9623 84.8052i −0.138703 0.240241i 0.788303 0.615288i \(-0.210960\pi\)
−0.927006 + 0.375046i \(0.877627\pi\)
\(354\) 0 0
\(355\) 63.3393 + 36.5690i 0.178421 + 0.103011i
\(356\) 0 0
\(357\) 87.8844 22.9147i 0.246175 0.0641869i
\(358\) 0 0
\(359\) 244.287i 0.680465i 0.940341 + 0.340233i \(0.110506\pi\)
−0.940341 + 0.340233i \(0.889494\pi\)
\(360\) 0 0
\(361\) 293.647 0.813428
\(362\) 0 0
\(363\) 330.583 326.156i 0.910697 0.898501i
\(364\) 0 0
\(365\) −13.5634 + 23.4925i −0.0371601 + 0.0643631i
\(366\) 0 0
\(367\) 368.327 212.654i 1.00362 0.579438i 0.0942999 0.995544i \(-0.469939\pi\)
0.909316 + 0.416106i \(0.136605\pi\)
\(368\) 0 0
\(369\) 403.617 225.829i 1.09381 0.612002i
\(370\) 0 0
\(371\) −245.242 + 141.591i −0.661030 + 0.381646i
\(372\) 0 0
\(373\) −44.8567 + 77.6941i −0.120259 + 0.208295i −0.919870 0.392224i \(-0.871706\pi\)
0.799611 + 0.600519i \(0.205039\pi\)
\(374\) 0 0
\(375\) −101.733 27.9957i −0.271288 0.0746551i
\(376\) 0 0
\(377\) 764.359 2.02748
\(378\) 0 0
\(379\) 406.140i 1.07161i 0.844342 + 0.535805i \(0.179992\pi\)
−0.844342 + 0.535805i \(0.820008\pi\)
\(380\) 0 0
\(381\) −80.7408 + 293.403i −0.211918 + 0.770087i
\(382\) 0 0
\(383\) −280.901 162.178i −0.733423 0.423442i 0.0862502 0.996274i \(-0.472512\pi\)
−0.819673 + 0.572832i \(0.805845\pi\)
\(384\) 0 0
\(385\) −18.4290 31.9200i −0.0478675 0.0829090i
\(386\) 0 0
\(387\) −588.796 7.93860i −1.52144 0.0205132i
\(388\) 0 0
\(389\) 28.6761 + 49.6685i 0.0737176 + 0.127683i 0.900528 0.434798i \(-0.143180\pi\)
−0.826810 + 0.562481i \(0.809847\pi\)
\(390\) 0 0
\(391\) 18.8838 + 10.9026i 0.0482963 + 0.0278839i
\(392\) 0 0
\(393\) −396.128 401.505i −1.00796 1.02164i
\(394\) 0 0
\(395\) 77.5406i 0.196305i
\(396\) 0 0
\(397\) −194.475 −0.489861 −0.244931 0.969541i \(-0.578765\pi\)
−0.244931 + 0.969541i \(0.578765\pi\)
\(398\) 0 0
\(399\) 19.4010 + 74.4082i 0.0486240 + 0.186487i
\(400\) 0 0
\(401\) −163.943 + 283.958i −0.408836 + 0.708124i −0.994760 0.102242i \(-0.967398\pi\)
0.585924 + 0.810366i \(0.300732\pi\)
\(402\) 0 0
\(403\) 397.011 229.215i 0.985140 0.568771i
\(404\) 0 0
\(405\) −57.5384 1.55184i −0.142070 0.00383170i
\(406\) 0 0
\(407\) 580.881 335.372i 1.42723 0.824009i
\(408\) 0 0
\(409\) −36.6786 + 63.5292i −0.0896787 + 0.155328i −0.907375 0.420321i \(-0.861917\pi\)
0.817697 + 0.575649i \(0.195251\pi\)
\(410\) 0 0
\(411\) 47.4233 + 181.882i 0.115385 + 0.442534i
\(412\) 0 0
\(413\) 238.832 0.578285
\(414\) 0 0
\(415\) 93.1340i 0.224419i
\(416\) 0 0
\(417\) 98.7282 + 100.068i 0.236758 + 0.239972i
\(418\) 0 0
\(419\) 557.390 + 321.809i 1.33029 + 0.768041i 0.985343 0.170582i \(-0.0545649\pi\)
0.344943 + 0.938624i \(0.387898\pi\)
\(420\) 0 0
\(421\) 280.151 + 485.236i 0.665441 + 1.15258i 0.979165 + 0.203064i \(0.0650900\pi\)
−0.313724 + 0.949514i \(0.601577\pi\)
\(422\) 0 0
\(423\) −304.357 4.10358i −0.719520 0.00970112i
\(424\) 0 0
\(425\) −118.718 205.625i −0.279336 0.483824i
\(426\) 0 0
\(427\) 7.34742 + 4.24204i 0.0172071 + 0.00993451i
\(428\) 0 0
\(429\) 242.631 881.692i 0.565572 2.05523i
\(430\) 0 0
\(431\) 536.437i 1.24463i 0.782765 + 0.622317i \(0.213809\pi\)
−0.782765 + 0.622317i \(0.786191\pi\)
\(432\) 0 0
\(433\) 281.999 0.651268 0.325634 0.945496i \(-0.394422\pi\)
0.325634 + 0.945496i \(0.394422\pi\)
\(434\) 0 0
\(435\) −85.5947 23.5546i −0.196769 0.0541484i
\(436\) 0 0
\(437\) −9.23079 + 15.9882i −0.0211231 + 0.0365863i
\(438\) 0 0
\(439\) −87.2604 + 50.3798i −0.198771 + 0.114760i −0.596082 0.802924i \(-0.703277\pi\)
0.397311 + 0.917684i \(0.369943\pi\)
\(440\) 0 0
\(441\) −308.241 + 172.464i −0.698958 + 0.391076i
\(442\) 0 0
\(443\) −519.799 + 300.106i −1.17336 + 0.677440i −0.954469 0.298309i \(-0.903577\pi\)
−0.218891 + 0.975749i \(0.570244\pi\)
\(444\) 0 0
\(445\) −13.5337 + 23.4410i −0.0304127 + 0.0526764i
\(446\) 0 0
\(447\) −230.582 + 227.494i −0.515843 + 0.508935i
\(448\) 0 0
\(449\) 639.843 1.42504 0.712520 0.701651i \(-0.247554\pi\)
0.712520 + 0.701651i \(0.247554\pi\)
\(450\) 0 0
\(451\) 853.422i 1.89229i
\(452\) 0 0
\(453\) 9.22612 2.40559i 0.0203667 0.00531036i
\(454\) 0 0
\(455\) −35.2791 20.3684i −0.0775365 0.0447657i
\(456\) 0 0
\(457\) 86.7721 + 150.294i 0.189873 + 0.328870i 0.945208 0.326469i \(-0.105859\pi\)
−0.755334 + 0.655339i \(0.772526\pi\)
\(458\) 0 0
\(459\) −181.282 188.766i −0.394949 0.411255i
\(460\) 0 0
\(461\) −361.655 626.406i −0.784502 1.35880i −0.929296 0.369336i \(-0.879585\pi\)
0.144794 0.989462i \(-0.453748\pi\)
\(462\) 0 0
\(463\) −643.880 371.744i −1.39067 0.802903i −0.397280 0.917698i \(-0.630046\pi\)
−0.993389 + 0.114794i \(0.963379\pi\)
\(464\) 0 0
\(465\) −51.5217 + 13.4336i −0.110799 + 0.0288895i
\(466\) 0 0
\(467\) 98.0700i 0.210000i 0.994472 + 0.105000i \(0.0334842\pi\)
−0.994472 + 0.105000i \(0.966516\pi\)
\(468\) 0 0
\(469\) 124.573 0.265614
\(470\) 0 0
\(471\) −547.625 + 540.291i −1.16269 + 1.14711i
\(472\) 0 0
\(473\) −543.285 + 940.997i −1.14859 + 1.98942i
\(474\) 0 0
\(475\) 174.095 100.514i 0.366515 0.211608i
\(476\) 0 0
\(477\) 701.131 + 417.501i 1.46988 + 0.875265i
\(478\) 0 0
\(479\) −293.648 + 169.538i −0.613043 + 0.353941i −0.774156 0.632995i \(-0.781825\pi\)
0.161112 + 0.986936i \(0.448492\pi\)
\(480\) 0 0
\(481\) 370.665 642.011i 0.770614 1.33474i
\(482\) 0 0
\(483\) 20.3220 + 5.59236i 0.0420746 + 0.0115784i
\(484\) 0 0
\(485\) 17.3334 0.0357389
\(486\) 0 0
\(487\) 777.718i 1.59696i −0.602023 0.798479i \(-0.705638\pi\)
0.602023 0.798479i \(-0.294362\pi\)
\(488\) 0 0
\(489\) −160.070 + 581.676i −0.327341 + 1.18952i
\(490\) 0 0
\(491\) −52.0054 30.0254i −0.105917 0.0611514i 0.446106 0.894980i \(-0.352811\pi\)
−0.552023 + 0.833829i \(0.686144\pi\)
\(492\) 0 0
\(493\) −201.829 349.578i −0.409390 0.709084i
\(494\) 0 0
\(495\) −54.3407 + 91.2570i −0.109779 + 0.184358i
\(496\) 0 0
\(497\) 160.726 + 278.386i 0.323393 + 0.560133i
\(498\) 0 0
\(499\) 250.110 + 144.401i 0.501222 + 0.289381i 0.729218 0.684281i \(-0.239884\pi\)
−0.227996 + 0.973662i \(0.573217\pi\)
\(500\) 0 0
\(501\) 269.297 + 272.953i 0.537520 + 0.544816i
\(502\) 0 0
\(503\) 567.389i 1.12801i 0.825772 + 0.564005i \(0.190740\pi\)
−0.825772 + 0.564005i \(0.809260\pi\)
\(504\) 0 0
\(505\) 139.465 0.276168
\(506\) 0 0
\(507\) −127.085 487.408i −0.250661 0.961357i
\(508\) 0 0
\(509\) −158.283 + 274.155i −0.310970 + 0.538615i −0.978573 0.205902i \(-0.933987\pi\)
0.667603 + 0.744517i \(0.267320\pi\)
\(510\) 0 0
\(511\) −103.253 + 59.6134i −0.202061 + 0.116660i
\(512\) 0 0
\(513\) 159.821 153.484i 0.311541 0.299189i
\(514\) 0 0
\(515\) 74.2390 42.8619i 0.144153 0.0832271i
\(516\) 0 0
\(517\) −280.831 + 486.414i −0.543194 + 0.940840i
\(518\) 0 0
\(519\) −152.468 584.756i −0.293772 1.12670i
\(520\) 0 0
\(521\) 597.419 1.14668 0.573339 0.819318i \(-0.305648\pi\)
0.573339 + 0.819318i \(0.305648\pi\)
\(522\) 0 0
\(523\) 630.846i 1.20621i 0.797663 + 0.603103i \(0.206069\pi\)
−0.797663 + 0.603103i \(0.793931\pi\)
\(524\) 0 0
\(525\) −161.191 163.379i −0.307031 0.311199i
\(526\) 0 0
\(527\) −209.662 121.048i −0.397840 0.229693i
\(528\) 0 0
\(529\) −261.970 453.745i −0.495217 0.857741i
\(530\) 0 0
\(531\) −336.045 600.604i −0.632853 1.13108i
\(532\) 0 0
\(533\) −471.617 816.865i −0.884835 1.53258i
\(534\) 0 0
\(535\) 4.01515 + 2.31815i 0.00750495 + 0.00433299i
\(536\) 0 0
\(537\) −4.64201 + 16.8685i −0.00864434 + 0.0314126i
\(538\) 0 0
\(539\) 651.755i 1.20919i
\(540\) 0 0
\(541\) 144.808 0.267667 0.133834 0.991004i \(-0.457271\pi\)
0.133834 + 0.991004i \(0.457271\pi\)
\(542\) 0 0
\(543\) −383.939 105.655i −0.707069 0.194577i
\(544\) 0 0
\(545\) 13.5112 23.4022i 0.0247913 0.0429397i
\(546\) 0 0
\(547\) 679.104 392.081i 1.24151 0.716784i 0.272105 0.962268i \(-0.412280\pi\)
0.969401 + 0.245484i \(0.0789468\pi\)
\(548\) 0 0
\(549\) 0.329596 24.4457i 0.000600357 0.0445277i
\(550\) 0 0
\(551\) 295.974 170.881i 0.537158 0.310128i
\(552\) 0 0
\(553\) 170.402 295.144i 0.308140 0.533715i
\(554\) 0 0
\(555\) −61.2923 + 60.4714i −0.110436 + 0.108958i
\(556\) 0 0
\(557\) −92.1884 −0.165509 −0.0827544 0.996570i \(-0.526372\pi\)
−0.0827544 + 0.996570i \(0.526372\pi\)
\(558\) 0 0
\(559\) 1200.92i 2.14833i
\(560\) 0 0
\(561\) −467.307 + 121.844i −0.832990 + 0.217191i
\(562\) 0 0
\(563\) 141.939 + 81.9485i 0.252112 + 0.145557i 0.620731 0.784024i \(-0.286836\pi\)
−0.368619 + 0.929581i \(0.620169\pi\)
\(564\) 0 0
\(565\) −38.0237 65.8589i −0.0672985 0.116564i
\(566\) 0 0
\(567\) −215.599 132.352i −0.380245 0.233425i
\(568\) 0 0
\(569\) −352.219 610.061i −0.619014 1.07216i −0.989666 0.143392i \(-0.954199\pi\)
0.370652 0.928772i \(-0.379134\pi\)
\(570\) 0 0
\(571\) 413.817 + 238.917i 0.724723 + 0.418419i 0.816489 0.577361i \(-0.195918\pi\)
−0.0917653 + 0.995781i \(0.529251\pi\)
\(572\) 0 0
\(573\) 120.956 31.5377i 0.211092 0.0550396i
\(574\) 0 0
\(575\) 55.1023i 0.0958301i
\(576\) 0 0
\(577\) −21.5525 −0.0373527 −0.0186764 0.999826i \(-0.505945\pi\)
−0.0186764 + 0.999826i \(0.505945\pi\)
\(578\) 0 0
\(579\) −295.532 + 291.574i −0.510418 + 0.503582i
\(580\) 0 0
\(581\) −204.669 + 354.498i −0.352271 + 0.610151i
\(582\) 0 0
\(583\) 1304.02 752.879i 2.23675 1.29139i
\(584\) 0 0
\(585\) −1.58257 + 117.378i −0.00270526 + 0.200645i
\(586\) 0 0
\(587\) −686.177 + 396.164i −1.16896 + 0.674897i −0.953434 0.301602i \(-0.902479\pi\)
−0.215522 + 0.976499i \(0.569145\pi\)
\(588\) 0 0
\(589\) 102.487 177.512i 0.174001 0.301379i
\(590\) 0 0
\(591\) 316.498 + 87.0964i 0.535530 + 0.147371i
\(592\) 0 0
\(593\) −571.777 −0.964211 −0.482105 0.876113i \(-0.660128\pi\)
−0.482105 + 0.876113i \(0.660128\pi\)
\(594\) 0 0
\(595\) 21.5131i 0.0361565i
\(596\) 0 0
\(597\) −69.2690 + 251.716i −0.116028 + 0.421635i
\(598\) 0 0
\(599\) 803.662 + 463.994i 1.34167 + 0.774615i 0.987053 0.160396i \(-0.0512770\pi\)
0.354620 + 0.935011i \(0.384610\pi\)
\(600\) 0 0
\(601\) −66.4316 115.063i −0.110535 0.191452i 0.805451 0.592662i \(-0.201923\pi\)
−0.915986 + 0.401210i \(0.868590\pi\)
\(602\) 0 0
\(603\) −175.279 313.271i −0.290678 0.519521i
\(604\) 0 0
\(605\) 55.0005 + 95.2637i 0.0909100 + 0.157461i
\(606\) 0 0
\(607\) 480.102 + 277.187i 0.790942 + 0.456651i 0.840294 0.542131i \(-0.182382\pi\)
−0.0493520 + 0.998781i \(0.515716\pi\)
\(608\) 0 0
\(609\) −274.037 277.757i −0.449979 0.456087i
\(610\) 0 0
\(611\) 620.771i 1.01599i
\(612\) 0 0
\(613\) −1096.88 −1.78937 −0.894684 0.446700i \(-0.852599\pi\)
−0.894684 + 0.446700i \(0.852599\pi\)
\(614\) 0 0
\(615\) 27.6402 + 106.008i 0.0449434 + 0.172370i
\(616\) 0 0
\(617\) −311.636 + 539.770i −0.505083 + 0.874829i 0.494900 + 0.868950i \(0.335205\pi\)
−0.999983 + 0.00587917i \(0.998129\pi\)
\(618\) 0 0
\(619\) 613.432 354.165i 0.991005 0.572157i 0.0854305 0.996344i \(-0.472773\pi\)
0.905575 + 0.424187i \(0.139440\pi\)
\(620\) 0 0
\(621\) −14.5304 58.9736i −0.0233984 0.0949656i
\(622\) 0 0
\(623\) −103.027 + 59.4826i −0.165372 + 0.0954777i
\(624\) 0 0
\(625\) −293.691 + 508.688i −0.469906 + 0.813901i
\(626\) 0 0
\(627\) −103.161 395.650i −0.164531 0.631021i
\(628\) 0 0
\(629\) −391.497 −0.622412
\(630\) 0 0
\(631\) 1142.86i 1.81119i −0.424139 0.905597i \(-0.639423\pi\)
0.424139 0.905597i \(-0.360577\pi\)
\(632\) 0 0
\(633\) −594.565 602.636i −0.939282 0.952031i
\(634\) 0 0
\(635\) −62.4246 36.0409i −0.0983065 0.0567573i
\(636\) 0 0
\(637\) 360.172 + 623.836i 0.565419 + 0.979334i
\(638\) 0 0
\(639\) 473.926 795.888i 0.741668 1.24552i
\(640\) 0 0
\(641\) −138.542 239.961i −0.216134 0.374354i 0.737489 0.675359i \(-0.236011\pi\)
−0.953623 + 0.301005i \(0.902678\pi\)
\(642\) 0 0
\(643\) −737.236 425.644i −1.14656 0.661965i −0.198511 0.980099i \(-0.563611\pi\)
−0.948046 + 0.318133i \(0.896944\pi\)
\(644\) 0 0
\(645\) 37.0076 134.481i 0.0573761 0.208498i
\(646\) 0 0
\(647\) 706.622i 1.09215i 0.837736 + 0.546076i \(0.183879\pi\)
−0.837736 + 0.546076i \(0.816121\pi\)
\(648\) 0 0
\(649\) −1269.94 −1.95676
\(650\) 0 0
\(651\) −225.630 62.0904i −0.346589 0.0953770i
\(652\) 0 0
\(653\) 390.342 676.092i 0.597767 1.03536i −0.395383 0.918516i \(-0.629388\pi\)
0.993150 0.116846i \(-0.0372784\pi\)
\(654\) 0 0
\(655\) 115.701 66.8002i 0.176643 0.101985i
\(656\) 0 0
\(657\) 295.195 + 175.779i 0.449307 + 0.267548i
\(658\) 0 0
\(659\) 491.322 283.665i 0.745557 0.430447i −0.0785296 0.996912i \(-0.525023\pi\)
0.824086 + 0.566465i \(0.191689\pi\)
\(660\) 0 0
\(661\) −46.9164 + 81.2615i −0.0709778 + 0.122937i −0.899330 0.437270i \(-0.855945\pi\)
0.828352 + 0.560208i \(0.189279\pi\)
\(662\) 0 0
\(663\) −379.956 + 374.868i −0.573086 + 0.565411i
\(664\) 0 0
\(665\) −18.2143 −0.0273899
\(666\) 0 0
\(667\) 93.6780i 0.140447i
\(668\) 0 0
\(669\) −855.973 + 223.184i −1.27948 + 0.333608i
\(670\) 0 0
\(671\) −39.0684 22.5562i −0.0582241 0.0336157i
\(672\) 0 0
\(673\) 100.742 + 174.490i 0.149691 + 0.259272i 0.931113 0.364730i \(-0.118839\pi\)
−0.781422 + 0.624003i \(0.785505\pi\)
\(674\) 0 0
\(675\) −184.057 + 635.238i −0.272677 + 0.941094i
\(676\) 0 0
\(677\) 336.988 + 583.680i 0.497766 + 0.862157i 0.999997 0.00257723i \(-0.000820358\pi\)
−0.502230 + 0.864734i \(0.667487\pi\)
\(678\) 0 0
\(679\) 65.9763 + 38.0914i 0.0971668 + 0.0560993i
\(680\) 0 0
\(681\) 416.958 108.716i 0.612273 0.159642i
\(682\) 0 0
\(683\) 155.633i 0.227867i −0.993488 0.113933i \(-0.963655\pi\)
0.993488 0.113933i \(-0.0363450\pi\)
\(684\) 0 0
\(685\) −44.5226 −0.0649965
\(686\) 0 0
\(687\) 604.053 595.963i 0.879262 0.867487i
\(688\) 0 0
\(689\) 832.110 1441.26i 1.20771 2.09181i
\(690\) 0 0
\(691\) −693.263 + 400.255i −1.00327 + 0.579241i −0.909215 0.416326i \(-0.863318\pi\)
−0.0940588 + 0.995567i \(0.529984\pi\)
\(692\) 0 0
\(693\) −407.382 + 227.935i −0.587853 + 0.328911i
\(694\) 0 0
\(695\) −28.8366 + 16.6488i −0.0414915 + 0.0239551i
\(696\) 0 0
\(697\) −249.061 + 431.387i −0.357333 + 0.618919i
\(698\) 0 0
\(699\) −74.9520 20.6258i −0.107228 0.0295077i
\(700\) 0 0
\(701\) 488.317 0.696601 0.348300 0.937383i \(-0.386759\pi\)
0.348300 + 0.937383i \(0.386759\pi\)
\(702\) 0 0
\(703\) 331.465i 0.471501i
\(704\) 0 0
\(705\) 19.1297 69.5153i 0.0271344 0.0986033i
\(706\) 0 0
\(707\) 530.848 + 306.485i 0.750845 + 0.433501i
\(708\) 0 0
\(709\) −358.633 621.170i −0.505829 0.876121i −0.999977 0.00674353i \(-0.997853\pi\)
0.494149 0.869377i \(-0.335480\pi\)
\(710\) 0 0
\(711\) −981.978 13.2398i −1.38112 0.0186214i
\(712\) 0 0
\(713\) −28.0920 48.6568i −0.0393997 0.0682423i
\(714\) 0 0
\(715\) 187.589 + 108.305i 0.262363 + 0.151475i
\(716\) 0 0
\(717\) −756.169 766.433i −1.05463 1.06894i
\(718\) 0 0
\(719\) 512.219i 0.712404i −0.934409 0.356202i \(-0.884071\pi\)
0.934409 0.356202i \(-0.115929\pi\)
\(720\) 0 0
\(721\) 376.770 0.522566
\(722\) 0 0
\(723\) 132.768 + 509.204i 0.183636 + 0.704294i
\(724\) 0 0
\(725\) −510.028 + 883.394i −0.703487 + 1.21848i
\(726\) 0 0
\(727\) −574.499 + 331.687i −0.790232 + 0.456241i −0.840044 0.542518i \(-0.817471\pi\)
0.0498122 + 0.998759i \(0.484138\pi\)
\(728\) 0 0
\(729\) −29.4770 + 728.404i −0.0404349 + 0.999182i
\(730\) 0 0
\(731\) 549.237 317.102i 0.751351 0.433793i
\(732\) 0 0
\(733\) 146.883 254.408i 0.200386 0.347078i −0.748267 0.663398i \(-0.769114\pi\)
0.948653 + 0.316320i \(0.102447\pi\)
\(734\) 0 0
\(735\) −21.1087 80.9577i −0.0287193 0.110147i
\(736\) 0 0
\(737\) −662.392 −0.898768
\(738\) 0 0
\(739\) 1335.27i 1.80686i −0.428736 0.903430i \(-0.641041\pi\)
0.428736 0.903430i \(-0.358959\pi\)
\(740\) 0 0
\(741\) −317.385 321.694i −0.428320 0.434134i
\(742\) 0 0
\(743\) 488.188 + 281.855i 0.657050 + 0.379348i 0.791152 0.611620i \(-0.209482\pi\)
−0.134102 + 0.990968i \(0.542815\pi\)
\(744\) 0 0
\(745\) −38.3629 66.4465i −0.0514938 0.0891899i
\(746\) 0 0
\(747\) 1179.45 + 15.9023i 1.57892 + 0.0212882i
\(748\) 0 0
\(749\) 10.1886 + 17.6472i 0.0136030 + 0.0235610i
\(750\) 0 0
\(751\) 591.407 + 341.449i 0.787493 + 0.454659i 0.839079 0.544009i \(-0.183094\pi\)
−0.0515861 + 0.998669i \(0.516428\pi\)
\(752\) 0 0
\(753\) 326.384 1186.04i 0.433445 1.57509i
\(754\) 0 0
\(755\) 2.25845i 0.00299133i
\(756\) 0 0
\(757\) 534.746 0.706401 0.353201 0.935548i \(-0.385093\pi\)
0.353201 + 0.935548i \(0.385093\pi\)
\(758\) 0 0
\(759\) −108.058 29.7362i −0.142369 0.0391782i
\(760\) 0 0
\(761\) −416.191 + 720.863i −0.546900 + 0.947258i 0.451585 + 0.892228i \(0.350859\pi\)
−0.998485 + 0.0550300i \(0.982475\pi\)
\(762\) 0 0
\(763\) 102.856 59.3840i 0.134805 0.0778296i
\(764\) 0 0
\(765\) 54.1003 30.2698i 0.0707194 0.0395683i
\(766\) 0 0
\(767\) −1215.54 + 701.791i −1.58480 + 0.914982i
\(768\) 0 0
\(769\) −351.020 + 607.985i −0.456464 + 0.790618i −0.998771 0.0495620i \(-0.984217\pi\)
0.542308 + 0.840180i \(0.317551\pi\)
\(770\) 0 0
\(771\) −369.146 + 364.203i −0.478789 + 0.472377i
\(772\) 0 0
\(773\) 472.477 0.611225 0.305612 0.952156i \(-0.401139\pi\)
0.305612 + 0.952156i \(0.401139\pi\)
\(774\) 0 0
\(775\) 611.785i 0.789400i
\(776\) 0 0
\(777\) −366.189 + 95.4790i −0.471285 + 0.122882i
\(778\) 0 0
\(779\) −365.238 210.870i −0.468855 0.270693i
\(780\) 0 0
\(781\) −854.630 1480.26i −1.09428 1.89534i
\(782\) 0 0
\(783\) −312.911 + 1079.95i −0.399631 + 1.37925i
\(784\) 0 0
\(785\) −91.1107 157.808i −0.116065 0.201030i
\(786\) 0 0
\(787\) 556.186 + 321.114i 0.706717 + 0.408023i 0.809844 0.586645i \(-0.199552\pi\)
−0.103127 + 0.994668i \(0.532885\pi\)
\(788\) 0 0
\(789\) −444.800 + 115.976i −0.563752 + 0.146991i
\(790\) 0 0
\(791\) 334.240i 0.422554i
\(792\) 0 0
\(793\) −49.8598 −0.0628749
\(794\) 0 0
\(795\) −137.596 + 135.753i −0.173076 + 0.170758i
\(796\) 0 0
\(797\) −42.3167 + 73.2947i −0.0530950 + 0.0919632i −0.891351 0.453313i \(-0.850242\pi\)
0.838256 + 0.545276i \(0.183575\pi\)
\(798\) 0 0
\(799\) 283.909 163.915i 0.355330 0.205150i
\(800\) 0 0
\(801\) 294.547 + 175.393i 0.367724 + 0.218968i
\(802\) 0 0
\(803\) 549.029 316.982i 0.683722 0.394747i
\(804\) 0 0
\(805\) −2.49630 + 4.32373i −0.00310100 + 0.00537109i
\(806\) 0 0
\(807\) −36.6628 10.0891i −0.0454310 0.0125020i
\(808\) 0 0
\(809\) −1071.63 −1.32464 −0.662319 0.749222i \(-0.730427\pi\)
−0.662319 + 0.749222i \(0.730427\pi\)
\(810\) 0 0
\(811\) 745.523i 0.919264i 0.888110 + 0.459632i \(0.152019\pi\)
−0.888110 + 0.459632i \(0.847981\pi\)
\(812\) 0 0
\(813\) −32.4041 + 117.753i −0.0398575 + 0.144838i
\(814\) 0 0
\(815\) −123.758 71.4516i −0.151850 0.0876707i
\(816\) 0 0
\(817\) 268.478 + 465.017i 0.328614 + 0.569177i
\(818\) 0 0
\(819\) −263.970 + 443.298i −0.322308 + 0.541268i
\(820\) 0 0
\(821\) −417.550 723.217i −0.508587 0.880898i −0.999951 0.00994363i \(-0.996835\pi\)
0.491364 0.870954i \(-0.336499\pi\)
\(822\) 0 0
\(823\) −369.777 213.491i −0.449304 0.259406i 0.258232 0.966083i \(-0.416860\pi\)
−0.707536 + 0.706677i \(0.750193\pi\)
\(824\) 0 0
\(825\) 857.102 + 868.736i 1.03891 + 1.05301i
\(826\) 0 0
\(827\) 235.457i 0.284713i −0.989815 0.142356i \(-0.954532\pi\)
0.989815 0.142356i \(-0.0454679\pi\)
\(828\) 0 0
\(829\) 1336.05 1.61164 0.805819 0.592161i \(-0.201725\pi\)
0.805819 + 0.592161i \(0.201725\pi\)
\(830\) 0 0
\(831\) −278.758 1069.11i −0.335448 1.28654i
\(832\) 0 0
\(833\) 190.207 329.448i 0.228340 0.395496i
\(834\) 0 0
\(835\) −78.6565 + 45.4123i −0.0941994 + 0.0543860i
\(836\) 0 0
\(837\) 161.327 + 654.767i 0.192744 + 0.782279i
\(838\) 0 0
\(839\) −1315.40 + 759.449i −1.56782 + 0.905183i −0.571401 + 0.820671i \(0.693600\pi\)
−0.996422 + 0.0845127i \(0.973067\pi\)
\(840\) 0 0
\(841\) −446.586 + 773.509i −0.531017 + 0.919749i
\(842\) 0 0
\(843\) −360.756 1383.60i −0.427943 1.64128i
\(844\) 0 0
\(845\) 119.312 0.141198
\(846\) 0 0
\(847\) 483.472i 0.570805i
\(848\) 0 0
\(849\) 365.064 + 370.019i 0.429993 + 0.435829i
\(850\) 0 0
\(851\) −78.6834 45.4279i −0.0924599 0.0533818i
\(852\) 0 0
\(853\) 219.635 + 380.418i 0.257485 + 0.445977i 0.965568 0.260153i \(-0.0837729\pi\)
−0.708083 + 0.706130i \(0.750440\pi\)
\(854\) 0 0
\(855\) 25.6282 + 45.8046i 0.0299745 + 0.0535726i
\(856\) 0 0
\(857\) 42.9674 + 74.4218i 0.0501370 + 0.0868399i 0.890005 0.455951i \(-0.150701\pi\)
−0.839868 + 0.542791i \(0.817368\pi\)
\(858\) 0 0
\(859\) −750.391 433.239i −0.873564 0.504352i −0.00503295 0.999987i \(-0.501602\pi\)
−0.868531 + 0.495635i \(0.834935\pi\)
\(860\) 0 0
\(861\) −127.753 + 464.241i −0.148378 + 0.539188i
\(862\) 0 0
\(863\) 651.682i 0.755136i −0.925982 0.377568i \(-0.876760\pi\)
0.925982 0.377568i \(-0.123240\pi\)
\(864\) 0 0
\(865\) 143.142 0.165482
\(866\) 0 0
\(867\) −564.153 155.248i −0.650696 0.179063i
\(868\) 0 0
\(869\) −906.076 + 1569.37i −1.04266 + 1.80595i
\(870\) 0 0
\(871\) −634.017 + 366.050i −0.727919 + 0.420264i
\(872\) 0 0
\(873\) 2.95961 219.510i 0.00339016 0.251444i
\(874\) 0 0
\(875\) 95.1323 54.9247i 0.108723 0.0627711i
\(876\) 0 0
\(877\) 359.003 621.811i 0.409353 0.709020i −0.585464 0.810698i \(-0.699088\pi\)
0.994817 + 0.101678i \(0.0324211\pi\)
\(878\) 0 0
\(879\) 12.4646 12.2977i 0.0141804 0.0139905i
\(880\) 0 0
\(881\) 292.378 0.331870 0.165935 0.986137i \(-0.446936\pi\)
0.165935 + 0.986137i \(0.446936\pi\)
\(882\) 0 0
\(883\) 507.123i 0.574318i −0.957883 0.287159i \(-0.907289\pi\)
0.957883 0.287159i \(-0.0927109\pi\)
\(884\) 0 0
\(885\) 157.745 41.1301i 0.178243 0.0464746i
\(886\) 0 0
\(887\) 222.320 + 128.356i 0.250642 + 0.144708i 0.620058 0.784556i \(-0.287109\pi\)
−0.369416 + 0.929264i \(0.620442\pi\)
\(888\) 0 0
\(889\) −158.405 274.366i −0.178184 0.308623i
\(890\) 0 0
\(891\) 1146.40 + 703.754i 1.28665 + 0.789848i
\(892\) 0 0
\(893\) 138.780 + 240.374i 0.155409 + 0.269176i
\(894\) 0 0
\(895\) −3.58896 2.07209i −0.00401001 0.00231518i
\(896\) 0 0
\(897\) −119.862 + 31.2525i −0.133626 + 0.0348411i
\(898\) 0 0
\(899\) 1040.08i 1.15693i
\(900\) 0 0
\(901\) −878.875 −0.975444
\(902\) 0 0
\(903\) 436.396 430.552i 0.483274 0.476802i
\(904\) 0 0
\(905\) 47.1620 81.6870i 0.0521127 0.0902619i
\(906\) 0 0
\(907\) −1341.24 + 774.365i −1.47877 + 0.853766i −0.999711 0.0240198i \(-0.992354\pi\)
−0.479054 + 0.877785i \(0.659020\pi\)
\(908\) 0 0
\(909\) 23.8131 1766.19i 0.0261971 1.94300i
\(910\) 0 0
\(911\) 465.815 268.938i 0.511322 0.295212i −0.222055 0.975034i \(-0.571276\pi\)
0.733377 + 0.679822i \(0.237943\pi\)
\(912\) 0 0
\(913\) 1088.29 1884.97i 1.19199 2.06459i
\(914\) 0 0
\(915\) 5.58342 + 1.53649i 0.00610209 + 0.00167922i
\(916\) 0 0
\(917\) 587.195 0.640343
\(918\) 0 0
\(919\) 1099.66i 1.19659i −0.801277 0.598294i \(-0.795845\pi\)
0.801277 0.598294i \(-0.204155\pi\)
\(920\) 0 0
\(921\) 295.877 1075.18i 0.321256 1.16741i
\(922\) 0 0
\(923\) −1636.04 944.568i −1.77252 1.02337i
\(924\) 0 0
\(925\) 494.662 + 856.780i 0.534770 + 0.926249i
\(926\) 0 0
\(927\) −530.129 947.485i −0.571876 1.02210i
\(928\) 0 0
\(929\) −97.6555 169.144i −0.105119 0.182071i 0.808668 0.588265i \(-0.200189\pi\)
−0.913787 + 0.406194i \(0.866856\pi\)
\(930\) 0 0
\(931\) 278.931 + 161.041i 0.299603 + 0.172976i
\(932\) 0 0
\(933\) 471.900 + 478.305i 0.505788 + 0.512653i
\(934\) 0 0
\(935\) 114.392i 0.122344i
\(936\) 0 0
\(937\) 1286.97 1.37350 0.686752 0.726892i \(-0.259036\pi\)
0.686752 + 0.726892i \(0.259036\pi\)
\(938\) 0 0
\(939\) 119.736 + 459.223i 0.127515 + 0.489055i
\(940\) 0 0
\(941\) 505.685 875.873i 0.537391 0.930789i −0.461652 0.887061i \(-0.652743\pi\)
0.999043 0.0437282i \(-0.0139236\pi\)
\(942\) 0 0
\(943\) −100.113 + 57.8003i −0.106164 + 0.0612941i
\(944\) 0 0
\(945\) 43.2207 41.5070i 0.0457362 0.0439228i
\(946\) 0 0
\(947\) −598.516 + 345.553i −0.632013 + 0.364893i −0.781531 0.623866i \(-0.785561\pi\)
0.149519 + 0.988759i \(0.452228\pi\)
\(948\) 0 0
\(949\) 350.340 606.807i 0.369168 0.639417i
\(950\) 0 0
\(951\) 312.492 + 1198.50i 0.328594 + 1.26025i
\(952\) 0 0
\(953\) 659.310 0.691826 0.345913 0.938267i \(-0.387569\pi\)
0.345913 + 0.938267i \(0.387569\pi\)
\(954\) 0 0
\(955\) 29.6086i 0.0310038i
\(956\) 0 0
\(957\) 1457.14 + 1476.92i 1.52261 + 1.54328i
\(958\) 0 0
\(959\) −169.467 97.8419i −0.176712 0.102025i
\(960\) 0 0
\(961\) −168.602 292.028i −0.175445 0.303879i
\(962\) 0 0
\(963\) 30.0427 50.4522i 0.0311970 0.0523907i
\(964\) 0 0
\(965\) −49.1689 85.1631i −0.0509522 0.0882519i
\(966\) 0 0
\(967\) 980.817 + 566.275i 1.01429 + 0.585600i 0.912444 0.409201i \(-0.134192\pi\)
0.101844 + 0.994800i \(0.467526\pi\)
\(968\) 0 0
\(969\) −63.3203 + 230.099i −0.0653461 + 0.237460i
\(970\) 0 0
\(971\) 277.255i 0.285536i −0.989756 0.142768i \(-0.954400\pi\)
0.989756 0.142768i \(-0.0456002\pi\)
\(972\) 0 0
\(973\) −146.348 −0.150409
\(974\) 0 0
\(975\) 1300.47 + 357.872i 1.33381 + 0.367048i
\(976\) 0 0
\(977\) −166.546 + 288.467i −0.170467 + 0.295257i −0.938583 0.345053i \(-0.887861\pi\)
0.768116 + 0.640310i \(0.221194\pi\)
\(978\) 0 0
\(979\) 547.824 316.286i 0.559575 0.323071i
\(980\) 0 0
\(981\) −294.059 175.103i −0.299754 0.178494i
\(982\) 0 0
\(983\) 1287.12 743.121i 1.30938 0.755973i 0.327390 0.944889i \(-0.393831\pi\)
0.981993 + 0.188916i \(0.0604975\pi\)
\(984\) 0 0
\(985\) −38.8778 + 67.3384i −0.0394699 + 0.0683639i
\(986\) 0 0
\(987\) 225.579 222.558i 0.228551 0.225490i
\(988\) 0 0
\(989\) 147.182 0.148819
\(990\) 0 0
\(991\) 17.1782i 0.0173343i −0.999962 0.00866713i \(-0.997241\pi\)
0.999962 0.00866713i \(-0.00275887\pi\)
\(992\) 0 0
\(993\) −425.497 + 110.943i −0.428496 + 0.111725i
\(994\) 0 0
\(995\) −53.5552 30.9201i −0.0538243 0.0310755i
\(996\) 0 0
\(997\) 737.655 + 1277.66i 0.739874 + 1.28150i 0.952552 + 0.304377i \(0.0984484\pi\)
−0.212677 + 0.977123i \(0.568218\pi\)
\(998\) 0 0
\(999\) 755.347 + 786.533i 0.756103 + 0.787320i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.3.o.d.319.4 8
3.2 odd 2 1728.3.o.e.1279.3 8
4.3 odd 2 576.3.o.f.319.1 8
8.3 odd 2 144.3.o.a.31.4 8
8.5 even 2 144.3.o.c.31.1 yes 8
9.2 odd 6 1728.3.o.f.127.3 8
9.7 even 3 576.3.o.f.511.1 8
12.11 even 2 1728.3.o.f.1279.3 8
24.5 odd 2 432.3.o.a.415.2 8
24.11 even 2 432.3.o.b.415.2 8
36.7 odd 6 inner 576.3.o.d.511.4 8
36.11 even 6 1728.3.o.e.127.3 8
72.5 odd 6 1296.3.g.k.1135.5 8
72.11 even 6 432.3.o.a.127.2 8
72.13 even 6 1296.3.g.j.1135.3 8
72.29 odd 6 432.3.o.b.127.2 8
72.43 odd 6 144.3.o.c.79.1 yes 8
72.59 even 6 1296.3.g.k.1135.6 8
72.61 even 6 144.3.o.a.79.4 yes 8
72.67 odd 6 1296.3.g.j.1135.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.3.o.a.31.4 8 8.3 odd 2
144.3.o.a.79.4 yes 8 72.61 even 6
144.3.o.c.31.1 yes 8 8.5 even 2
144.3.o.c.79.1 yes 8 72.43 odd 6
432.3.o.a.127.2 8 72.11 even 6
432.3.o.a.415.2 8 24.5 odd 2
432.3.o.b.127.2 8 72.29 odd 6
432.3.o.b.415.2 8 24.11 even 2
576.3.o.d.319.4 8 1.1 even 1 trivial
576.3.o.d.511.4 8 36.7 odd 6 inner
576.3.o.f.319.1 8 4.3 odd 2
576.3.o.f.511.1 8 9.7 even 3
1296.3.g.j.1135.3 8 72.13 even 6
1296.3.g.j.1135.4 8 72.67 odd 6
1296.3.g.k.1135.5 8 72.5 odd 6
1296.3.g.k.1135.6 8 72.59 even 6
1728.3.o.e.127.3 8 36.11 even 6
1728.3.o.e.1279.3 8 3.2 odd 2
1728.3.o.f.127.3 8 9.2 odd 6
1728.3.o.f.1279.3 8 12.11 even 2