Properties

Label 576.2.s
Level $576$
Weight $2$
Character orbit 576.s
Rep. character $\chi_{576}(191,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $44$
Newform subspaces $7$
Sturm bound $192$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 7 \)
Sturm bound: \(192\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).

Total New Old
Modular forms 216 52 164
Cusp forms 168 44 124
Eisenstein series 48 8 40

Trace form

\( 44 q + 6 q^{5} - 4 q^{9} + 2 q^{13} + 10 q^{21} + 12 q^{25} + 6 q^{29} - 14 q^{33} + 8 q^{37} - 30 q^{41} + 38 q^{45} + 8 q^{49} + 2 q^{61} - 6 q^{65} - 26 q^{69} - 8 q^{73} + 6 q^{77} + 4 q^{81} - 8 q^{85}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
576.2.s.a 576.s 36.h $2$ $4.599$ \(\Q(\sqrt{-3}) \) None 144.2.s.a \(0\) \(-3\) \(6\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\zeta_{6})q^{3}+(4-2\zeta_{6})q^{5}+(2+2\zeta_{6})q^{7}+\cdots\)
576.2.s.b 576.s 36.h $2$ $4.599$ \(\Q(\sqrt{-3}) \) None 144.2.s.b \(0\) \(0\) \(-3\) \(-3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+2\zeta_{6})q^{3}+(-2+\zeta_{6})q^{5}+(-1+\cdots)q^{7}+\cdots\)
576.2.s.c 576.s 36.h $2$ $4.599$ \(\Q(\sqrt{-3}) \) None 144.2.s.b \(0\) \(0\) \(-3\) \(3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-2\zeta_{6})q^{3}+(-2+\zeta_{6})q^{5}+(1+\zeta_{6})q^{7}+\cdots\)
576.2.s.d 576.s 36.h $2$ $4.599$ \(\Q(\sqrt{-3}) \) None 144.2.s.a \(0\) \(3\) \(6\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{6})q^{3}+(4-2\zeta_{6})q^{5}+(-2-2\zeta_{6})q^{7}+\cdots\)
576.2.s.e 576.s 36.h $4$ $4.599$ \(\Q(\zeta_{12})\) None 144.2.s.e \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta_{3} q^{3}+(\beta_1-2)q^{5}+(-\beta_{3}-\beta_{2})q^{7}+\cdots\)
576.2.s.f 576.s 36.h $8$ $4.599$ 8.0.170772624.1 None 36.2.h.a \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{6}q^{3}+(1+\beta _{2})q^{5}+(\beta _{1}-\beta _{6})q^{7}+\cdots\)
576.2.s.g 576.s 36.h $24$ $4.599$ None 288.2.s.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)