Properties

Label 5700.2.a.bc
Level $5700$
Weight $2$
Character orbit 5700.a
Self dual yes
Analytic conductor $45.515$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5700,2,Mod(1,5700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5700.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5700 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5700.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-5,0,0,0,0,0,5,0,6,0,-8,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.5147291521\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.13090800.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 19x^{3} - 2x^{2} + 48x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1140)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - \beta_1 q^{7} + q^{9} + ( - \beta_{3} + 1) q^{11} + ( - \beta_{4} - 2) q^{13} + (\beta_{3} - \beta_{2} + \beta_1 - 1) q^{17} - q^{19} + \beta_1 q^{21} + (\beta_{4} + \beta_{3} + \beta_{2} + 1) q^{23}+ \cdots + ( - \beta_{3} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{3} + 5 q^{9} + 6 q^{11} - 8 q^{13} - 4 q^{17} - 5 q^{19} - 5 q^{27} + 8 q^{31} - 6 q^{33} - 10 q^{37} + 8 q^{39} + 12 q^{41} - 14 q^{43} - 4 q^{47} + 3 q^{49} + 4 q^{51} - 18 q^{53} + 5 q^{57}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 19x^{3} - 2x^{2} + 48x - 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 6\nu^{3} + 28\nu^{2} - 76\nu - 132 ) / 45 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{4} - 3\nu^{3} + 41\nu^{2} + 43\nu - 99 ) / 15 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 8\nu^{4} - 3\nu^{3} - 134\nu^{2} + 23\nu + 156 ) / 45 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} + 2\beta_{2} + 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} - 2\beta_{3} + 4\beta_{2} + 13\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 22\beta_{4} + 16\beta_{3} + 35\beta_{2} + 2\beta _1 + 132 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.11171
1.36950
0.408758
−2.02158
−3.86839
0 −1.00000 0 0 0 −4.11171 0 1.00000 0
1.2 0 −1.00000 0 0 0 −1.36950 0 1.00000 0
1.3 0 −1.00000 0 0 0 −0.408758 0 1.00000 0
1.4 0 −1.00000 0 0 0 2.02158 0 1.00000 0
1.5 0 −1.00000 0 0 0 3.86839 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5700.2.a.bc 5
5.b even 2 1 5700.2.a.bd 5
5.c odd 4 2 1140.2.f.b 10
15.e even 4 2 3420.2.f.e 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1140.2.f.b 10 5.c odd 4 2
3420.2.f.e 10 15.e even 4 2
5700.2.a.bc 5 1.a even 1 1 trivial
5700.2.a.bd 5 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5700))\):

\( T_{7}^{5} - 19T_{7}^{3} + 2T_{7}^{2} + 48T_{7} + 18 \) Copy content Toggle raw display
\( T_{11}^{5} - 6T_{11}^{4} - 13T_{11}^{3} + 90T_{11}^{2} - 62T_{11} - 50 \) Copy content Toggle raw display
\( T_{13}^{5} + 8T_{13}^{4} - 130T_{13}^{2} - 320T_{13} - 200 \) Copy content Toggle raw display
\( T_{17}^{5} + 4T_{17}^{4} - 31T_{17}^{3} - 116T_{17}^{2} - 96T_{17} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( (T + 1)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 19 T^{3} + \cdots + 18 \) Copy content Toggle raw display
$11$ \( T^{5} - 6 T^{4} + \cdots - 50 \) Copy content Toggle raw display
$13$ \( T^{5} + 8 T^{4} + \cdots - 200 \) Copy content Toggle raw display
$17$ \( T^{5} + 4 T^{4} + \cdots - 12 \) Copy content Toggle raw display
$19$ \( (T + 1)^{5} \) Copy content Toggle raw display
$23$ \( T^{5} - 64 T^{3} + \cdots + 1968 \) Copy content Toggle raw display
$29$ \( T^{5} - 126 T^{3} + \cdots + 8920 \) Copy content Toggle raw display
$31$ \( T^{5} - 8 T^{4} + \cdots + 48 \) Copy content Toggle raw display
$37$ \( T^{5} + 10 T^{4} + \cdots - 1376 \) Copy content Toggle raw display
$41$ \( T^{5} - 12 T^{4} + \cdots + 480 \) Copy content Toggle raw display
$43$ \( T^{5} + 14 T^{4} + \cdots - 3282 \) Copy content Toggle raw display
$47$ \( T^{5} + 4 T^{4} + \cdots + 6180 \) Copy content Toggle raw display
$53$ \( T^{5} + 18 T^{4} + \cdots + 1648 \) Copy content Toggle raw display
$59$ \( T^{5} + 6 T^{4} + \cdots + 3200 \) Copy content Toggle raw display
$61$ \( T^{5} - 99 T^{3} + \cdots - 180 \) Copy content Toggle raw display
$67$ \( T^{5} + 6 T^{4} + \cdots + 3200 \) Copy content Toggle raw display
$71$ \( T^{5} - 2 T^{4} + \cdots - 9600 \) Copy content Toggle raw display
$73$ \( T^{5} + 30 T^{4} + \cdots + 46600 \) Copy content Toggle raw display
$79$ \( T^{5} - 12 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$83$ \( T^{5} + 24 T^{4} + \cdots - 16560 \) Copy content Toggle raw display
$89$ \( T^{5} + 6 T^{4} + \cdots - 200 \) Copy content Toggle raw display
$97$ \( T^{5} + 8 T^{4} + \cdots + 41688 \) Copy content Toggle raw display
show more
show less