Properties

Label 576.3.o.a.511.1
Level $576$
Weight $3$
Character 576.511
Analytic conductor $15.695$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,3,Mod(319,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.319"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 511.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 576.511
Dual form 576.3.o.a.319.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 2.59808i) q^{3} +(2.00000 + 3.46410i) q^{5} +(3.00000 + 1.73205i) q^{7} +(-4.50000 - 7.79423i) q^{9} +(-10.5000 - 6.06218i) q^{11} +(-11.0000 - 19.0526i) q^{13} -12.0000 q^{15} -11.0000 q^{17} +15.5885i q^{19} +(-9.00000 + 5.19615i) q^{21} +(-21.0000 + 12.1244i) q^{23} +(4.50000 - 7.79423i) q^{25} +27.0000 q^{27} +(17.0000 - 29.4449i) q^{29} +(-6.00000 + 3.46410i) q^{31} +(31.5000 - 18.1865i) q^{33} +13.8564i q^{35} +16.0000 q^{37} +66.0000 q^{39} +(-6.50000 - 11.2583i) q^{41} +(-43.5000 - 25.1147i) q^{43} +(18.0000 - 31.1769i) q^{45} +(-3.00000 - 1.73205i) q^{47} +(-18.5000 - 32.0429i) q^{49} +(16.5000 - 28.5788i) q^{51} -52.0000 q^{53} -48.4974i q^{55} +(-40.5000 - 23.3827i) q^{57} +(-46.5000 + 26.8468i) q^{59} +(-8.00000 + 13.8564i) q^{61} -31.1769i q^{63} +(44.0000 - 76.2102i) q^{65} +(100.500 - 58.0237i) q^{67} -72.7461i q^{69} -25.0000 q^{73} +(13.5000 + 23.3827i) q^{75} +(-21.0000 - 36.3731i) q^{77} +(-24.0000 - 13.8564i) q^{79} +(-40.5000 + 70.1481i) q^{81} +(30.0000 + 17.3205i) q^{83} +(-22.0000 - 38.1051i) q^{85} +(51.0000 + 88.3346i) q^{87} -2.00000 q^{89} -76.2102i q^{91} -20.7846i q^{93} +(-54.0000 + 31.1769i) q^{95} +(21.5000 - 37.2391i) q^{97} +109.119i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} + 4 q^{5} + 6 q^{7} - 9 q^{9} - 21 q^{11} - 22 q^{13} - 24 q^{15} - 22 q^{17} - 18 q^{21} - 42 q^{23} + 9 q^{25} + 54 q^{27} + 34 q^{29} - 12 q^{31} + 63 q^{33} + 32 q^{37} + 132 q^{39} - 13 q^{41}+ \cdots + 43 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 2.59808i −0.500000 + 0.866025i
\(4\) 0 0
\(5\) 2.00000 + 3.46410i 0.400000 + 0.692820i 0.993725 0.111847i \(-0.0356768\pi\)
−0.593725 + 0.804668i \(0.702343\pi\)
\(6\) 0 0
\(7\) 3.00000 + 1.73205i 0.428571 + 0.247436i 0.698738 0.715378i \(-0.253745\pi\)
−0.270166 + 0.962814i \(0.587079\pi\)
\(8\) 0 0
\(9\) −4.50000 7.79423i −0.500000 0.866025i
\(10\) 0 0
\(11\) −10.5000 6.06218i −0.954545 0.551107i −0.0600555 0.998195i \(-0.519128\pi\)
−0.894490 + 0.447088i \(0.852461\pi\)
\(12\) 0 0
\(13\) −11.0000 19.0526i −0.846154 1.46558i −0.884615 0.466321i \(-0.845579\pi\)
0.0384615 0.999260i \(-0.487754\pi\)
\(14\) 0 0
\(15\) −12.0000 −0.800000
\(16\) 0 0
\(17\) −11.0000 −0.647059 −0.323529 0.946218i \(-0.604869\pi\)
−0.323529 + 0.946218i \(0.604869\pi\)
\(18\) 0 0
\(19\) 15.5885i 0.820445i 0.911985 + 0.410223i \(0.134549\pi\)
−0.911985 + 0.410223i \(0.865451\pi\)
\(20\) 0 0
\(21\) −9.00000 + 5.19615i −0.428571 + 0.247436i
\(22\) 0 0
\(23\) −21.0000 + 12.1244i −0.913043 + 0.527146i −0.881409 0.472354i \(-0.843405\pi\)
−0.0316343 + 0.999500i \(0.510071\pi\)
\(24\) 0 0
\(25\) 4.50000 7.79423i 0.180000 0.311769i
\(26\) 0 0
\(27\) 27.0000 1.00000
\(28\) 0 0
\(29\) 17.0000 29.4449i 0.586207 1.01534i −0.408517 0.912751i \(-0.633954\pi\)
0.994724 0.102589i \(-0.0327128\pi\)
\(30\) 0 0
\(31\) −6.00000 + 3.46410i −0.193548 + 0.111745i −0.593643 0.804729i \(-0.702311\pi\)
0.400094 + 0.916474i \(0.368977\pi\)
\(32\) 0 0
\(33\) 31.5000 18.1865i 0.954545 0.551107i
\(34\) 0 0
\(35\) 13.8564i 0.395897i
\(36\) 0 0
\(37\) 16.0000 0.432432 0.216216 0.976346i \(-0.430628\pi\)
0.216216 + 0.976346i \(0.430628\pi\)
\(38\) 0 0
\(39\) 66.0000 1.69231
\(40\) 0 0
\(41\) −6.50000 11.2583i −0.158537 0.274593i 0.775805 0.630973i \(-0.217344\pi\)
−0.934341 + 0.356380i \(0.884011\pi\)
\(42\) 0 0
\(43\) −43.5000 25.1147i −1.01163 0.584064i −0.0999600 0.994991i \(-0.531871\pi\)
−0.911668 + 0.410928i \(0.865205\pi\)
\(44\) 0 0
\(45\) 18.0000 31.1769i 0.400000 0.692820i
\(46\) 0 0
\(47\) −3.00000 1.73205i −0.0638298 0.0368521i 0.467745 0.883863i \(-0.345066\pi\)
−0.531575 + 0.847011i \(0.678400\pi\)
\(48\) 0 0
\(49\) −18.5000 32.0429i −0.377551 0.653938i
\(50\) 0 0
\(51\) 16.5000 28.5788i 0.323529 0.560369i
\(52\) 0 0
\(53\) −52.0000 −0.981132 −0.490566 0.871404i \(-0.663210\pi\)
−0.490566 + 0.871404i \(0.663210\pi\)
\(54\) 0 0
\(55\) 48.4974i 0.881771i
\(56\) 0 0
\(57\) −40.5000 23.3827i −0.710526 0.410223i
\(58\) 0 0
\(59\) −46.5000 + 26.8468i −0.788136 + 0.455030i −0.839306 0.543660i \(-0.817038\pi\)
0.0511702 + 0.998690i \(0.483705\pi\)
\(60\) 0 0
\(61\) −8.00000 + 13.8564i −0.131148 + 0.227154i −0.924119 0.382104i \(-0.875199\pi\)
0.792972 + 0.609259i \(0.208533\pi\)
\(62\) 0 0
\(63\) 31.1769i 0.494872i
\(64\) 0 0
\(65\) 44.0000 76.2102i 0.676923 1.17247i
\(66\) 0 0
\(67\) 100.500 58.0237i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(68\) 0 0
\(69\) 72.7461i 1.05429i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −25.0000 −0.342466 −0.171233 0.985231i \(-0.554775\pi\)
−0.171233 + 0.985231i \(0.554775\pi\)
\(74\) 0 0
\(75\) 13.5000 + 23.3827i 0.180000 + 0.311769i
\(76\) 0 0
\(77\) −21.0000 36.3731i −0.272727 0.472377i
\(78\) 0 0
\(79\) −24.0000 13.8564i −0.303797 0.175398i 0.340350 0.940299i \(-0.389454\pi\)
−0.644148 + 0.764901i \(0.722788\pi\)
\(80\) 0 0
\(81\) −40.5000 + 70.1481i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 30.0000 + 17.3205i 0.361446 + 0.208681i 0.669715 0.742618i \(-0.266416\pi\)
−0.308269 + 0.951299i \(0.599750\pi\)
\(84\) 0 0
\(85\) −22.0000 38.1051i −0.258824 0.448296i
\(86\) 0 0
\(87\) 51.0000 + 88.3346i 0.586207 + 1.01534i
\(88\) 0 0
\(89\) −2.00000 −0.0224719 −0.0112360 0.999937i \(-0.503577\pi\)
−0.0112360 + 0.999937i \(0.503577\pi\)
\(90\) 0 0
\(91\) 76.2102i 0.837475i
\(92\) 0 0
\(93\) 20.7846i 0.223490i
\(94\) 0 0
\(95\) −54.0000 + 31.1769i −0.568421 + 0.328178i
\(96\) 0 0
\(97\) 21.5000 37.2391i 0.221649 0.383908i −0.733659 0.679517i \(-0.762189\pi\)
0.955309 + 0.295609i \(0.0955226\pi\)
\(98\) 0 0
\(99\) 109.119i 1.10221i
\(100\) 0 0
\(101\) −10.0000 + 17.3205i −0.0990099 + 0.171490i −0.911275 0.411798i \(-0.864901\pi\)
0.812265 + 0.583288i \(0.198234\pi\)
\(102\) 0 0
\(103\) 21.0000 12.1244i 0.203883 0.117712i −0.394582 0.918861i \(-0.629111\pi\)
0.598466 + 0.801148i \(0.295777\pi\)
\(104\) 0 0
\(105\) −36.0000 20.7846i −0.342857 0.197949i
\(106\) 0 0
\(107\) 15.5885i 0.145687i 0.997343 + 0.0728433i \(0.0232073\pi\)
−0.997343 + 0.0728433i \(0.976793\pi\)
\(108\) 0 0
\(109\) 88.0000 0.807339 0.403670 0.914905i \(-0.367734\pi\)
0.403670 + 0.914905i \(0.367734\pi\)
\(110\) 0 0
\(111\) −24.0000 + 41.5692i −0.216216 + 0.374497i
\(112\) 0 0
\(113\) 25.0000 + 43.3013i 0.221239 + 0.383197i 0.955184 0.296011i \(-0.0956566\pi\)
−0.733946 + 0.679208i \(0.762323\pi\)
\(114\) 0 0
\(115\) −84.0000 48.4974i −0.730435 0.421717i
\(116\) 0 0
\(117\) −99.0000 + 171.473i −0.846154 + 1.46558i
\(118\) 0 0
\(119\) −33.0000 19.0526i −0.277311 0.160106i
\(120\) 0 0
\(121\) 13.0000 + 22.5167i 0.107438 + 0.186088i
\(122\) 0 0
\(123\) 39.0000 0.317073
\(124\) 0 0
\(125\) 136.000 1.08800
\(126\) 0 0
\(127\) 218.238i 1.71841i −0.511629 0.859206i \(-0.670958\pi\)
0.511629 0.859206i \(-0.329042\pi\)
\(128\) 0 0
\(129\) 130.500 75.3442i 1.01163 0.584064i
\(130\) 0 0
\(131\) −168.000 + 96.9948i −1.28244 + 0.740419i −0.977294 0.211886i \(-0.932039\pi\)
−0.305148 + 0.952305i \(0.598706\pi\)
\(132\) 0 0
\(133\) −27.0000 + 46.7654i −0.203008 + 0.351619i
\(134\) 0 0
\(135\) 54.0000 + 93.5307i 0.400000 + 0.692820i
\(136\) 0 0
\(137\) −84.5000 + 146.358i −0.616788 + 1.06831i 0.373280 + 0.927719i \(0.378233\pi\)
−0.990068 + 0.140590i \(0.955100\pi\)
\(138\) 0 0
\(139\) −169.500 + 97.8609i −1.21942 + 0.704035i −0.964795 0.263004i \(-0.915287\pi\)
−0.254630 + 0.967039i \(0.581954\pi\)
\(140\) 0 0
\(141\) 9.00000 5.19615i 0.0638298 0.0368521i
\(142\) 0 0
\(143\) 266.736i 1.86529i
\(144\) 0 0
\(145\) 136.000 0.937931
\(146\) 0 0
\(147\) 111.000 0.755102
\(148\) 0 0
\(149\) 65.0000 + 112.583i 0.436242 + 0.755593i 0.997396 0.0721185i \(-0.0229760\pi\)
−0.561154 + 0.827711i \(0.689643\pi\)
\(150\) 0 0
\(151\) −105.000 60.6218i −0.695364 0.401469i 0.110254 0.993903i \(-0.464833\pi\)
−0.805618 + 0.592435i \(0.798167\pi\)
\(152\) 0 0
\(153\) 49.5000 + 85.7365i 0.323529 + 0.560369i
\(154\) 0 0
\(155\) −24.0000 13.8564i −0.154839 0.0893962i
\(156\) 0 0
\(157\) −2.00000 3.46410i −0.0127389 0.0220643i 0.859586 0.510992i \(-0.170722\pi\)
−0.872325 + 0.488927i \(0.837388\pi\)
\(158\) 0 0
\(159\) 78.0000 135.100i 0.490566 0.849685i
\(160\) 0 0
\(161\) −84.0000 −0.521739
\(162\) 0 0
\(163\) 311.769i 1.91269i −0.292233 0.956347i \(-0.594398\pi\)
0.292233 0.956347i \(-0.405602\pi\)
\(164\) 0 0
\(165\) 126.000 + 72.7461i 0.763636 + 0.440886i
\(166\) 0 0
\(167\) −156.000 + 90.0666i −0.934132 + 0.539321i −0.888116 0.459620i \(-0.847986\pi\)
−0.0460158 + 0.998941i \(0.514652\pi\)
\(168\) 0 0
\(169\) −157.500 + 272.798i −0.931953 + 1.61419i
\(170\) 0 0
\(171\) 121.500 70.1481i 0.710526 0.410223i
\(172\) 0 0
\(173\) −1.00000 + 1.73205i −0.00578035 + 0.0100119i −0.868901 0.494986i \(-0.835173\pi\)
0.863121 + 0.504998i \(0.168507\pi\)
\(174\) 0 0
\(175\) 27.0000 15.5885i 0.154286 0.0890769i
\(176\) 0 0
\(177\) 161.081i 0.910061i
\(178\) 0 0
\(179\) 187.061i 1.04504i 0.852628 + 0.522518i \(0.175007\pi\)
−0.852628 + 0.522518i \(0.824993\pi\)
\(180\) 0 0
\(181\) −254.000 −1.40331 −0.701657 0.712514i \(-0.747556\pi\)
−0.701657 + 0.712514i \(0.747556\pi\)
\(182\) 0 0
\(183\) −24.0000 41.5692i −0.131148 0.227154i
\(184\) 0 0
\(185\) 32.0000 + 55.4256i 0.172973 + 0.299598i
\(186\) 0 0
\(187\) 115.500 + 66.6840i 0.617647 + 0.356599i
\(188\) 0 0
\(189\) 81.0000 + 46.7654i 0.428571 + 0.247436i
\(190\) 0 0
\(191\) −3.00000 1.73205i −0.0157068 0.00906833i 0.492126 0.870524i \(-0.336220\pi\)
−0.507833 + 0.861456i \(0.669553\pi\)
\(192\) 0 0
\(193\) 33.5000 + 58.0237i 0.173575 + 0.300641i 0.939667 0.342090i \(-0.111135\pi\)
−0.766092 + 0.642731i \(0.777801\pi\)
\(194\) 0 0
\(195\) 132.000 + 228.631i 0.676923 + 1.17247i
\(196\) 0 0
\(197\) −268.000 −1.36041 −0.680203 0.733024i \(-0.738108\pi\)
−0.680203 + 0.733024i \(0.738108\pi\)
\(198\) 0 0
\(199\) 31.1769i 0.156668i 0.996927 + 0.0783340i \(0.0249600\pi\)
−0.996927 + 0.0783340i \(0.975040\pi\)
\(200\) 0 0
\(201\) 348.142i 1.73205i
\(202\) 0 0
\(203\) 102.000 58.8897i 0.502463 0.290097i
\(204\) 0 0
\(205\) 26.0000 45.0333i 0.126829 0.219675i
\(206\) 0 0
\(207\) 189.000 + 109.119i 0.913043 + 0.527146i
\(208\) 0 0
\(209\) 94.5000 163.679i 0.452153 0.783152i
\(210\) 0 0
\(211\) 114.000 65.8179i 0.540284 0.311933i −0.204910 0.978781i \(-0.565690\pi\)
0.745194 + 0.666848i \(0.232357\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 200.918i 0.934502i
\(216\) 0 0
\(217\) −24.0000 −0.110599
\(218\) 0 0
\(219\) 37.5000 64.9519i 0.171233 0.296584i
\(220\) 0 0
\(221\) 121.000 + 209.578i 0.547511 + 0.948317i
\(222\) 0 0
\(223\) −51.0000 29.4449i −0.228700 0.132040i 0.381272 0.924463i \(-0.375486\pi\)
−0.609972 + 0.792423i \(0.708819\pi\)
\(224\) 0 0
\(225\) −81.0000 −0.360000
\(226\) 0 0
\(227\) −388.500 224.301i −1.71145 0.988108i −0.932607 0.360894i \(-0.882471\pi\)
−0.778847 0.627214i \(-0.784195\pi\)
\(228\) 0 0
\(229\) 205.000 + 355.070i 0.895197 + 1.55053i 0.833561 + 0.552427i \(0.186298\pi\)
0.0616353 + 0.998099i \(0.480368\pi\)
\(230\) 0 0
\(231\) 126.000 0.545455
\(232\) 0 0
\(233\) −65.0000 −0.278970 −0.139485 0.990224i \(-0.544545\pi\)
−0.139485 + 0.990224i \(0.544545\pi\)
\(234\) 0 0
\(235\) 13.8564i 0.0589634i
\(236\) 0 0
\(237\) 72.0000 41.5692i 0.303797 0.175398i
\(238\) 0 0
\(239\) 33.0000 19.0526i 0.138075 0.0797178i −0.429371 0.903128i \(-0.641265\pi\)
0.567446 + 0.823410i \(0.307931\pi\)
\(240\) 0 0
\(241\) 111.500 193.124i 0.462656 0.801343i −0.536437 0.843941i \(-0.680230\pi\)
0.999092 + 0.0425975i \(0.0135633\pi\)
\(242\) 0 0
\(243\) −121.500 210.444i −0.500000 0.866025i
\(244\) 0 0
\(245\) 74.0000 128.172i 0.302041 0.523150i
\(246\) 0 0
\(247\) 297.000 171.473i 1.20243 0.694223i
\(248\) 0 0
\(249\) −90.0000 + 51.9615i −0.361446 + 0.208681i
\(250\) 0 0
\(251\) 109.119i 0.434738i 0.976090 + 0.217369i \(0.0697475\pi\)
−0.976090 + 0.217369i \(0.930253\pi\)
\(252\) 0 0
\(253\) 294.000 1.16206
\(254\) 0 0
\(255\) 132.000 0.517647
\(256\) 0 0
\(257\) 218.500 + 378.453i 0.850195 + 1.47258i 0.881032 + 0.473056i \(0.156849\pi\)
−0.0308379 + 0.999524i \(0.509818\pi\)
\(258\) 0 0
\(259\) 48.0000 + 27.7128i 0.185328 + 0.106999i
\(260\) 0 0
\(261\) −306.000 −1.17241
\(262\) 0 0
\(263\) −273.000 157.617i −1.03802 0.599303i −0.118750 0.992924i \(-0.537889\pi\)
−0.919273 + 0.393621i \(0.871222\pi\)
\(264\) 0 0
\(265\) −104.000 180.133i −0.392453 0.679748i
\(266\) 0 0
\(267\) 3.00000 5.19615i 0.0112360 0.0194612i
\(268\) 0 0
\(269\) −304.000 −1.13011 −0.565056 0.825053i \(-0.691145\pi\)
−0.565056 + 0.825053i \(0.691145\pi\)
\(270\) 0 0
\(271\) 311.769i 1.15044i 0.817999 + 0.575220i \(0.195083\pi\)
−0.817999 + 0.575220i \(0.804917\pi\)
\(272\) 0 0
\(273\) 198.000 + 114.315i 0.725275 + 0.418738i
\(274\) 0 0
\(275\) −94.5000 + 54.5596i −0.343636 + 0.198399i
\(276\) 0 0
\(277\) −17.0000 + 29.4449i −0.0613718 + 0.106299i −0.895079 0.445908i \(-0.852881\pi\)
0.833707 + 0.552207i \(0.186214\pi\)
\(278\) 0 0
\(279\) 54.0000 + 31.1769i 0.193548 + 0.111745i
\(280\) 0 0
\(281\) 109.000 188.794i 0.387900 0.671863i −0.604267 0.796782i \(-0.706534\pi\)
0.992167 + 0.124919i \(0.0398671\pi\)
\(282\) 0 0
\(283\) 6.00000 3.46410i 0.0212014 0.0122406i −0.489362 0.872081i \(-0.662770\pi\)
0.510563 + 0.859840i \(0.329437\pi\)
\(284\) 0 0
\(285\) 187.061i 0.656356i
\(286\) 0 0
\(287\) 45.0333i 0.156911i
\(288\) 0 0
\(289\) −168.000 −0.581315
\(290\) 0 0
\(291\) 64.5000 + 111.717i 0.221649 + 0.383908i
\(292\) 0 0
\(293\) 101.000 + 174.937i 0.344710 + 0.597055i 0.985301 0.170827i \(-0.0546440\pi\)
−0.640591 + 0.767882i \(0.721311\pi\)
\(294\) 0 0
\(295\) −186.000 107.387i −0.630508 0.364024i
\(296\) 0 0
\(297\) −283.500 163.679i −0.954545 0.551107i
\(298\) 0 0
\(299\) 462.000 + 266.736i 1.54515 + 0.892093i
\(300\) 0 0
\(301\) −87.0000 150.688i −0.289037 0.500626i
\(302\) 0 0
\(303\) −30.0000 51.9615i −0.0990099 0.171490i
\(304\) 0 0
\(305\) −64.0000 −0.209836
\(306\) 0 0
\(307\) 109.119i 0.355437i 0.984081 + 0.177719i \(0.0568717\pi\)
−0.984081 + 0.177719i \(0.943128\pi\)
\(308\) 0 0
\(309\) 72.7461i 0.235424i
\(310\) 0 0
\(311\) −237.000 + 136.832i −0.762058 + 0.439974i −0.830034 0.557713i \(-0.811679\pi\)
0.0679762 + 0.997687i \(0.478346\pi\)
\(312\) 0 0
\(313\) 39.5000 68.4160i 0.126198 0.218581i −0.796003 0.605293i \(-0.793056\pi\)
0.922201 + 0.386712i \(0.126389\pi\)
\(314\) 0 0
\(315\) 108.000 62.3538i 0.342857 0.197949i
\(316\) 0 0
\(317\) 251.000 434.745i 0.791798 1.37143i −0.133054 0.991109i \(-0.542479\pi\)
0.924853 0.380326i \(-0.124188\pi\)
\(318\) 0 0
\(319\) −357.000 + 206.114i −1.11912 + 0.646126i
\(320\) 0 0
\(321\) −40.5000 23.3827i −0.126168 0.0728433i
\(322\) 0 0
\(323\) 171.473i 0.530876i
\(324\) 0 0
\(325\) −198.000 −0.609231
\(326\) 0 0
\(327\) −132.000 + 228.631i −0.403670 + 0.699176i
\(328\) 0 0
\(329\) −6.00000 10.3923i −0.0182371 0.0315876i
\(330\) 0 0
\(331\) −354.000 204.382i −1.06949 0.617468i −0.141445 0.989946i \(-0.545175\pi\)
−0.928041 + 0.372478i \(0.878508\pi\)
\(332\) 0 0
\(333\) −72.0000 124.708i −0.216216 0.374497i
\(334\) 0 0
\(335\) 402.000 + 232.095i 1.20000 + 0.692820i
\(336\) 0 0
\(337\) 168.500 + 291.851i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) 0 0
\(339\) −150.000 −0.442478
\(340\) 0 0
\(341\) 84.0000 0.246334
\(342\) 0 0
\(343\) 297.913i 0.868550i
\(344\) 0 0
\(345\) 252.000 145.492i 0.730435 0.421717i
\(346\) 0 0
\(347\) −235.500 + 135.966i −0.678674 + 0.391833i −0.799355 0.600859i \(-0.794826\pi\)
0.120681 + 0.992691i \(0.461492\pi\)
\(348\) 0 0
\(349\) 136.000 235.559i 0.389685 0.674954i −0.602722 0.797951i \(-0.705917\pi\)
0.992407 + 0.122997i \(0.0392506\pi\)
\(350\) 0 0
\(351\) −297.000 514.419i −0.846154 1.46558i
\(352\) 0 0
\(353\) 230.500 399.238i 0.652975 1.13099i −0.329423 0.944182i \(-0.606854\pi\)
0.982397 0.186803i \(-0.0598125\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 99.0000 57.1577i 0.277311 0.160106i
\(358\) 0 0
\(359\) 530.008i 1.47634i 0.674612 + 0.738172i \(0.264311\pi\)
−0.674612 + 0.738172i \(0.735689\pi\)
\(360\) 0 0
\(361\) 118.000 0.326870
\(362\) 0 0
\(363\) −78.0000 −0.214876
\(364\) 0 0
\(365\) −50.0000 86.6025i −0.136986 0.237267i
\(366\) 0 0
\(367\) 84.0000 + 48.4974i 0.228883 + 0.132146i 0.610057 0.792358i \(-0.291147\pi\)
−0.381174 + 0.924503i \(0.624480\pi\)
\(368\) 0 0
\(369\) −58.5000 + 101.325i −0.158537 + 0.274593i
\(370\) 0 0
\(371\) −156.000 90.0666i −0.420485 0.242767i
\(372\) 0 0
\(373\) −173.000 299.645i −0.463807 0.803337i 0.535340 0.844637i \(-0.320184\pi\)
−0.999147 + 0.0412995i \(0.986850\pi\)
\(374\) 0 0
\(375\) −204.000 + 353.338i −0.544000 + 0.942236i
\(376\) 0 0
\(377\) −748.000 −1.98408
\(378\) 0 0
\(379\) 327.358i 0.863740i 0.901936 + 0.431870i \(0.142146\pi\)
−0.901936 + 0.431870i \(0.857854\pi\)
\(380\) 0 0
\(381\) 567.000 + 327.358i 1.48819 + 0.859206i
\(382\) 0 0
\(383\) 546.000 315.233i 1.42559 0.823063i 0.428819 0.903390i \(-0.358930\pi\)
0.996769 + 0.0803272i \(0.0255965\pi\)
\(384\) 0 0
\(385\) 84.0000 145.492i 0.218182 0.377902i
\(386\) 0 0
\(387\) 452.065i 1.16813i
\(388\) 0 0
\(389\) −73.0000 + 126.440i −0.187661 + 0.325038i −0.944470 0.328598i \(-0.893424\pi\)
0.756809 + 0.653636i \(0.226757\pi\)
\(390\) 0 0
\(391\) 231.000 133.368i 0.590793 0.341094i
\(392\) 0 0
\(393\) 581.969i 1.48084i
\(394\) 0 0
\(395\) 110.851i 0.280636i
\(396\) 0 0
\(397\) −488.000 −1.22922 −0.614610 0.788831i \(-0.710686\pi\)
−0.614610 + 0.788831i \(0.710686\pi\)
\(398\) 0 0
\(399\) −81.0000 140.296i −0.203008 0.351619i
\(400\) 0 0
\(401\) −222.500 385.381i −0.554863 0.961051i −0.997914 0.0645544i \(-0.979437\pi\)
0.443051 0.896496i \(-0.353896\pi\)
\(402\) 0 0
\(403\) 132.000 + 76.2102i 0.327543 + 0.189107i
\(404\) 0 0
\(405\) −324.000 −0.800000
\(406\) 0 0
\(407\) −168.000 96.9948i −0.412776 0.238317i
\(408\) 0 0
\(409\) 33.5000 + 58.0237i 0.0819071 + 0.141867i 0.904069 0.427386i \(-0.140566\pi\)
−0.822162 + 0.569254i \(0.807232\pi\)
\(410\) 0 0
\(411\) −253.500 439.075i −0.616788 1.06831i
\(412\) 0 0
\(413\) −186.000 −0.450363
\(414\) 0 0
\(415\) 138.564i 0.333889i
\(416\) 0 0
\(417\) 587.165i 1.40807i
\(418\) 0 0
\(419\) 534.000 308.305i 1.27446 0.735812i 0.298638 0.954366i \(-0.403468\pi\)
0.975825 + 0.218555i \(0.0701342\pi\)
\(420\) 0 0
\(421\) 136.000 235.559i 0.323040 0.559522i −0.658073 0.752954i \(-0.728628\pi\)
0.981114 + 0.193431i \(0.0619617\pi\)
\(422\) 0 0
\(423\) 31.1769i 0.0737043i
\(424\) 0 0
\(425\) −49.5000 + 85.7365i −0.116471 + 0.201733i
\(426\) 0 0
\(427\) −48.0000 + 27.7128i −0.112412 + 0.0649012i
\(428\) 0 0
\(429\) −693.000 400.104i −1.61538 0.932643i
\(430\) 0 0
\(431\) 405.300i 0.940371i −0.882568 0.470185i \(-0.844187\pi\)
0.882568 0.470185i \(-0.155813\pi\)
\(432\) 0 0
\(433\) −439.000 −1.01386 −0.506928 0.861988i \(-0.669219\pi\)
−0.506928 + 0.861988i \(0.669219\pi\)
\(434\) 0 0
\(435\) −204.000 + 353.338i −0.468966 + 0.812272i
\(436\) 0 0
\(437\) −189.000 327.358i −0.432494 0.749102i
\(438\) 0 0
\(439\) 732.000 + 422.620i 1.66743 + 0.962689i 0.969018 + 0.246989i \(0.0794410\pi\)
0.698408 + 0.715700i \(0.253892\pi\)
\(440\) 0 0
\(441\) −166.500 + 288.386i −0.377551 + 0.653938i
\(442\) 0 0
\(443\) 286.500 + 165.411i 0.646727 + 0.373388i 0.787201 0.616696i \(-0.211529\pi\)
−0.140474 + 0.990084i \(0.544863\pi\)
\(444\) 0 0
\(445\) −4.00000 6.92820i −0.00898876 0.0155690i
\(446\) 0 0
\(447\) −390.000 −0.872483
\(448\) 0 0
\(449\) −47.0000 −0.104677 −0.0523385 0.998629i \(-0.516667\pi\)
−0.0523385 + 0.998629i \(0.516667\pi\)
\(450\) 0 0
\(451\) 157.617i 0.349483i
\(452\) 0 0
\(453\) 315.000 181.865i 0.695364 0.401469i
\(454\) 0 0
\(455\) 264.000 152.420i 0.580220 0.334990i
\(456\) 0 0
\(457\) 165.500 286.654i 0.362144 0.627253i −0.626169 0.779687i \(-0.715378\pi\)
0.988314 + 0.152435i \(0.0487114\pi\)
\(458\) 0 0
\(459\) −297.000 −0.647059
\(460\) 0 0
\(461\) 269.000 465.922i 0.583514 1.01068i −0.411545 0.911390i \(-0.635011\pi\)
0.995059 0.0992865i \(-0.0316560\pi\)
\(462\) 0 0
\(463\) −492.000 + 284.056i −1.06263 + 0.613513i −0.926160 0.377131i \(-0.876911\pi\)
−0.136475 + 0.990644i \(0.543577\pi\)
\(464\) 0 0
\(465\) 72.0000 41.5692i 0.154839 0.0893962i
\(466\) 0 0
\(467\) 639.127i 1.36858i −0.729210 0.684290i \(-0.760112\pi\)
0.729210 0.684290i \(-0.239888\pi\)
\(468\) 0 0
\(469\) 402.000 0.857143
\(470\) 0 0
\(471\) 12.0000 0.0254777
\(472\) 0 0
\(473\) 304.500 + 527.409i 0.643763 + 1.11503i
\(474\) 0 0
\(475\) 121.500 + 70.1481i 0.255789 + 0.147680i
\(476\) 0 0
\(477\) 234.000 + 405.300i 0.490566 + 0.849685i
\(478\) 0 0
\(479\) 105.000 + 60.6218i 0.219207 + 0.126559i 0.605583 0.795782i \(-0.292940\pi\)
−0.386376 + 0.922341i \(0.626273\pi\)
\(480\) 0 0
\(481\) −176.000 304.841i −0.365904 0.633765i
\(482\) 0 0
\(483\) 126.000 218.238i 0.260870 0.451839i
\(484\) 0 0
\(485\) 172.000 0.354639
\(486\) 0 0
\(487\) 405.300i 0.832238i −0.909310 0.416119i \(-0.863390\pi\)
0.909310 0.416119i \(-0.136610\pi\)
\(488\) 0 0
\(489\) 810.000 + 467.654i 1.65644 + 0.956347i
\(490\) 0 0
\(491\) 628.500 362.865i 1.28004 0.739032i 0.303185 0.952932i \(-0.401950\pi\)
0.976856 + 0.213900i \(0.0686166\pi\)
\(492\) 0 0
\(493\) −187.000 + 323.894i −0.379310 + 0.656985i
\(494\) 0 0
\(495\) −378.000 + 218.238i −0.763636 + 0.440886i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 451.500 260.674i 0.904810 0.522392i 0.0260521 0.999661i \(-0.491706\pi\)
0.878758 + 0.477269i \(0.158373\pi\)
\(500\) 0 0
\(501\) 540.400i 1.07864i
\(502\) 0 0
\(503\) 872.954i 1.73549i −0.497006 0.867747i \(-0.665567\pi\)
0.497006 0.867747i \(-0.334433\pi\)
\(504\) 0 0
\(505\) −80.0000 −0.158416
\(506\) 0 0
\(507\) −472.500 818.394i −0.931953 1.61419i
\(508\) 0 0
\(509\) 380.000 + 658.179i 0.746562 + 1.29308i 0.949461 + 0.313884i \(0.101630\pi\)
−0.202900 + 0.979200i \(0.565037\pi\)
\(510\) 0 0
\(511\) −75.0000 43.3013i −0.146771 0.0847383i
\(512\) 0 0
\(513\) 420.888i 0.820445i
\(514\) 0 0
\(515\) 84.0000 + 48.4974i 0.163107 + 0.0941698i
\(516\) 0 0
\(517\) 21.0000 + 36.3731i 0.0406190 + 0.0703541i
\(518\) 0 0
\(519\) −3.00000 5.19615i −0.00578035 0.0100119i
\(520\) 0 0
\(521\) 745.000 1.42994 0.714971 0.699154i \(-0.246440\pi\)
0.714971 + 0.699154i \(0.246440\pi\)
\(522\) 0 0
\(523\) 561.184i 1.07301i 0.843897 + 0.536505i \(0.180256\pi\)
−0.843897 + 0.536505i \(0.819744\pi\)
\(524\) 0 0
\(525\) 93.5307i 0.178154i
\(526\) 0 0
\(527\) 66.0000 38.1051i 0.125237 0.0723057i
\(528\) 0 0
\(529\) 29.5000 51.0955i 0.0557656 0.0965888i
\(530\) 0 0
\(531\) 418.500 + 241.621i 0.788136 + 0.455030i
\(532\) 0 0
\(533\) −143.000 + 247.683i −0.268293 + 0.464697i
\(534\) 0 0
\(535\) −54.0000 + 31.1769i −0.100935 + 0.0582746i
\(536\) 0 0
\(537\) −486.000 280.592i −0.905028 0.522518i
\(538\) 0 0
\(539\) 448.601i 0.832284i
\(540\) 0 0
\(541\) 520.000 0.961183 0.480591 0.876945i \(-0.340422\pi\)
0.480591 + 0.876945i \(0.340422\pi\)
\(542\) 0 0
\(543\) 381.000 659.911i 0.701657 1.21531i
\(544\) 0 0
\(545\) 176.000 + 304.841i 0.322936 + 0.559341i
\(546\) 0 0
\(547\) 334.500 + 193.124i 0.611517 + 0.353060i 0.773559 0.633724i \(-0.218475\pi\)
−0.162042 + 0.986784i \(0.551808\pi\)
\(548\) 0 0
\(549\) 144.000 0.262295
\(550\) 0 0
\(551\) 459.000 + 265.004i 0.833031 + 0.480951i
\(552\) 0 0
\(553\) −48.0000 83.1384i −0.0867993 0.150341i
\(554\) 0 0
\(555\) −192.000 −0.345946
\(556\) 0 0
\(557\) −934.000 −1.67684 −0.838420 0.545025i \(-0.816520\pi\)
−0.838420 + 0.545025i \(0.816520\pi\)
\(558\) 0 0
\(559\) 1105.05i 1.97683i
\(560\) 0 0
\(561\) −346.500 + 200.052i −0.617647 + 0.356599i
\(562\) 0 0
\(563\) −613.500 + 354.204i −1.08970 + 0.629137i −0.933496 0.358588i \(-0.883258\pi\)
−0.156202 + 0.987725i \(0.549925\pi\)
\(564\) 0 0
\(565\) −100.000 + 173.205i −0.176991 + 0.306558i
\(566\) 0 0
\(567\) −243.000 + 140.296i −0.428571 + 0.247436i
\(568\) 0 0
\(569\) 347.500 601.888i 0.610721 1.05780i −0.380399 0.924823i \(-0.624213\pi\)
0.991119 0.132976i \(-0.0424535\pi\)
\(570\) 0 0
\(571\) −466.500 + 269.334i −0.816988 + 0.471688i −0.849377 0.527787i \(-0.823022\pi\)
0.0323889 + 0.999475i \(0.489689\pi\)
\(572\) 0 0
\(573\) 9.00000 5.19615i 0.0157068 0.00906833i
\(574\) 0 0
\(575\) 218.238i 0.379545i
\(576\) 0 0
\(577\) 227.000 0.393414 0.196707 0.980462i \(-0.436975\pi\)
0.196707 + 0.980462i \(0.436975\pi\)
\(578\) 0 0
\(579\) −201.000 −0.347150
\(580\) 0 0
\(581\) 60.0000 + 103.923i 0.103270 + 0.178869i
\(582\) 0 0
\(583\) 546.000 + 315.233i 0.936535 + 0.540709i
\(584\) 0 0
\(585\) −792.000 −1.35385
\(586\) 0 0
\(587\) 124.500 + 71.8801i 0.212095 + 0.122453i 0.602285 0.798281i \(-0.294257\pi\)
−0.390189 + 0.920735i \(0.627590\pi\)
\(588\) 0 0
\(589\) −54.0000 93.5307i −0.0916808 0.158796i
\(590\) 0 0
\(591\) 402.000 696.284i 0.680203 1.17815i
\(592\) 0 0
\(593\) −506.000 −0.853288 −0.426644 0.904420i \(-0.640304\pi\)
−0.426644 + 0.904420i \(0.640304\pi\)
\(594\) 0 0
\(595\) 152.420i 0.256169i
\(596\) 0 0
\(597\) −81.0000 46.7654i −0.135678 0.0783340i
\(598\) 0 0
\(599\) −48.0000 + 27.7128i −0.0801336 + 0.0462651i −0.539531 0.841965i \(-0.681399\pi\)
0.459398 + 0.888231i \(0.348065\pi\)
\(600\) 0 0
\(601\) −167.500 + 290.119i −0.278702 + 0.482726i −0.971062 0.238826i \(-0.923238\pi\)
0.692360 + 0.721552i \(0.256571\pi\)
\(602\) 0 0
\(603\) −904.500 522.213i −1.50000 0.866025i
\(604\) 0 0
\(605\) −52.0000 + 90.0666i −0.0859504 + 0.148870i
\(606\) 0 0
\(607\) −546.000 + 315.233i −0.899506 + 0.519330i −0.877040 0.480418i \(-0.840485\pi\)
−0.0224660 + 0.999748i \(0.507152\pi\)
\(608\) 0 0
\(609\) 353.338i 0.580194i
\(610\) 0 0
\(611\) 76.2102i 0.124730i
\(612\) 0 0
\(613\) 340.000 0.554649 0.277325 0.960776i \(-0.410552\pi\)
0.277325 + 0.960776i \(0.410552\pi\)
\(614\) 0 0
\(615\) 78.0000 + 135.100i 0.126829 + 0.219675i
\(616\) 0 0
\(617\) −195.500 338.616i −0.316856 0.548810i 0.662974 0.748642i \(-0.269294\pi\)
−0.979830 + 0.199832i \(0.935960\pi\)
\(618\) 0 0
\(619\) 10.5000 + 6.06218i 0.0169628 + 0.00979350i 0.508457 0.861087i \(-0.330216\pi\)
−0.491495 + 0.870881i \(0.663549\pi\)
\(620\) 0 0
\(621\) −567.000 + 327.358i −0.913043 + 0.527146i
\(622\) 0 0
\(623\) −6.00000 3.46410i −0.00963082 0.00556036i
\(624\) 0 0
\(625\) 159.500 + 276.262i 0.255200 + 0.442019i
\(626\) 0 0
\(627\) 283.500 + 491.036i 0.452153 + 0.783152i
\(628\) 0 0
\(629\) −176.000 −0.279809
\(630\) 0 0
\(631\) 436.477i 0.691722i 0.938286 + 0.345861i \(0.112413\pi\)
−0.938286 + 0.345861i \(0.887587\pi\)
\(632\) 0 0
\(633\) 394.908i 0.623867i
\(634\) 0 0
\(635\) 756.000 436.477i 1.19055 0.687365i
\(636\) 0 0
\(637\) −407.000 + 704.945i −0.638932 + 1.10666i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −210.500 + 364.597i −0.328393 + 0.568794i −0.982193 0.187874i \(-0.939840\pi\)
0.653800 + 0.756667i \(0.273174\pi\)
\(642\) 0 0
\(643\) −358.500 + 206.980i −0.557543 + 0.321897i −0.752159 0.658982i \(-0.770987\pi\)
0.194616 + 0.980880i \(0.437654\pi\)
\(644\) 0 0
\(645\) 522.000 + 301.377i 0.809302 + 0.467251i
\(646\) 0 0
\(647\) 405.300i 0.626430i −0.949682 0.313215i \(-0.898594\pi\)
0.949682 0.313215i \(-0.101406\pi\)
\(648\) 0 0
\(649\) 651.000 1.00308
\(650\) 0 0
\(651\) 36.0000 62.3538i 0.0552995 0.0957816i
\(652\) 0 0
\(653\) 443.000 + 767.299i 0.678407 + 1.17504i 0.975460 + 0.220175i \(0.0706628\pi\)
−0.297053 + 0.954861i \(0.596004\pi\)
\(654\) 0 0
\(655\) −672.000 387.979i −1.02595 0.592335i
\(656\) 0 0
\(657\) 112.500 + 194.856i 0.171233 + 0.296584i
\(658\) 0 0
\(659\) −726.000 419.156i −1.10167 0.636049i −0.165010 0.986292i \(-0.552766\pi\)
−0.936659 + 0.350243i \(0.886099\pi\)
\(660\) 0 0
\(661\) 124.000 + 214.774i 0.187595 + 0.324923i 0.944448 0.328662i \(-0.106598\pi\)
−0.756853 + 0.653585i \(0.773264\pi\)
\(662\) 0 0
\(663\) −726.000 −1.09502
\(664\) 0 0
\(665\) −216.000 −0.324812
\(666\) 0 0
\(667\) 824.456i 1.23607i
\(668\) 0 0
\(669\) 153.000 88.3346i 0.228700 0.132040i
\(670\) 0 0
\(671\) 168.000 96.9948i 0.250373 0.144553i
\(672\) 0 0
\(673\) −577.000 + 999.393i −0.857355 + 1.48498i 0.0170877 + 0.999854i \(0.494561\pi\)
−0.874443 + 0.485129i \(0.838773\pi\)
\(674\) 0 0
\(675\) 121.500 210.444i 0.180000 0.311769i
\(676\) 0 0
\(677\) 566.000 980.341i 0.836041 1.44807i −0.0571384 0.998366i \(-0.518198\pi\)
0.893180 0.449700i \(-0.148469\pi\)
\(678\) 0 0
\(679\) 129.000 74.4782i 0.189985 0.109688i
\(680\) 0 0
\(681\) 1165.50 672.902i 1.71145 0.988108i
\(682\) 0 0
\(683\) 795.011i 1.16400i −0.813189 0.582000i \(-0.802271\pi\)
0.813189 0.582000i \(-0.197729\pi\)
\(684\) 0 0
\(685\) −676.000 −0.986861
\(686\) 0 0
\(687\) −1230.00 −1.79039
\(688\) 0 0
\(689\) 572.000 + 990.733i 0.830189 + 1.43793i
\(690\) 0 0
\(691\) 780.000 + 450.333i 1.12880 + 0.651712i 0.943633 0.330995i \(-0.107384\pi\)
0.185166 + 0.982707i \(0.440718\pi\)
\(692\) 0 0
\(693\) −189.000 + 327.358i −0.272727 + 0.472377i
\(694\) 0 0
\(695\) −678.000 391.443i −0.975540 0.563228i
\(696\) 0 0
\(697\) 71.5000 + 123.842i 0.102582 + 0.177678i
\(698\) 0 0
\(699\) 97.5000 168.875i 0.139485 0.241595i
\(700\) 0 0
\(701\) −142.000 −0.202568 −0.101284 0.994858i \(-0.532295\pi\)
−0.101284 + 0.994858i \(0.532295\pi\)
\(702\) 0 0
\(703\) 249.415i 0.354787i
\(704\) 0 0
\(705\) 36.0000 + 20.7846i 0.0510638 + 0.0294817i
\(706\) 0 0
\(707\) −60.0000 + 34.6410i −0.0848656 + 0.0489972i
\(708\) 0 0
\(709\) 370.000 640.859i 0.521862 0.903891i −0.477815 0.878461i \(-0.658571\pi\)
0.999677 0.0254305i \(-0.00809566\pi\)
\(710\) 0 0
\(711\) 249.415i 0.350795i
\(712\) 0 0
\(713\) 84.0000 145.492i 0.117812 0.204056i
\(714\) 0 0
\(715\) −924.000 + 533.472i −1.29231 + 0.746114i
\(716\) 0 0
\(717\) 114.315i 0.159436i
\(718\) 0 0
\(719\) 124.708i 0.173446i −0.996232 0.0867230i \(-0.972360\pi\)
0.996232 0.0867230i \(-0.0276395\pi\)
\(720\) 0 0
\(721\) 84.0000 0.116505
\(722\) 0 0
\(723\) 334.500 + 579.371i 0.462656 + 0.801343i
\(724\) 0 0
\(725\) −153.000 265.004i −0.211034 0.365522i
\(726\) 0 0
\(727\) 705.000 + 407.032i 0.969739 + 0.559879i 0.899157 0.437627i \(-0.144181\pi\)
0.0705821 + 0.997506i \(0.477514\pi\)
\(728\) 0 0
\(729\) 729.000 1.00000
\(730\) 0 0
\(731\) 478.500 + 276.262i 0.654583 + 0.377924i
\(732\) 0 0
\(733\) 457.000 + 791.547i 0.623465 + 1.07987i 0.988836 + 0.149011i \(0.0476090\pi\)
−0.365370 + 0.930862i \(0.619058\pi\)
\(734\) 0 0
\(735\) 222.000 + 384.515i 0.302041 + 0.523150i
\(736\) 0 0
\(737\) −1407.00 −1.90909
\(738\) 0 0
\(739\) 358.535i 0.485162i −0.970131 0.242581i \(-0.922006\pi\)
0.970131 0.242581i \(-0.0779940\pi\)
\(740\) 0 0
\(741\) 1028.84i 1.38845i
\(742\) 0 0
\(743\) −345.000 + 199.186i −0.464334 + 0.268083i −0.713865 0.700284i \(-0.753057\pi\)
0.249531 + 0.968367i \(0.419724\pi\)
\(744\) 0 0
\(745\) −260.000 + 450.333i −0.348993 + 0.604474i
\(746\) 0 0
\(747\) 311.769i 0.417362i
\(748\) 0 0
\(749\) −27.0000 + 46.7654i −0.0360481 + 0.0624371i
\(750\) 0 0
\(751\) 966.000 557.720i 1.28628 0.742637i 0.308295 0.951291i \(-0.400241\pi\)
0.977990 + 0.208654i \(0.0669082\pi\)
\(752\) 0 0
\(753\) −283.500 163.679i −0.376494 0.217369i
\(754\) 0 0
\(755\) 484.974i 0.642350i
\(756\) 0 0
\(757\) −758.000 −1.00132 −0.500661 0.865644i \(-0.666909\pi\)
−0.500661 + 0.865644i \(0.666909\pi\)
\(758\) 0 0
\(759\) −441.000 + 763.834i −0.581028 + 1.00637i
\(760\) 0 0
\(761\) 187.000 + 323.894i 0.245729 + 0.425616i 0.962336 0.271861i \(-0.0876392\pi\)
−0.716607 + 0.697477i \(0.754306\pi\)
\(762\) 0 0
\(763\) 264.000 + 152.420i 0.346003 + 0.199765i
\(764\) 0 0
\(765\) −198.000 + 342.946i −0.258824 + 0.448296i
\(766\) 0 0
\(767\) 1023.00 + 590.629i 1.33377 + 0.770051i
\(768\) 0 0
\(769\) 11.0000 + 19.0526i 0.0143043 + 0.0247758i 0.873089 0.487561i \(-0.162113\pi\)
−0.858785 + 0.512337i \(0.828780\pi\)
\(770\) 0 0
\(771\) −1311.00 −1.70039
\(772\) 0 0
\(773\) 1334.00 1.72574 0.862872 0.505423i \(-0.168663\pi\)
0.862872 + 0.505423i \(0.168663\pi\)
\(774\) 0 0
\(775\) 62.3538i 0.0804566i
\(776\) 0 0
\(777\) −144.000 + 83.1384i −0.185328 + 0.106999i
\(778\) 0 0
\(779\) 175.500 101.325i 0.225289 0.130071i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 459.000 795.011i 0.586207 1.01534i
\(784\) 0 0
\(785\) 8.00000 13.8564i 0.0101911 0.0176515i
\(786\) 0 0
\(787\) 762.000 439.941i 0.968234 0.559010i 0.0695365 0.997579i \(-0.477848\pi\)
0.898697 + 0.438569i \(0.144515\pi\)
\(788\) 0 0
\(789\) 819.000 472.850i 1.03802 0.599303i
\(790\) 0 0
\(791\) 173.205i 0.218970i
\(792\) 0 0
\(793\) 352.000 0.443884
\(794\) 0 0
\(795\) 624.000 0.784906
\(796\) 0 0
\(797\) 416.000 + 720.533i 0.521957 + 0.904057i 0.999674 + 0.0255425i \(0.00813132\pi\)
−0.477716 + 0.878514i \(0.658535\pi\)
\(798\) 0 0
\(799\) 33.0000 + 19.0526i 0.0413016 + 0.0238455i
\(800\) 0 0
\(801\) 9.00000 + 15.5885i 0.0112360 + 0.0194612i
\(802\) 0 0
\(803\) 262.500 + 151.554i 0.326899 + 0.188735i
\(804\) 0 0
\(805\) −168.000 290.985i −0.208696 0.361471i
\(806\) 0 0
\(807\) 456.000 789.815i 0.565056 0.978705i
\(808\) 0 0
\(809\) 493.000 0.609394 0.304697 0.952449i \(-0.401445\pi\)
0.304697 + 0.952449i \(0.401445\pi\)
\(810\) 0 0
\(811\) 327.358i 0.403647i −0.979422 0.201823i \(-0.935313\pi\)
0.979422 0.201823i \(-0.0646867\pi\)
\(812\) 0 0
\(813\) −810.000 467.654i −0.996310 0.575220i
\(814\) 0 0
\(815\) 1080.00 623.538i 1.32515 0.765078i
\(816\) 0 0
\(817\) 391.500 678.098i 0.479192 0.829985i
\(818\) 0 0
\(819\) −594.000 + 342.946i −0.725275 + 0.418738i
\(820\) 0 0
\(821\) −379.000 + 656.447i −0.461632 + 0.799570i −0.999042 0.0437505i \(-0.986069\pi\)
0.537410 + 0.843321i \(0.319403\pi\)
\(822\) 0 0
\(823\) 750.000 433.013i 0.911300 0.526139i 0.0304509 0.999536i \(-0.490306\pi\)
0.880849 + 0.473397i \(0.156972\pi\)
\(824\) 0 0
\(825\) 327.358i 0.396797i
\(826\) 0 0
\(827\) 436.477i 0.527783i 0.964552 + 0.263892i \(0.0850061\pi\)
−0.964552 + 0.263892i \(0.914994\pi\)
\(828\) 0 0
\(829\) 718.000 0.866104 0.433052 0.901369i \(-0.357437\pi\)
0.433052 + 0.901369i \(0.357437\pi\)
\(830\) 0 0
\(831\) −51.0000 88.3346i −0.0613718 0.106299i
\(832\) 0 0
\(833\) 203.500 + 352.472i 0.244298 + 0.423136i
\(834\) 0 0
\(835\) −624.000 360.267i −0.747305 0.431457i
\(836\) 0 0
\(837\) −162.000 + 93.5307i −0.193548 + 0.111745i
\(838\) 0 0
\(839\) −786.000 453.797i −0.936830 0.540879i −0.0478645 0.998854i \(-0.515242\pi\)
−0.888965 + 0.457975i \(0.848575\pi\)
\(840\) 0 0
\(841\) −157.500 272.798i −0.187277 0.324373i
\(842\) 0 0
\(843\) 327.000 + 566.381i 0.387900 + 0.671863i
\(844\) 0 0
\(845\) −1260.00 −1.49112
\(846\) 0 0
\(847\) 90.0666i 0.106336i
\(848\) 0 0
\(849\) 20.7846i 0.0244813i
\(850\) 0 0
\(851\) −336.000 + 193.990i −0.394830 + 0.227955i
\(852\) 0 0
\(853\) 73.0000 126.440i 0.0855803 0.148229i −0.820058 0.572280i \(-0.806059\pi\)
0.905638 + 0.424051i \(0.139392\pi\)
\(854\) 0 0
\(855\) 486.000 + 280.592i 0.568421 + 0.328178i
\(856\) 0 0
\(857\) 73.0000 126.440i 0.0851809 0.147538i −0.820287 0.571952i \(-0.806187\pi\)
0.905468 + 0.424414i \(0.139520\pi\)
\(858\) 0 0
\(859\) 73.5000 42.4352i 0.0855646 0.0494008i −0.456607 0.889668i \(-0.650936\pi\)
0.542172 + 0.840268i \(0.317602\pi\)
\(860\) 0 0
\(861\) 117.000 + 67.5500i 0.135889 + 0.0784553i
\(862\) 0 0
\(863\) 1184.72i 1.37280i 0.727226 + 0.686398i \(0.240809\pi\)
−0.727226 + 0.686398i \(0.759191\pi\)
\(864\) 0 0
\(865\) −8.00000 −0.00924855
\(866\) 0 0
\(867\) 252.000 436.477i 0.290657 0.503433i
\(868\) 0 0
\(869\) 168.000 + 290.985i 0.193326 + 0.334850i
\(870\) 0 0
\(871\) −2211.00 1276.52i −2.53846 1.46558i
\(872\) 0 0
\(873\) −387.000 −0.443299
\(874\) 0 0
\(875\) 408.000 + 235.559i 0.466286 + 0.269210i
\(876\) 0 0
\(877\) −740.000 1281.72i −0.843786 1.46148i −0.886672 0.462400i \(-0.846989\pi\)
0.0428860 0.999080i \(-0.486345\pi\)
\(878\) 0 0
\(879\) −606.000 −0.689420
\(880\) 0 0
\(881\) 142.000 0.161180 0.0805902 0.996747i \(-0.474319\pi\)
0.0805902 + 0.996747i \(0.474319\pi\)
\(882\) 0 0
\(883\) 1200.31i 1.35936i −0.733511 0.679678i \(-0.762120\pi\)
0.733511 0.679678i \(-0.237880\pi\)
\(884\) 0 0
\(885\) 558.000 322.161i 0.630508 0.364024i
\(886\) 0 0
\(887\) 546.000 315.233i 0.615558 0.355393i −0.159580 0.987185i \(-0.551014\pi\)
0.775138 + 0.631792i \(0.217681\pi\)
\(888\) 0 0
\(889\) 378.000 654.715i 0.425197 0.736463i
\(890\) 0 0
\(891\) 850.500 491.036i 0.954545 0.551107i
\(892\) 0 0
\(893\) 27.0000 46.7654i 0.0302352 0.0523688i
\(894\) 0 0
\(895\) −648.000 + 374.123i −0.724022 + 0.418014i
\(896\) 0 0
\(897\) −1386.00 + 800.207i −1.54515 + 0.892093i
\(898\) 0 0
\(899\) 235.559i 0.262023i
\(900\) 0 0
\(901\) 572.000 0.634850
\(902\) 0 0
\(903\) 522.000 0.578073
\(904\) 0 0
\(905\) −508.000 879.882i −0.561326 0.972245i
\(906\) 0 0
\(907\) −556.500 321.295i −0.613561 0.354240i 0.160797 0.986988i \(-0.448594\pi\)
−0.774358 + 0.632748i \(0.781927\pi\)
\(908\) 0 0
\(909\) 180.000 0.198020
\(910\) 0 0
\(911\) 348.000 + 200.918i 0.381998 + 0.220547i 0.678687 0.734428i \(-0.262549\pi\)
−0.296689 + 0.954974i \(0.595883\pi\)
\(912\) 0 0
\(913\) −210.000 363.731i −0.230011 0.398391i
\(914\) 0 0
\(915\) 96.0000 166.277i 0.104918 0.181723i
\(916\) 0 0
\(917\) −672.000 −0.732824
\(918\) 0 0
\(919\) 779.423i 0.848121i −0.905634 0.424060i \(-0.860604\pi\)
0.905634 0.424060i \(-0.139396\pi\)
\(920\) 0 0
\(921\) −283.500 163.679i −0.307818 0.177719i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 72.0000 124.708i 0.0778378 0.134819i
\(926\) 0 0
\(927\) −189.000 109.119i −0.203883 0.117712i
\(928\) 0 0
\(929\) 379.000 656.447i 0.407966 0.706617i −0.586696 0.809807i \(-0.699572\pi\)
0.994662 + 0.103190i \(0.0329050\pi\)
\(930\) 0 0
\(931\) 499.500 288.386i 0.536520 0.309760i
\(932\) 0 0
\(933\) 820.992i 0.879949i
\(934\) 0 0
\(935\) 533.472i 0.570558i
\(936\) 0 0
\(937\) −754.000 −0.804696 −0.402348 0.915487i \(-0.631806\pi\)
−0.402348 + 0.915487i \(0.631806\pi\)
\(938\) 0 0
\(939\) 118.500 + 205.248i 0.126198 + 0.218581i
\(940\) 0 0
\(941\) −898.000 1555.38i −0.954304 1.65290i −0.735953 0.677033i \(-0.763266\pi\)
−0.218351 0.975870i \(-0.570068\pi\)
\(942\) 0 0
\(943\) 273.000 + 157.617i 0.289502 + 0.167144i
\(944\) 0 0
\(945\) 374.123i 0.395897i
\(946\) 0 0
\(947\) −91.5000 52.8275i −0.0966209 0.0557841i 0.450911 0.892569i \(-0.351099\pi\)
−0.547532 + 0.836785i \(0.684433\pi\)
\(948\) 0 0
\(949\) 275.000 + 476.314i 0.289779 + 0.501911i
\(950\) 0 0
\(951\) 753.000 + 1304.23i 0.791798 + 1.37143i
\(952\) 0 0
\(953\) 1213.00 1.27282 0.636411 0.771350i \(-0.280418\pi\)
0.636411 + 0.771350i \(0.280418\pi\)
\(954\) 0 0
\(955\) 13.8564i 0.0145093i
\(956\) 0 0
\(957\) 1236.68i 1.29225i
\(958\) 0 0
\(959\) −507.000 + 292.717i −0.528676 + 0.305231i
\(960\) 0 0
\(961\) −456.500 + 790.681i −0.475026 + 0.822769i
\(962\) 0 0
\(963\) 121.500 70.1481i 0.126168 0.0728433i
\(964\) 0 0
\(965\) −134.000 + 232.095i −0.138860 + 0.240513i
\(966\) 0 0
\(967\) −303.000 + 174.937i −0.313340 + 0.180907i −0.648420 0.761283i \(-0.724570\pi\)
0.335080 + 0.942190i \(0.391237\pi\)
\(968\) 0 0
\(969\) 445.500 + 257.210i 0.459752 + 0.265438i
\(970\) 0 0
\(971\) 1434.14i 1.47697i 0.674270 + 0.738485i \(0.264458\pi\)
−0.674270 + 0.738485i \(0.735542\pi\)
\(972\) 0 0
\(973\) −678.000 −0.696814
\(974\) 0 0
\(975\) 297.000 514.419i 0.304615 0.527609i
\(976\) 0 0
\(977\) −78.5000 135.966i −0.0803480 0.139167i 0.823051 0.567967i \(-0.192270\pi\)
−0.903399 + 0.428800i \(0.858936\pi\)
\(978\) 0 0
\(979\) 21.0000 + 12.1244i 0.0214505 + 0.0123844i
\(980\) 0 0
\(981\) −396.000 685.892i −0.403670 0.699176i
\(982\) 0 0
\(983\) −1218.00 703.213i −1.23906 0.715374i −0.270161 0.962815i \(-0.587077\pi\)
−0.968903 + 0.247441i \(0.920410\pi\)
\(984\) 0 0
\(985\) −536.000 928.379i −0.544162 0.942517i
\(986\) 0 0
\(987\) 36.0000 0.0364742
\(988\) 0 0
\(989\) 1218.00 1.23155
\(990\) 0 0
\(991\) 249.415i 0.251680i 0.992051 + 0.125840i \(0.0401627\pi\)
−0.992051 + 0.125840i \(0.959837\pi\)
\(992\) 0 0
\(993\) 1062.00 613.146i 1.06949 0.617468i
\(994\) 0 0
\(995\) −108.000 + 62.3538i −0.108543 + 0.0626672i
\(996\) 0 0
\(997\) −206.000 + 356.802i −0.206620 + 0.357876i −0.950648 0.310273i \(-0.899580\pi\)
0.744028 + 0.668149i \(0.232913\pi\)
\(998\) 0 0
\(999\) 432.000 0.432432
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.3.o.a.511.1 2
3.2 odd 2 1728.3.o.b.127.1 2
4.3 odd 2 576.3.o.b.511.1 2
8.3 odd 2 36.3.f.b.7.1 yes 2
8.5 even 2 36.3.f.a.7.1 2
9.4 even 3 576.3.o.b.319.1 2
9.5 odd 6 1728.3.o.a.1279.1 2
12.11 even 2 1728.3.o.a.127.1 2
24.5 odd 2 108.3.f.b.19.1 2
24.11 even 2 108.3.f.a.19.1 2
36.23 even 6 1728.3.o.b.1279.1 2
36.31 odd 6 inner 576.3.o.a.319.1 2
72.5 odd 6 108.3.f.a.91.1 2
72.11 even 6 324.3.d.c.163.2 2
72.13 even 6 36.3.f.b.31.1 yes 2
72.29 odd 6 324.3.d.c.163.1 2
72.43 odd 6 324.3.d.b.163.1 2
72.59 even 6 108.3.f.b.91.1 2
72.61 even 6 324.3.d.b.163.2 2
72.67 odd 6 36.3.f.a.31.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.3.f.a.7.1 2 8.5 even 2
36.3.f.a.31.1 yes 2 72.67 odd 6
36.3.f.b.7.1 yes 2 8.3 odd 2
36.3.f.b.31.1 yes 2 72.13 even 6
108.3.f.a.19.1 2 24.11 even 2
108.3.f.a.91.1 2 72.5 odd 6
108.3.f.b.19.1 2 24.5 odd 2
108.3.f.b.91.1 2 72.59 even 6
324.3.d.b.163.1 2 72.43 odd 6
324.3.d.b.163.2 2 72.61 even 6
324.3.d.c.163.1 2 72.29 odd 6
324.3.d.c.163.2 2 72.11 even 6
576.3.o.a.319.1 2 36.31 odd 6 inner
576.3.o.a.511.1 2 1.1 even 1 trivial
576.3.o.b.319.1 2 9.4 even 3
576.3.o.b.511.1 2 4.3 odd 2
1728.3.o.a.127.1 2 12.11 even 2
1728.3.o.a.1279.1 2 9.5 odd 6
1728.3.o.b.127.1 2 3.2 odd 2
1728.3.o.b.1279.1 2 36.23 even 6