Properties

Label 575.3.d.a
Level $575$
Weight $3$
Character orbit 575.d
Analytic conductor $15.668$
Analytic rank $0$
Dimension $2$
CM discriminant -115
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,3,Mod(551,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.551");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 575.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6676152007\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 115)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{4} + 9 i q^{7} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{4} + 9 i q^{7} - 9 q^{9} + 16 q^{16} - 11 i q^{17} - 23 i q^{23} - 36 i q^{28} + 57 q^{29} - 53 q^{31} + 36 q^{36} - 51 i q^{37} - 33 q^{41} - 6 i q^{43} - 32 q^{49} - 101 i q^{53} - 3 q^{59} - 81 i q^{63} - 64 q^{64} - 111 i q^{67} + 44 i q^{68} + 27 q^{71} + 81 q^{81} - 41 i q^{83} + 92 i q^{92} + 174 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 18 q^{9} + 32 q^{16} + 114 q^{29} - 106 q^{31} + 72 q^{36} - 66 q^{41} - 64 q^{49} - 6 q^{59} - 128 q^{64} + 54 q^{71} + 162 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
551.1
1.00000i
1.00000i
0 0 −4.00000 0 0 9.00000i 0 −9.00000 0
551.2 0 0 −4.00000 0 0 9.00000i 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
115.c odd 2 1 CM by \(\Q(\sqrt{-115}) \)
5.b even 2 1 inner
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 575.3.d.a 2
5.b even 2 1 inner 575.3.d.a 2
5.c odd 4 1 115.3.c.a 1
5.c odd 4 1 115.3.c.b yes 1
23.b odd 2 1 inner 575.3.d.a 2
115.c odd 2 1 CM 575.3.d.a 2
115.e even 4 1 115.3.c.a 1
115.e even 4 1 115.3.c.b yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
115.3.c.a 1 5.c odd 4 1
115.3.c.a 1 115.e even 4 1
115.3.c.b yes 1 5.c odd 4 1
115.3.c.b yes 1 115.e even 4 1
575.3.d.a 2 1.a even 1 1 trivial
575.3.d.a 2 5.b even 2 1 inner
575.3.d.a 2 23.b odd 2 1 inner
575.3.d.a 2 115.c odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{3}^{\mathrm{new}}(575, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 81 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 121 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 529 \) Copy content Toggle raw display
$29$ \( (T - 57)^{2} \) Copy content Toggle raw display
$31$ \( (T + 53)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 2601 \) Copy content Toggle raw display
$41$ \( (T + 33)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 36 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 10201 \) Copy content Toggle raw display
$59$ \( (T + 3)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 12321 \) Copy content Toggle raw display
$71$ \( (T - 27)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 1681 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 30276 \) Copy content Toggle raw display
show more
show less