Defining parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.s (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 36 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 216 | 52 | 164 |
Cusp forms | 168 | 44 | 124 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
576.2.s.a | $2$ | $4.599$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-3\) | \(6\) | \(6\) | \(q+(-1-\zeta_{6})q^{3}+(4-2\zeta_{6})q^{5}+(2+2\zeta_{6})q^{7}+\cdots\) |
576.2.s.b | $2$ | $4.599$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-3\) | \(-3\) | \(q+(-1+2\zeta_{6})q^{3}+(-2+\zeta_{6})q^{5}+(-1+\cdots)q^{7}+\cdots\) |
576.2.s.c | $2$ | $4.599$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-3\) | \(3\) | \(q+(1-2\zeta_{6})q^{3}+(-2+\zeta_{6})q^{5}+(1+\zeta_{6})q^{7}+\cdots\) |
576.2.s.d | $2$ | $4.599$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(6\) | \(-6\) | \(q+(1+\zeta_{6})q^{3}+(4-2\zeta_{6})q^{5}+(-2-2\zeta_{6})q^{7}+\cdots\) |
576.2.s.e | $4$ | $4.599$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(-6\) | \(0\) | \(q-\beta_{3} q^{3}+(\beta_1-2)q^{5}+(-\beta_{3}-\beta_{2})q^{7}+\cdots\) |
576.2.s.f | $8$ | $4.599$ | 8.0.170772624.1 | None | \(0\) | \(0\) | \(6\) | \(0\) | \(q-\beta _{6}q^{3}+(1+\beta _{2})q^{5}+(\beta _{1}-\beta _{6})q^{7}+\cdots\) |
576.2.s.g | $24$ | $4.599$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)