Properties

Label 576.3.m.b.271.2
Level $576$
Weight $3$
Character 576.271
Analytic conductor $15.695$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,3,Mod(271,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.271"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 10x^{12} + 88x^{10} - 752x^{8} + 1408x^{6} + 2560x^{4} - 24576x^{2} + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{28} \)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 271.2
Root \(1.66730 + 1.10459i\) of defining polynomial
Character \(\chi\) \(=\) 576.271
Dual form 576.3.m.b.559.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.23991 - 4.23991i) q^{5} +0.262225 q^{7} +(8.60531 - 8.60531i) q^{11} +(-15.9957 + 15.9957i) q^{13} -3.51534 q^{17} +(-10.7566 - 10.7566i) q^{19} +16.4968 q^{23} +10.9536i q^{25} +(-25.9522 + 25.9522i) q^{29} +46.2072i q^{31} +(-1.11181 - 1.11181i) q^{35} +(-2.99313 - 2.99313i) q^{37} +21.9026i q^{41} +(-48.7016 + 48.7016i) q^{43} +70.7760i q^{47} -48.9312 q^{49} +(-52.8193 - 52.8193i) q^{53} -72.9715 q^{55} +(61.7726 - 61.7726i) q^{59} +(-22.9004 + 22.9004i) q^{61} +135.640 q^{65} +(54.9939 + 54.9939i) q^{67} -84.2532 q^{71} +78.0341i q^{73} +(2.25653 - 2.25653i) q^{77} -59.2887i q^{79} +(-111.661 - 111.661i) q^{83} +(14.9047 + 14.9047i) q^{85} -34.5426i q^{89} +(-4.19447 + 4.19447i) q^{91} +91.2142i q^{95} -66.0805 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 32 q^{19} + 96 q^{37} + 32 q^{43} + 112 q^{49} + 256 q^{55} - 32 q^{61} + 256 q^{67} + 160 q^{85} - 288 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.23991 4.23991i −0.847982 0.847982i 0.141900 0.989881i \(-0.454679\pi\)
−0.989881 + 0.141900i \(0.954679\pi\)
\(6\) 0 0
\(7\) 0.262225 0.0374608 0.0187304 0.999825i \(-0.494038\pi\)
0.0187304 + 0.999825i \(0.494038\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 8.60531 8.60531i 0.782301 0.782301i −0.197917 0.980219i \(-0.563418\pi\)
0.980219 + 0.197917i \(0.0634178\pi\)
\(12\) 0 0
\(13\) −15.9957 + 15.9957i −1.23044 + 1.23044i −0.266640 + 0.963796i \(0.585913\pi\)
−0.963796 + 0.266640i \(0.914087\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.51534 −0.206785 −0.103392 0.994641i \(-0.532970\pi\)
−0.103392 + 0.994641i \(0.532970\pi\)
\(18\) 0 0
\(19\) −10.7566 10.7566i −0.566138 0.566138i 0.364906 0.931044i \(-0.381101\pi\)
−0.931044 + 0.364906i \(0.881101\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 16.4968 0.717253 0.358626 0.933481i \(-0.383245\pi\)
0.358626 + 0.933481i \(0.383245\pi\)
\(24\) 0 0
\(25\) 10.9536i 0.438145i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −25.9522 + 25.9522i −0.894903 + 0.894903i −0.994980 0.100077i \(-0.968091\pi\)
0.100077 + 0.994980i \(0.468091\pi\)
\(30\) 0 0
\(31\) 46.2072i 1.49055i 0.666755 + 0.745277i \(0.267683\pi\)
−0.666755 + 0.745277i \(0.732317\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.11181 1.11181i −0.0317660 0.0317660i
\(36\) 0 0
\(37\) −2.99313 2.99313i −0.0808955 0.0808955i 0.665501 0.746397i \(-0.268218\pi\)
−0.746397 + 0.665501i \(0.768218\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 21.9026i 0.534210i 0.963667 + 0.267105i \(0.0860670\pi\)
−0.963667 + 0.267105i \(0.913933\pi\)
\(42\) 0 0
\(43\) −48.7016 + 48.7016i −1.13260 + 1.13260i −0.142851 + 0.989744i \(0.545627\pi\)
−0.989744 + 0.142851i \(0.954373\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 70.7760i 1.50587i 0.658094 + 0.752936i \(0.271363\pi\)
−0.658094 + 0.752936i \(0.728637\pi\)
\(48\) 0 0
\(49\) −48.9312 −0.998597
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −52.8193 52.8193i −0.996590 0.996590i 0.00340427 0.999994i \(-0.498916\pi\)
−0.999994 + 0.00340427i \(0.998916\pi\)
\(54\) 0 0
\(55\) −72.9715 −1.32675
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 61.7726 61.7726i 1.04699 1.04699i 0.0481541 0.998840i \(-0.484666\pi\)
0.998840 0.0481541i \(-0.0153339\pi\)
\(60\) 0 0
\(61\) −22.9004 + 22.9004i −0.375416 + 0.375416i −0.869445 0.494029i \(-0.835524\pi\)
0.494029 + 0.869445i \(0.335524\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 135.640 2.08677
\(66\) 0 0
\(67\) 54.9939 + 54.9939i 0.820804 + 0.820804i 0.986223 0.165419i \(-0.0528977\pi\)
−0.165419 + 0.986223i \(0.552898\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −84.2532 −1.18666 −0.593332 0.804958i \(-0.702188\pi\)
−0.593332 + 0.804958i \(0.702188\pi\)
\(72\) 0 0
\(73\) 78.0341i 1.06896i 0.845181 + 0.534480i \(0.179493\pi\)
−0.845181 + 0.534480i \(0.820507\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.25653 2.25653i 0.0293056 0.0293056i
\(78\) 0 0
\(79\) 59.2887i 0.750490i −0.926926 0.375245i \(-0.877559\pi\)
0.926926 0.375245i \(-0.122441\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −111.661 111.661i −1.34531 1.34531i −0.890676 0.454638i \(-0.849769\pi\)
−0.454638 0.890676i \(-0.650231\pi\)
\(84\) 0 0
\(85\) 14.9047 + 14.9047i 0.175350 + 0.175350i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 34.5426i 0.388119i −0.980990 0.194060i \(-0.937834\pi\)
0.980990 0.194060i \(-0.0621655\pi\)
\(90\) 0 0
\(91\) −4.19447 + 4.19447i −0.0460931 + 0.0460931i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 91.2142i 0.960150i
\(96\) 0 0
\(97\) −66.0805 −0.681242 −0.340621 0.940201i \(-0.610637\pi\)
−0.340621 + 0.940201i \(0.610637\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −25.5254 25.5254i −0.252727 0.252727i 0.569361 0.822088i \(-0.307191\pi\)
−0.822088 + 0.569361i \(0.807191\pi\)
\(102\) 0 0
\(103\) 14.2072 0.137934 0.0689670 0.997619i \(-0.478030\pi\)
0.0689670 + 0.997619i \(0.478030\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −21.8489 + 21.8489i −0.204195 + 0.204195i −0.801795 0.597600i \(-0.796121\pi\)
0.597600 + 0.801795i \(0.296121\pi\)
\(108\) 0 0
\(109\) 17.8979 17.8979i 0.164201 0.164201i −0.620224 0.784425i \(-0.712958\pi\)
0.784425 + 0.620224i \(0.212958\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 174.546 1.54465 0.772325 0.635227i \(-0.219093\pi\)
0.772325 + 0.635227i \(0.219093\pi\)
\(114\) 0 0
\(115\) −69.9450 69.9450i −0.608217 0.608217i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.921813 −0.00774632
\(120\) 0 0
\(121\) 27.1029i 0.223991i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −59.5553 + 59.5553i −0.476442 + 0.476442i
\(126\) 0 0
\(127\) 45.3438i 0.357037i 0.983937 + 0.178519i \(0.0571305\pi\)
−0.983937 + 0.178519i \(0.942869\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 32.6213 + 32.6213i 0.249017 + 0.249017i 0.820567 0.571550i \(-0.193658\pi\)
−0.571550 + 0.820567i \(0.693658\pi\)
\(132\) 0 0
\(133\) −2.82066 2.82066i −0.0212080 0.0212080i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 115.159i 0.840577i 0.907390 + 0.420289i \(0.138071\pi\)
−0.907390 + 0.420289i \(0.861929\pi\)
\(138\) 0 0
\(139\) 122.841 122.841i 0.883748 0.883748i −0.110165 0.993913i \(-0.535138\pi\)
0.993913 + 0.110165i \(0.0351379\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 275.296i 1.92514i
\(144\) 0 0
\(145\) 220.070 1.51772
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −99.9710 99.9710i −0.670946 0.670946i 0.286988 0.957934i \(-0.407346\pi\)
−0.957934 + 0.286988i \(0.907346\pi\)
\(150\) 0 0
\(151\) 222.762 1.47525 0.737623 0.675212i \(-0.235948\pi\)
0.737623 + 0.675212i \(0.235948\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 195.914 195.914i 1.26396 1.26396i
\(156\) 0 0
\(157\) 45.9080 45.9080i 0.292408 0.292408i −0.545623 0.838031i \(-0.683707\pi\)
0.838031 + 0.545623i \(0.183707\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.32588 0.0268689
\(162\) 0 0
\(163\) −37.3289 37.3289i −0.229012 0.229012i 0.583268 0.812280i \(-0.301774\pi\)
−0.812280 + 0.583268i \(0.801774\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −71.6232 −0.428882 −0.214441 0.976737i \(-0.568793\pi\)
−0.214441 + 0.976737i \(0.568793\pi\)
\(168\) 0 0
\(169\) 342.723i 2.02795i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −100.398 + 100.398i −0.580334 + 0.580334i −0.934995 0.354661i \(-0.884596\pi\)
0.354661 + 0.934995i \(0.384596\pi\)
\(174\) 0 0
\(175\) 2.87232i 0.0164133i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −64.4199 64.4199i −0.359888 0.359888i 0.503884 0.863771i \(-0.331904\pi\)
−0.863771 + 0.503884i \(0.831904\pi\)
\(180\) 0 0
\(181\) −79.0033 79.0033i −0.436482 0.436482i 0.454344 0.890826i \(-0.349874\pi\)
−0.890826 + 0.454344i \(0.849874\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 25.3812i 0.137196i
\(186\) 0 0
\(187\) −30.2506 + 30.2506i −0.161768 + 0.161768i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 304.422i 1.59383i −0.604089 0.796917i \(-0.706463\pi\)
0.604089 0.796917i \(-0.293537\pi\)
\(192\) 0 0
\(193\) 253.689 1.31445 0.657225 0.753695i \(-0.271730\pi\)
0.657225 + 0.753695i \(0.271730\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −89.4218 89.4218i −0.453918 0.453918i 0.442735 0.896653i \(-0.354008\pi\)
−0.896653 + 0.442735i \(0.854008\pi\)
\(198\) 0 0
\(199\) −117.278 −0.589339 −0.294670 0.955599i \(-0.595210\pi\)
−0.294670 + 0.955599i \(0.595210\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.80533 + 6.80533i −0.0335238 + 0.0335238i
\(204\) 0 0
\(205\) 92.8650 92.8650i 0.453000 0.453000i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −185.128 −0.885781
\(210\) 0 0
\(211\) 80.8941 + 80.8941i 0.383384 + 0.383384i 0.872320 0.488936i \(-0.162615\pi\)
−0.488936 + 0.872320i \(0.662615\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 412.981 1.92084
\(216\) 0 0
\(217\) 12.1167i 0.0558373i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 56.2303 56.2303i 0.254436 0.254436i
\(222\) 0 0
\(223\) 263.109i 1.17986i −0.807453 0.589931i \(-0.799155\pi\)
0.807453 0.589931i \(-0.200845\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 112.085 + 112.085i 0.493765 + 0.493765i 0.909490 0.415725i \(-0.136472\pi\)
−0.415725 + 0.909490i \(0.636472\pi\)
\(228\) 0 0
\(229\) 100.869 + 100.869i 0.440477 + 0.440477i 0.892172 0.451695i \(-0.149180\pi\)
−0.451695 + 0.892172i \(0.649180\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 325.669i 1.39772i −0.715259 0.698860i \(-0.753691\pi\)
0.715259 0.698860i \(-0.246309\pi\)
\(234\) 0 0
\(235\) 300.084 300.084i 1.27695 1.27695i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 25.2269i 0.105552i −0.998606 0.0527760i \(-0.983193\pi\)
0.998606 0.0527760i \(-0.0168069\pi\)
\(240\) 0 0
\(241\) −305.987 −1.26966 −0.634828 0.772653i \(-0.718929\pi\)
−0.634828 + 0.772653i \(0.718929\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 207.464 + 207.464i 0.846792 + 0.846792i
\(246\) 0 0
\(247\) 344.119 1.39319
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −99.5293 + 99.5293i −0.396531 + 0.396531i −0.877008 0.480476i \(-0.840464\pi\)
0.480476 + 0.877008i \(0.340464\pi\)
\(252\) 0 0
\(253\) 141.960 141.960i 0.561108 0.561108i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −265.635 −1.03360 −0.516799 0.856107i \(-0.672876\pi\)
−0.516799 + 0.856107i \(0.672876\pi\)
\(258\) 0 0
\(259\) −0.784876 0.784876i −0.00303041 0.00303041i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −206.692 −0.785901 −0.392950 0.919560i \(-0.628546\pi\)
−0.392950 + 0.919560i \(0.628546\pi\)
\(264\) 0 0
\(265\) 447.898i 1.69018i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.03470 8.03470i 0.0298688 0.0298688i −0.692015 0.721883i \(-0.743277\pi\)
0.721883 + 0.692015i \(0.243277\pi\)
\(270\) 0 0
\(271\) 216.666i 0.799507i −0.916623 0.399754i \(-0.869096\pi\)
0.916623 0.399754i \(-0.130904\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 94.2595 + 94.2595i 0.342762 + 0.342762i
\(276\) 0 0
\(277\) 65.0909 + 65.0909i 0.234985 + 0.234985i 0.814770 0.579785i \(-0.196863\pi\)
−0.579785 + 0.814770i \(0.696863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 403.952i 1.43755i 0.695242 + 0.718776i \(0.255297\pi\)
−0.695242 + 0.718776i \(0.744703\pi\)
\(282\) 0 0
\(283\) −245.705 + 245.705i −0.868214 + 0.868214i −0.992275 0.124061i \(-0.960408\pi\)
0.124061 + 0.992275i \(0.460408\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.74342i 0.0200119i
\(288\) 0 0
\(289\) −276.642 −0.957240
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 67.6849 + 67.6849i 0.231007 + 0.231007i 0.813113 0.582106i \(-0.197771\pi\)
−0.582106 + 0.813113i \(0.697771\pi\)
\(294\) 0 0
\(295\) −523.821 −1.77566
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −263.878 + 263.878i −0.882534 + 0.882534i
\(300\) 0 0
\(301\) −12.7708 + 12.7708i −0.0424279 + 0.0424279i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 194.191 0.636692
\(306\) 0 0
\(307\) 4.98162 + 4.98162i 0.0162268 + 0.0162268i 0.715174 0.698947i \(-0.246348\pi\)
−0.698947 + 0.715174i \(0.746348\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −380.390 −1.22312 −0.611560 0.791198i \(-0.709458\pi\)
−0.611560 + 0.791198i \(0.709458\pi\)
\(312\) 0 0
\(313\) 145.761i 0.465691i −0.972514 0.232845i \(-0.925196\pi\)
0.972514 0.232845i \(-0.0748036\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 283.175 283.175i 0.893295 0.893295i −0.101537 0.994832i \(-0.532376\pi\)
0.994832 + 0.101537i \(0.0323759\pi\)
\(318\) 0 0
\(319\) 446.654i 1.40017i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 37.8132 + 37.8132i 0.117069 + 0.117069i
\(324\) 0 0
\(325\) −175.211 175.211i −0.539110 0.539110i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.5593i 0.0564111i
\(330\) 0 0
\(331\) −105.963 + 105.963i −0.320131 + 0.320131i −0.848817 0.528687i \(-0.822685\pi\)
0.528687 + 0.848817i \(0.322685\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 466.338i 1.39205i
\(336\) 0 0
\(337\) 249.581 0.740595 0.370298 0.928913i \(-0.379256\pi\)
0.370298 + 0.928913i \(0.379256\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 397.627 + 397.627i 1.16606 + 1.16606i
\(342\) 0 0
\(343\) −25.6801 −0.0748690
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −297.586 + 297.586i −0.857597 + 0.857597i −0.991054 0.133458i \(-0.957392\pi\)
0.133458 + 0.991054i \(0.457392\pi\)
\(348\) 0 0
\(349\) −288.797 + 288.797i −0.827498 + 0.827498i −0.987170 0.159672i \(-0.948956\pi\)
0.159672 + 0.987170i \(0.448956\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −255.362 −0.723404 −0.361702 0.932294i \(-0.617804\pi\)
−0.361702 + 0.932294i \(0.617804\pi\)
\(354\) 0 0
\(355\) 357.226 + 357.226i 1.00627 + 1.00627i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 381.798 1.06350 0.531752 0.846900i \(-0.321534\pi\)
0.531752 + 0.846900i \(0.321534\pi\)
\(360\) 0 0
\(361\) 129.590i 0.358975i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 330.857 330.857i 0.906459 0.906459i
\(366\) 0 0
\(367\) 18.6026i 0.0506884i −0.999679 0.0253442i \(-0.991932\pi\)
0.999679 0.0253442i \(-0.00806817\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.8506 13.8506i −0.0373330 0.0373330i
\(372\) 0 0
\(373\) 150.079 + 150.079i 0.402357 + 0.402357i 0.879063 0.476706i \(-0.158169\pi\)
−0.476706 + 0.879063i \(0.658169\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 830.245i 2.20224i
\(378\) 0 0
\(379\) −379.359 + 379.359i −1.00095 + 1.00095i −0.000948851 1.00000i \(0.500302\pi\)
−1.00000 0.000948851i \(0.999698\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 427.421i 1.11598i −0.829847 0.557991i \(-0.811572\pi\)
0.829847 0.557991i \(-0.188428\pi\)
\(384\) 0 0
\(385\) −19.1350 −0.0497012
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 236.247 + 236.247i 0.607318 + 0.607318i 0.942244 0.334926i \(-0.108711\pi\)
−0.334926 + 0.942244i \(0.608711\pi\)
\(390\) 0 0
\(391\) −57.9920 −0.148317
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −251.379 + 251.379i −0.636402 + 0.636402i
\(396\) 0 0
\(397\) −427.593 + 427.593i −1.07706 + 1.07706i −0.0802895 + 0.996772i \(0.525584\pi\)
−0.996772 + 0.0802895i \(0.974416\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −638.396 −1.59201 −0.796005 0.605290i \(-0.793057\pi\)
−0.796005 + 0.605290i \(0.793057\pi\)
\(402\) 0 0
\(403\) −739.115 739.115i −1.83403 1.83403i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −51.5137 −0.126569
\(408\) 0 0
\(409\) 273.582i 0.668905i 0.942413 + 0.334453i \(0.108551\pi\)
−0.942413 + 0.334453i \(0.891449\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.1984 16.1984i 0.0392212 0.0392212i
\(414\) 0 0
\(415\) 946.865i 2.28160i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 150.314 + 150.314i 0.358745 + 0.358745i 0.863350 0.504606i \(-0.168362\pi\)
−0.504606 + 0.863350i \(0.668362\pi\)
\(420\) 0 0
\(421\) −220.826 220.826i −0.524527 0.524527i 0.394408 0.918935i \(-0.370950\pi\)
−0.918935 + 0.394408i \(0.870950\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 38.5058i 0.0906018i
\(426\) 0 0
\(427\) −6.00507 + 6.00507i −0.0140634 + 0.0140634i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 463.722i 1.07592i −0.842970 0.537960i \(-0.819195\pi\)
0.842970 0.537960i \(-0.180805\pi\)
\(432\) 0 0
\(433\) −310.114 −0.716199 −0.358099 0.933683i \(-0.616575\pi\)
−0.358099 + 0.933683i \(0.616575\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −177.450 177.450i −0.406064 0.406064i
\(438\) 0 0
\(439\) −89.9103 −0.204807 −0.102404 0.994743i \(-0.532653\pi\)
−0.102404 + 0.994743i \(0.532653\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −78.9267 + 78.9267i −0.178164 + 0.178164i −0.790555 0.612391i \(-0.790208\pi\)
0.612391 + 0.790555i \(0.290208\pi\)
\(444\) 0 0
\(445\) −146.458 + 146.458i −0.329118 + 0.329118i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −187.048 −0.416587 −0.208294 0.978066i \(-0.566791\pi\)
−0.208294 + 0.978066i \(0.566791\pi\)
\(450\) 0 0
\(451\) 188.479 + 188.479i 0.417913 + 0.417913i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 35.5683 0.0781722
\(456\) 0 0
\(457\) 153.318i 0.335489i 0.985831 + 0.167744i \(0.0536483\pi\)
−0.985831 + 0.167744i \(0.946352\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −99.6025 + 99.6025i −0.216057 + 0.216057i −0.806835 0.590777i \(-0.798821\pi\)
0.590777 + 0.806835i \(0.298821\pi\)
\(462\) 0 0
\(463\) 255.682i 0.552229i −0.961125 0.276114i \(-0.910953\pi\)
0.961125 0.276114i \(-0.0890469\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 285.533 + 285.533i 0.611420 + 0.611420i 0.943316 0.331896i \(-0.107688\pi\)
−0.331896 + 0.943316i \(0.607688\pi\)
\(468\) 0 0
\(469\) 14.4208 + 14.4208i 0.0307480 + 0.0307480i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 838.185i 1.77206i
\(474\) 0 0
\(475\) 117.824 117.824i 0.248051 0.248051i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 418.575i 0.873852i 0.899498 + 0.436926i \(0.143933\pi\)
−0.899498 + 0.436926i \(0.856067\pi\)
\(480\) 0 0
\(481\) 95.7543 0.199073
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 280.175 + 280.175i 0.577681 + 0.577681i
\(486\) 0 0
\(487\) 162.560 0.333800 0.166900 0.985974i \(-0.446624\pi\)
0.166900 + 0.985974i \(0.446624\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 559.393 559.393i 1.13929 1.13929i 0.150715 0.988577i \(-0.451842\pi\)
0.988577 0.150715i \(-0.0481577\pi\)
\(492\) 0 0
\(493\) 91.2309 91.2309i 0.185052 0.185052i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −22.0933 −0.0444534
\(498\) 0 0
\(499\) −247.957 247.957i −0.496908 0.496908i 0.413566 0.910474i \(-0.364283\pi\)
−0.910474 + 0.413566i \(0.864283\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 260.971 0.518829 0.259415 0.965766i \(-0.416470\pi\)
0.259415 + 0.965766i \(0.416470\pi\)
\(504\) 0 0
\(505\) 216.451i 0.428616i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −149.941 + 149.941i −0.294580 + 0.294580i −0.838886 0.544306i \(-0.816793\pi\)
0.544306 + 0.838886i \(0.316793\pi\)
\(510\) 0 0
\(511\) 20.4625i 0.0400441i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −60.2372 60.2372i −0.116965 0.116965i
\(516\) 0 0
\(517\) 609.049 + 609.049i 1.17805 + 1.17805i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 391.686i 0.751797i 0.926661 + 0.375899i \(0.122666\pi\)
−0.926661 + 0.375899i \(0.877334\pi\)
\(522\) 0 0
\(523\) 128.962 128.962i 0.246582 0.246582i −0.572985 0.819566i \(-0.694214\pi\)
0.819566 + 0.572985i \(0.194214\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 162.434i 0.308224i
\(528\) 0 0
\(529\) −256.855 −0.485548
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −350.347 350.347i −0.657311 0.657311i
\(534\) 0 0
\(535\) 185.274 0.346307
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −421.069 + 421.069i −0.781204 + 0.781204i
\(540\) 0 0
\(541\) 71.0166 71.0166i 0.131269 0.131269i −0.638420 0.769689i \(-0.720411\pi\)
0.769689 + 0.638420i \(0.220411\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −151.771 −0.278478
\(546\) 0 0
\(547\) 672.846 + 672.846i 1.23007 + 1.23007i 0.963938 + 0.266128i \(0.0857445\pi\)
0.266128 + 0.963938i \(0.414255\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 558.316 1.01328
\(552\) 0 0
\(553\) 15.5470i 0.0281140i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −294.546 + 294.546i −0.528809 + 0.528809i −0.920217 0.391408i \(-0.871988\pi\)
0.391408 + 0.920217i \(0.371988\pi\)
\(558\) 0 0
\(559\) 1558.03i 2.78717i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 613.943 + 613.943i 1.09048 + 1.09048i 0.995477 + 0.0950080i \(0.0302877\pi\)
0.0950080 + 0.995477i \(0.469712\pi\)
\(564\) 0 0
\(565\) −740.057 740.057i −1.30984 1.30984i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1044.74i 1.83610i −0.396460 0.918052i \(-0.629761\pi\)
0.396460 0.918052i \(-0.370239\pi\)
\(570\) 0 0
\(571\) −131.781 + 131.781i −0.230789 + 0.230789i −0.813022 0.582233i \(-0.802179\pi\)
0.582233 + 0.813022i \(0.302179\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 180.700i 0.314261i
\(576\) 0 0
\(577\) −114.453 −0.198359 −0.0991794 0.995070i \(-0.531622\pi\)
−0.0991794 + 0.995070i \(0.531622\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −29.2804 29.2804i −0.0503965 0.0503965i
\(582\) 0 0
\(583\) −909.053 −1.55927
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 308.249 308.249i 0.525125 0.525125i −0.393990 0.919115i \(-0.628905\pi\)
0.919115 + 0.393990i \(0.128905\pi\)
\(588\) 0 0
\(589\) 497.034 497.034i 0.843860 0.843860i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −646.173 −1.08967 −0.544834 0.838544i \(-0.683407\pi\)
−0.544834 + 0.838544i \(0.683407\pi\)
\(594\) 0 0
\(595\) 3.90840 + 3.90840i 0.00656874 + 0.00656874i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −528.055 −0.881561 −0.440780 0.897615i \(-0.645298\pi\)
−0.440780 + 0.897615i \(0.645298\pi\)
\(600\) 0 0
\(601\) 280.764i 0.467161i −0.972338 0.233580i \(-0.924956\pi\)
0.972338 0.233580i \(-0.0750442\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −114.914 + 114.914i −0.189940 + 0.189940i
\(606\) 0 0
\(607\) 662.871i 1.09204i 0.837771 + 0.546022i \(0.183859\pi\)
−0.837771 + 0.546022i \(0.816141\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1132.11 1132.11i −1.85288 1.85288i
\(612\) 0 0
\(613\) 128.389 + 128.389i 0.209443 + 0.209443i 0.804031 0.594588i \(-0.202685\pi\)
−0.594588 + 0.804031i \(0.702685\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.8646i 0.0338162i −0.999857 0.0169081i \(-0.994618\pi\)
0.999857 0.0169081i \(-0.00538228\pi\)
\(618\) 0 0
\(619\) 472.367 472.367i 0.763113 0.763113i −0.213771 0.976884i \(-0.568575\pi\)
0.976884 + 0.213771i \(0.0685746\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.05795i 0.0145393i
\(624\) 0 0
\(625\) 778.859 1.24617
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.5219 + 10.5219i 0.0167280 + 0.0167280i
\(630\) 0 0
\(631\) 906.653 1.43685 0.718426 0.695604i \(-0.244863\pi\)
0.718426 + 0.695604i \(0.244863\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 192.253 192.253i 0.302761 0.302761i
\(636\) 0 0
\(637\) 782.688 782.688i 1.22871 1.22871i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1125.11 1.75524 0.877622 0.479353i \(-0.159129\pi\)
0.877622 + 0.479353i \(0.159129\pi\)
\(642\) 0 0
\(643\) 607.794 + 607.794i 0.945247 + 0.945247i 0.998577 0.0533302i \(-0.0169836\pi\)
−0.0533302 + 0.998577i \(0.516984\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 383.377 0.592545 0.296273 0.955103i \(-0.404256\pi\)
0.296273 + 0.955103i \(0.404256\pi\)
\(648\) 0 0
\(649\) 1063.15i 1.63813i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 755.121 755.121i 1.15639 1.15639i 0.171141 0.985246i \(-0.445254\pi\)
0.985246 0.171141i \(-0.0547455\pi\)
\(654\) 0 0
\(655\) 276.622i 0.422324i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −31.8233 31.8233i −0.0482902 0.0482902i 0.682549 0.730840i \(-0.260871\pi\)
−0.730840 + 0.682549i \(0.760871\pi\)
\(660\) 0 0
\(661\) 579.890 + 579.890i 0.877292 + 0.877292i 0.993254 0.115961i \(-0.0369949\pi\)
−0.115961 + 0.993254i \(0.536995\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 23.9187i 0.0359680i
\(666\) 0 0
\(667\) −428.129 + 428.129i −0.641872 + 0.641872i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 394.130i 0.587377i
\(672\) 0 0
\(673\) 262.375 0.389859 0.194930 0.980817i \(-0.437552\pi\)
0.194930 + 0.980817i \(0.437552\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −574.436 574.436i −0.848502 0.848502i 0.141444 0.989946i \(-0.454825\pi\)
−0.989946 + 0.141444i \(0.954825\pi\)
\(678\) 0 0
\(679\) −17.3280 −0.0255199
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 253.790 253.790i 0.371582 0.371582i −0.496471 0.868053i \(-0.665371\pi\)
0.868053 + 0.496471i \(0.165371\pi\)
\(684\) 0 0
\(685\) 488.264 488.264i 0.712794 0.712794i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1689.76 2.45248
\(690\) 0 0
\(691\) −734.512 734.512i −1.06297 1.06297i −0.997879 0.0650902i \(-0.979266\pi\)
−0.0650902 0.997879i \(-0.520734\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1041.67 −1.49880
\(696\) 0 0
\(697\) 76.9952i 0.110467i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −745.410 + 745.410i −1.06335 + 1.06335i −0.0655005 + 0.997853i \(0.520864\pi\)
−0.997853 + 0.0655005i \(0.979136\pi\)
\(702\) 0 0
\(703\) 64.3920i 0.0915961i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.69342 6.69342i −0.00946735 0.00946735i
\(708\) 0 0
\(709\) −809.881 809.881i −1.14229 1.14229i −0.988031 0.154255i \(-0.950702\pi\)
−0.154255 0.988031i \(-0.549298\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 762.272i 1.06910i
\(714\) 0 0
\(715\) 1167.23 1167.23i 1.63249 1.63249i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 662.400i 0.921280i 0.887587 + 0.460640i \(0.152380\pi\)
−0.887587 + 0.460640i \(0.847620\pi\)
\(720\) 0 0
\(721\) 3.72549 0.00516711
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −284.271 284.271i −0.392098 0.392098i
\(726\) 0 0
\(727\) 1253.93 1.72481 0.862403 0.506222i \(-0.168958\pi\)
0.862403 + 0.506222i \(0.168958\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 171.203 171.203i 0.234204 0.234204i
\(732\) 0 0
\(733\) −509.300 + 509.300i −0.694816 + 0.694816i −0.963288 0.268472i \(-0.913481\pi\)
0.268472 + 0.963288i \(0.413481\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 946.479 1.28423
\(738\) 0 0
\(739\) −818.847 818.847i −1.10805 1.10805i −0.993407 0.114640i \(-0.963428\pi\)
−0.114640 0.993407i \(-0.536572\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1110.03 −1.49398 −0.746991 0.664834i \(-0.768502\pi\)
−0.746991 + 0.664834i \(0.768502\pi\)
\(744\) 0 0
\(745\) 847.736i 1.13790i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.72933 + 5.72933i −0.00764931 + 0.00764931i
\(750\) 0 0
\(751\) 34.0597i 0.0453525i −0.999743 0.0226762i \(-0.992781\pi\)
0.999743 0.0226762i \(-0.00721869\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −944.491 944.491i −1.25098 1.25098i
\(756\) 0 0
\(757\) 398.543 + 398.543i 0.526477 + 0.526477i 0.919520 0.393043i \(-0.128578\pi\)
−0.393043 + 0.919520i \(0.628578\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 903.338i 1.18704i 0.804819 + 0.593520i \(0.202262\pi\)
−0.804819 + 0.593520i \(0.797738\pi\)
\(762\) 0 0
\(763\) 4.69328 4.69328i 0.00615108 0.00615108i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1976.19i 2.57652i
\(768\) 0 0
\(769\) −98.9621 −0.128689 −0.0643447 0.997928i \(-0.520496\pi\)
−0.0643447 + 0.997928i \(0.520496\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 111.945 + 111.945i 0.144818 + 0.144818i 0.775799 0.630980i \(-0.217347\pi\)
−0.630980 + 0.775799i \(0.717347\pi\)
\(774\) 0 0
\(775\) −506.137 −0.653080
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 235.598 235.598i 0.302437 0.302437i
\(780\) 0 0
\(781\) −725.025 + 725.025i −0.928329 + 0.928329i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −389.291 −0.495913
\(786\) 0 0
\(787\) 163.931 + 163.931i 0.208299 + 0.208299i 0.803544 0.595245i \(-0.202945\pi\)
−0.595245 + 0.803544i \(0.702945\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 45.7703 0.0578638
\(792\) 0 0
\(793\) 732.614i 0.923852i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 271.277 271.277i 0.340373 0.340373i −0.516135 0.856507i \(-0.672630\pi\)
0.856507 + 0.516135i \(0.172630\pi\)
\(798\) 0 0
\(799\) 248.802i 0.311392i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 671.508 + 671.508i 0.836249 + 0.836249i
\(804\) 0 0
\(805\) −18.3414 18.3414i −0.0227843 0.0227843i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1505.90i 1.86144i −0.365736 0.930718i \(-0.619183\pi\)
0.365736 0.930718i \(-0.380817\pi\)
\(810\) 0 0
\(811\) 492.677 492.677i 0.607493 0.607493i −0.334797 0.942290i \(-0.608668\pi\)
0.942290 + 0.334797i \(0.108668\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 316.542i 0.388396i
\(816\) 0 0
\(817\) 1047.73 1.28241
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −139.500 139.500i −0.169914 0.169914i 0.617027 0.786942i \(-0.288337\pi\)
−0.786942 + 0.617027i \(0.788337\pi\)
\(822\) 0 0
\(823\) 1262.09 1.53353 0.766763 0.641931i \(-0.221866\pi\)
0.766763 + 0.641931i \(0.221866\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −179.936 + 179.936i −0.217577 + 0.217577i −0.807477 0.589900i \(-0.799167\pi\)
0.589900 + 0.807477i \(0.299167\pi\)
\(828\) 0 0
\(829\) −144.901 + 144.901i −0.174790 + 0.174790i −0.789080 0.614290i \(-0.789443\pi\)
0.614290 + 0.789080i \(0.289443\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 172.010 0.206495
\(834\) 0 0
\(835\) 303.676 + 303.676i 0.363684 + 0.363684i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1006.03 1.19908 0.599540 0.800345i \(-0.295350\pi\)
0.599540 + 0.800345i \(0.295350\pi\)
\(840\) 0 0
\(841\) 506.033i 0.601703i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1453.11 + 1453.11i −1.71966 + 1.71966i
\(846\) 0 0
\(847\) 7.10706i 0.00839087i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −49.3772 49.3772i −0.0580225 0.0580225i
\(852\) 0 0
\(853\) 77.4150 + 77.4150i 0.0907561 + 0.0907561i 0.751027 0.660271i \(-0.229559\pi\)
−0.660271 + 0.751027i \(0.729559\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 175.567i 0.204863i 0.994740 + 0.102431i \(0.0326622\pi\)
−0.994740 + 0.102431i \(0.967338\pi\)
\(858\) 0 0
\(859\) −1058.18 + 1058.18i −1.23188 + 1.23188i −0.268634 + 0.963242i \(0.586572\pi\)
−0.963242 + 0.268634i \(0.913428\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 569.219i 0.659581i −0.944054 0.329791i \(-0.893022\pi\)
0.944054 0.329791i \(-0.106978\pi\)
\(864\) 0 0
\(865\) 851.355 0.984225
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −510.198 510.198i −0.587110 0.587110i
\(870\) 0 0
\(871\) −1759.33 −2.01989
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −15.6169 + 15.6169i −0.0178479 + 0.0178479i
\(876\) 0 0
\(877\) −166.695 + 166.695i −0.190074 + 0.190074i −0.795728 0.605654i \(-0.792912\pi\)
0.605654 + 0.795728i \(0.292912\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1495.53 1.69754 0.848771 0.528761i \(-0.177343\pi\)
0.848771 + 0.528761i \(0.177343\pi\)
\(882\) 0 0
\(883\) −134.367 134.367i −0.152171 0.152171i 0.626916 0.779087i \(-0.284317\pi\)
−0.779087 + 0.626916i \(0.784317\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 414.255 0.467030 0.233515 0.972353i \(-0.424977\pi\)
0.233515 + 0.972353i \(0.424977\pi\)
\(888\) 0 0
\(889\) 11.8903i 0.0133749i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 761.311 761.311i 0.852531 0.852531i
\(894\) 0 0
\(895\) 546.269i 0.610356i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1199.18 1199.18i −1.33390 1.33390i
\(900\) 0 0
\(901\) 185.678 + 185.678i 0.206080 + 0.206080i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 669.933i 0.740258i
\(906\) 0 0
\(907\) 312.683 312.683i 0.344744 0.344744i −0.513403 0.858148i \(-0.671615\pi\)
0.858148 + 0.513403i \(0.171615\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 391.366i 0.429601i −0.976658 0.214800i \(-0.931090\pi\)
0.976658 0.214800i \(-0.0689101\pi\)
\(912\) 0 0
\(913\) −1921.76 −2.10488
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.55413 + 8.55413i 0.00932838 + 0.00932838i
\(918\) 0 0
\(919\) −294.161 −0.320088 −0.160044 0.987110i \(-0.551164\pi\)
−0.160044 + 0.987110i \(0.551164\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1347.69 1347.69i 1.46011 1.46011i
\(924\) 0 0
\(925\) 32.7857 32.7857i 0.0354440 0.0354440i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1015.40 −1.09300 −0.546501 0.837458i \(-0.684041\pi\)
−0.546501 + 0.837458i \(0.684041\pi\)
\(930\) 0 0
\(931\) 526.335 + 526.335i 0.565344 + 0.565344i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 256.520 0.274353
\(936\) 0 0
\(937\) 1582.09i 1.68846i 0.535977 + 0.844232i \(0.319943\pi\)
−0.535977 + 0.844232i \(0.680057\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −113.842 + 113.842i −0.120980 + 0.120980i −0.765005 0.644025i \(-0.777263\pi\)
0.644025 + 0.765005i \(0.277263\pi\)
\(942\) 0 0
\(943\) 361.323i 0.383163i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 388.664 + 388.664i 0.410416 + 0.410416i 0.881884 0.471467i \(-0.156275\pi\)
−0.471467 + 0.881884i \(0.656275\pi\)
\(948\) 0 0
\(949\) −1248.21 1248.21i −1.31529 1.31529i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 211.977i 0.222431i −0.993796 0.111215i \(-0.964526\pi\)
0.993796 0.111215i \(-0.0354744\pi\)
\(954\) 0 0
\(955\) −1290.72 + 1290.72i −1.35154 + 1.35154i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 30.1976i 0.0314887i
\(960\) 0 0
\(961\) −1174.11 −1.22175
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1075.62 1075.62i −1.11463 1.11463i
\(966\) 0 0
\(967\) −516.501 −0.534127 −0.267063 0.963679i \(-0.586053\pi\)
−0.267063 + 0.963679i \(0.586053\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 795.556 795.556i 0.819316 0.819316i −0.166693 0.986009i \(-0.553309\pi\)
0.986009 + 0.166693i \(0.0533089\pi\)
\(972\) 0 0
\(973\) 32.2120 32.2120i 0.0331059 0.0331059i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −512.430 −0.524493 −0.262246 0.965001i \(-0.584463\pi\)
−0.262246 + 0.965001i \(0.584463\pi\)
\(978\) 0 0
\(979\) −297.250 297.250i −0.303626 0.303626i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −722.200 −0.734690 −0.367345 0.930085i \(-0.619733\pi\)
−0.367345 + 0.930085i \(0.619733\pi\)
\(984\) 0 0
\(985\) 758.281i 0.769828i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −803.421 + 803.421i −0.812357 + 0.812357i
\(990\) 0 0
\(991\) 794.715i 0.801932i 0.916093 + 0.400966i \(0.131325\pi\)
−0.916093 + 0.400966i \(0.868675\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 497.250 + 497.250i 0.499749 + 0.499749i
\(996\) 0 0
\(997\) 1080.18 + 1080.18i 1.08343 + 1.08343i 0.996187 + 0.0872401i \(0.0278047\pi\)
0.0872401 + 0.996187i \(0.472195\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.3.m.b.271.2 16
3.2 odd 2 inner 576.3.m.b.271.7 16
4.3 odd 2 144.3.m.b.91.3 yes 16
8.3 odd 2 1152.3.m.e.415.7 16
8.5 even 2 1152.3.m.d.415.7 16
12.11 even 2 144.3.m.b.91.6 yes 16
16.3 odd 4 inner 576.3.m.b.559.2 16
16.5 even 4 1152.3.m.e.991.7 16
16.11 odd 4 1152.3.m.d.991.7 16
16.13 even 4 144.3.m.b.19.3 16
24.5 odd 2 1152.3.m.d.415.2 16
24.11 even 2 1152.3.m.e.415.2 16
48.5 odd 4 1152.3.m.e.991.2 16
48.11 even 4 1152.3.m.d.991.2 16
48.29 odd 4 144.3.m.b.19.6 yes 16
48.35 even 4 inner 576.3.m.b.559.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.3.m.b.19.3 16 16.13 even 4
144.3.m.b.19.6 yes 16 48.29 odd 4
144.3.m.b.91.3 yes 16 4.3 odd 2
144.3.m.b.91.6 yes 16 12.11 even 2
576.3.m.b.271.2 16 1.1 even 1 trivial
576.3.m.b.271.7 16 3.2 odd 2 inner
576.3.m.b.559.2 16 16.3 odd 4 inner
576.3.m.b.559.7 16 48.35 even 4 inner
1152.3.m.d.415.2 16 24.5 odd 2
1152.3.m.d.415.7 16 8.5 even 2
1152.3.m.d.991.2 16 48.11 even 4
1152.3.m.d.991.7 16 16.11 odd 4
1152.3.m.e.415.2 16 24.11 even 2
1152.3.m.e.415.7 16 8.3 odd 2
1152.3.m.e.991.2 16 48.5 odd 4
1152.3.m.e.991.7 16 16.5 even 4