Properties

Label 576.3.h.a
Level $576$
Weight $3$
Character orbit 576.h
Analytic conductor $15.695$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,3,Mod(161,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-152] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{5} - \beta_1 q^{7} - \beta_{7} q^{11} + 3 \beta_{3} q^{13} - 3 \beta_{5} q^{17} - \beta_{4} q^{19} - 7 \beta_{6} q^{23} - 19 q^{25} + 19 \beta_{2} q^{29} - 11 \beta_1 q^{31} - \beta_{7} q^{35}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 152 q^{25} - 296 q^{49} + 160 q^{73} - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( -2\zeta_{24}^{6} + 4\zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -2\zeta_{24}^{7} + \zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\zeta_{24}^{4} - 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 4\zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -3\zeta_{24}^{5} - 3\zeta_{24}^{3} + 3\zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -4\zeta_{24}^{7} - 2\zeta_{24}^{5} + 2\zeta_{24}^{3} - 2\zeta_{24} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -6\zeta_{24}^{5} + 6\zeta_{24}^{3} + 6\zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{7} - 3\beta_{6} + 2\beta_{5} + 6\beta_{2} ) / 24 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_{4} + 2\beta_1 ) / 8 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( \beta_{7} - 2\beta_{5} ) / 12 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( ( \beta_{3} + 2 ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( -\beta_{7} - 3\beta_{6} - 2\beta_{5} + 6\beta_{2} ) / 24 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( ( \beta_{4} ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( \beta_{7} - 3\beta_{6} - 2\beta_{5} - 6\beta_{2} ) / 24 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
161.1
−0.965926 + 0.258819i
−0.965926 0.258819i
−0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 0.258819i
0.965926 + 0.258819i
0.258819 + 0.965926i
0.258819 0.965926i
0 0 0 −2.44949 0 −3.46410 0 0 0
161.2 0 0 0 −2.44949 0 −3.46410 0 0 0
161.3 0 0 0 −2.44949 0 3.46410 0 0 0
161.4 0 0 0 −2.44949 0 3.46410 0 0 0
161.5 0 0 0 2.44949 0 −3.46410 0 0 0
161.6 0 0 0 2.44949 0 −3.46410 0 0 0
161.7 0 0 0 2.44949 0 3.46410 0 0 0
161.8 0 0 0 2.44949 0 3.46410 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 161.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.3.h.a 8
3.b odd 2 1 inner 576.3.h.a 8
4.b odd 2 1 inner 576.3.h.a 8
8.b even 2 1 inner 576.3.h.a 8
8.d odd 2 1 inner 576.3.h.a 8
12.b even 2 1 inner 576.3.h.a 8
16.e even 4 1 2304.3.e.h 4
16.e even 4 1 2304.3.e.i 4
16.f odd 4 1 2304.3.e.h 4
16.f odd 4 1 2304.3.e.i 4
24.f even 2 1 inner 576.3.h.a 8
24.h odd 2 1 inner 576.3.h.a 8
48.i odd 4 1 2304.3.e.h 4
48.i odd 4 1 2304.3.e.i 4
48.k even 4 1 2304.3.e.h 4
48.k even 4 1 2304.3.e.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
576.3.h.a 8 1.a even 1 1 trivial
576.3.h.a 8 3.b odd 2 1 inner
576.3.h.a 8 4.b odd 2 1 inner
576.3.h.a 8 8.b even 2 1 inner
576.3.h.a 8 8.d odd 2 1 inner
576.3.h.a 8 12.b even 2 1 inner
576.3.h.a 8 24.f even 2 1 inner
576.3.h.a 8 24.h odd 2 1 inner
2304.3.e.h 4 16.e even 4 1
2304.3.e.h 4 16.f odd 4 1
2304.3.e.h 4 48.i odd 4 1
2304.3.e.h 4 48.k even 4 1
2304.3.e.i 4 16.e even 4 1
2304.3.e.i 4 16.f odd 4 1
2304.3.e.i 4 48.i odd 4 1
2304.3.e.i 4 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 6 \) acting on \(S_{3}^{\mathrm{new}}(576, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} - 6)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 72)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 108)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 162)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 16)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1176)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 2166)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 1452)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 768)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 882)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 3136)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 4056)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 5046)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} - 10368)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 4800)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 784)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2904)^{4} \) Copy content Toggle raw display
$73$ \( (T - 20)^{8} \) Copy content Toggle raw display
$79$ \( (T^{2} - 5292)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 5832)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 3042)^{4} \) Copy content Toggle raw display
$97$ \( (T + 8)^{8} \) Copy content Toggle raw display
show more
show less