# Properties

 Label 570.2.q.c.49.7 Level $570$ Weight $2$ Character 570.49 Analytic conductor $4.551$ Analytic rank $0$ Dimension $20$ CM no Inner twists $4$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.q (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$20$$ Relative dimension: $$10$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{20} - \cdots)$$ Defining polynomial: $$x^{20} - 49 x^{16} - 8 x^{15} + 72 x^{13} + 2145 x^{12} - 648 x^{11} + 32 x^{10} - 7056 x^{9} - 11968 x^{8} + 10368 x^{7} + 9344 x^{6} + 18176 x^{5} + 56320 x^{4} + 28160 x^{3} + 8192 x^{2} + 4096 x + 1024$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 49.7 Root $$0.0996880 + 0.372041i$$ of defining polynomial Character $$\chi$$ $$=$$ 570.49 Dual form 570.2.q.c.349.7

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.866025 + 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.78590 - 1.34557i) q^{5} +(-0.500000 - 0.866025i) q^{6} -2.32136i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(0.866025 + 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.78590 - 1.34557i) q^{5} +(-0.500000 - 0.866025i) q^{6} -2.32136i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(-0.873846 - 2.05825i) q^{10} -2.85165 q^{11} -1.00000i q^{12} +(-5.20277 + 3.00382i) q^{13} +(1.16068 - 2.01036i) q^{14} +(0.873846 + 2.05825i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-3.79487 - 2.19097i) q^{17} +1.00000i q^{18} +(-2.63121 + 3.47516i) q^{19} +(0.272353 - 2.21942i) q^{20} +(-1.16068 + 2.01036i) q^{21} +(-2.46960 - 1.42582i) q^{22} +(4.36172 - 2.51824i) q^{23} +(0.500000 - 0.866025i) q^{24} +(1.37886 + 4.80612i) q^{25} -6.00764 q^{26} -1.00000i q^{27} +(2.01036 - 1.16068i) q^{28} +(-4.41039 - 7.63902i) q^{29} +(-0.272353 + 2.21942i) q^{30} -0.685205 q^{31} +(-0.866025 + 0.500000i) q^{32} +(2.46960 + 1.42582i) q^{33} +(-2.19097 - 3.79487i) q^{34} +(-3.12356 + 4.14571i) q^{35} +(-0.500000 + 0.866025i) q^{36} -7.79872i q^{37} +(-4.01627 + 1.69397i) q^{38} +6.00764 q^{39} +(1.34557 - 1.78590i) q^{40} +(2.58128 - 4.47091i) q^{41} +(-2.01036 + 1.16068i) q^{42} +(-2.24057 - 1.29360i) q^{43} +(-1.42582 - 2.46960i) q^{44} +(0.272353 - 2.21942i) q^{45} +5.03648 q^{46} +(-6.83132 + 3.94406i) q^{47} +(0.866025 - 0.500000i) q^{48} +1.61129 q^{49} +(-1.20893 + 4.85165i) q^{50} +(2.19097 + 3.79487i) q^{51} +(-5.20277 - 3.00382i) q^{52} +(4.86905 - 2.81115i) q^{53} +(0.500000 - 0.866025i) q^{54} +(5.09275 + 3.83710i) q^{55} +2.32136 q^{56} +(4.01627 - 1.69397i) q^{57} -8.82078i q^{58} +(-0.724643 + 1.25512i) q^{59} +(-1.34557 + 1.78590i) q^{60} +(5.40264 + 9.35765i) q^{61} +(-0.593405 - 0.342602i) q^{62} +(2.01036 - 1.16068i) q^{63} -1.00000 q^{64} +(13.3335 + 1.63620i) q^{65} +(1.42582 + 2.46960i) q^{66} +(-5.89514 + 3.40356i) q^{67} -4.38194i q^{68} -5.03648 q^{69} +(-4.77794 + 2.02851i) q^{70} +(1.15149 - 1.99443i) q^{71} +(-0.866025 + 0.500000i) q^{72} +(5.38195 + 3.10727i) q^{73} +(3.89936 - 6.75389i) q^{74} +(1.20893 - 4.85165i) q^{75} +(-4.32518 - 0.541114i) q^{76} +6.61970i q^{77} +(5.20277 + 3.00382i) q^{78} +(2.00683 - 3.47593i) q^{79} +(2.05825 - 0.873846i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(4.47091 - 2.58128i) q^{82} +12.2192i q^{83} -2.32136 q^{84} +(3.82914 + 9.01912i) q^{85} +(-1.29360 - 2.24057i) q^{86} +8.82078i q^{87} -2.85165i q^{88} +(-4.34444 - 7.52479i) q^{89} +(1.34557 - 1.78590i) q^{90} +(6.97295 + 12.0775i) q^{91} +(4.36172 + 2.51824i) q^{92} +(0.593405 + 0.342602i) q^{93} -7.88813 q^{94} +(9.37516 - 2.66579i) q^{95} +1.00000 q^{96} +(-5.79684 - 3.34681i) q^{97} +(1.39542 + 0.805646i) q^{98} +(-1.42582 - 2.46960i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$20q + 10q^{4} - 10q^{6} + 10q^{9} + O(q^{10})$$ $$20q + 10q^{4} - 10q^{6} + 10q^{9} - 2q^{10} + 12q^{11} + 10q^{14} + 2q^{15} - 10q^{16} + 6q^{19} - 10q^{21} + 10q^{24} + 14q^{25} + 8q^{29} + 40q^{31} + 12q^{34} + 2q^{35} - 10q^{36} + 2q^{40} - 14q^{41} + 6q^{44} + 44q^{46} - 8q^{49} - 8q^{50} - 12q^{51} + 10q^{54} + 20q^{56} + 8q^{59} - 2q^{60} + 16q^{61} - 20q^{64} + 40q^{65} - 6q^{66} - 44q^{69} + 8q^{70} - 4q^{71} + 26q^{74} + 8q^{75} + 8q^{79} - 10q^{81} - 20q^{84} - 16q^{85} - 20q^{86} - 2q^{89} + 2q^{90} - 44q^{91} - 32q^{94} - 80q^{95} + 20q^{96} + 6q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.866025 + 0.500000i 0.612372 + 0.353553i
$$3$$ −0.866025 0.500000i −0.500000 0.288675i
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ −1.78590 1.34557i −0.798678 0.601759i
$$6$$ −0.500000 0.866025i −0.204124 0.353553i
$$7$$ 2.32136i 0.877391i −0.898636 0.438696i $$-0.855441\pi$$
0.898636 0.438696i $$-0.144559\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ 0.500000 + 0.866025i 0.166667 + 0.288675i
$$10$$ −0.873846 2.05825i −0.276334 0.650876i
$$11$$ −2.85165 −0.859804 −0.429902 0.902875i $$-0.641452\pi$$
−0.429902 + 0.902875i $$0.641452\pi$$
$$12$$ 1.00000i 0.288675i
$$13$$ −5.20277 + 3.00382i −1.44299 + 0.833110i −0.998048 0.0624492i $$-0.980109\pi$$
−0.444941 + 0.895560i $$0.646776\pi$$
$$14$$ 1.16068 2.01036i 0.310205 0.537290i
$$15$$ 0.873846 + 2.05825i 0.225626 + 0.531438i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −3.79487 2.19097i −0.920391 0.531388i −0.0366311 0.999329i $$-0.511663\pi$$
−0.883760 + 0.467941i $$0.844996\pi$$
$$18$$ 1.00000i 0.235702i
$$19$$ −2.63121 + 3.47516i −0.603641 + 0.797256i
$$20$$ 0.272353 2.21942i 0.0608999 0.496277i
$$21$$ −1.16068 + 2.01036i −0.253281 + 0.438696i
$$22$$ −2.46960 1.42582i −0.526520 0.303987i
$$23$$ 4.36172 2.51824i 0.909481 0.525089i 0.0292169 0.999573i $$-0.490699\pi$$
0.880264 + 0.474484i $$0.157365\pi$$
$$24$$ 0.500000 0.866025i 0.102062 0.176777i
$$25$$ 1.37886 + 4.80612i 0.275772 + 0.961223i
$$26$$ −6.00764 −1.17820
$$27$$ 1.00000i 0.192450i
$$28$$ 2.01036 1.16068i 0.379922 0.219348i
$$29$$ −4.41039 7.63902i −0.818989 1.41853i −0.906428 0.422360i $$-0.861202\pi$$
0.0874397 0.996170i $$-0.472131\pi$$
$$30$$ −0.272353 + 2.21942i −0.0497246 + 0.405209i
$$31$$ −0.685205 −0.123066 −0.0615332 0.998105i $$-0.519599\pi$$
−0.0615332 + 0.998105i $$0.519599\pi$$
$$32$$ −0.866025 + 0.500000i −0.153093 + 0.0883883i
$$33$$ 2.46960 + 1.42582i 0.429902 + 0.248204i
$$34$$ −2.19097 3.79487i −0.375748 0.650815i
$$35$$ −3.12356 + 4.14571i −0.527978 + 0.700753i
$$36$$ −0.500000 + 0.866025i −0.0833333 + 0.144338i
$$37$$ 7.79872i 1.28210i −0.767499 0.641050i $$-0.778499\pi$$
0.767499 0.641050i $$-0.221501\pi$$
$$38$$ −4.01627 + 1.69397i −0.651526 + 0.274799i
$$39$$ 6.00764 0.961993
$$40$$ 1.34557 1.78590i 0.212754 0.282375i
$$41$$ 2.58128 4.47091i 0.403128 0.698239i −0.590973 0.806691i $$-0.701256\pi$$
0.994102 + 0.108452i $$0.0345895\pi$$
$$42$$ −2.01036 + 1.16068i −0.310205 + 0.179097i
$$43$$ −2.24057 1.29360i −0.341684 0.197271i 0.319332 0.947643i $$-0.396541\pi$$
−0.661017 + 0.750371i $$0.729875\pi$$
$$44$$ −1.42582 2.46960i −0.214951 0.372306i
$$45$$ 0.272353 2.21942i 0.0405999 0.330852i
$$46$$ 5.03648 0.742588
$$47$$ −6.83132 + 3.94406i −0.996450 + 0.575301i −0.907196 0.420708i $$-0.861782\pi$$
−0.0892540 + 0.996009i $$0.528448\pi$$
$$48$$ 0.866025 0.500000i 0.125000 0.0721688i
$$49$$ 1.61129 0.230184
$$50$$ −1.20893 + 4.85165i −0.170968 + 0.686127i
$$51$$ 2.19097 + 3.79487i 0.306797 + 0.531388i
$$52$$ −5.20277 3.00382i −0.721495 0.416555i
$$53$$ 4.86905 2.81115i 0.668815 0.386141i −0.126812 0.991927i $$-0.540475\pi$$
0.795628 + 0.605786i $$0.207141\pi$$
$$54$$ 0.500000 0.866025i 0.0680414 0.117851i
$$55$$ 5.09275 + 3.83710i 0.686706 + 0.517395i
$$56$$ 2.32136 0.310205
$$57$$ 4.01627 1.69397i 0.531968 0.224372i
$$58$$ 8.82078i 1.15822i
$$59$$ −0.724643 + 1.25512i −0.0943405 + 0.163403i −0.909333 0.416069i $$-0.863408\pi$$
0.814993 + 0.579471i $$0.196741\pi$$
$$60$$ −1.34557 + 1.78590i −0.173713 + 0.230558i
$$61$$ 5.40264 + 9.35765i 0.691737 + 1.19812i 0.971268 + 0.237987i $$0.0764876\pi$$
−0.279531 + 0.960137i $$0.590179\pi$$
$$62$$ −0.593405 0.342602i −0.0753625 0.0435105i
$$63$$ 2.01036 1.16068i 0.253281 0.146232i
$$64$$ −1.00000 −0.125000
$$65$$ 13.3335 + 1.63620i 1.65382 + 0.202945i
$$66$$ 1.42582 + 2.46960i 0.175507 + 0.303987i
$$67$$ −5.89514 + 3.40356i −0.720206 + 0.415811i −0.814829 0.579702i $$-0.803169\pi$$
0.0946224 + 0.995513i $$0.469836\pi$$
$$68$$ 4.38194i 0.531388i
$$69$$ −5.03648 −0.606321
$$70$$ −4.77794 + 2.02851i −0.571073 + 0.242453i
$$71$$ 1.15149 1.99443i 0.136656 0.236696i −0.789573 0.613657i $$-0.789698\pi$$
0.926229 + 0.376961i $$0.123031\pi$$
$$72$$ −0.866025 + 0.500000i −0.102062 + 0.0589256i
$$73$$ 5.38195 + 3.10727i 0.629909 + 0.363678i 0.780717 0.624885i $$-0.214854\pi$$
−0.150808 + 0.988563i $$0.548187\pi$$
$$74$$ 3.89936 6.75389i 0.453291 0.785123i
$$75$$ 1.20893 4.85165i 0.139595 0.560220i
$$76$$ −4.32518 0.541114i −0.496132 0.0620700i
$$77$$ 6.61970i 0.754385i
$$78$$ 5.20277 + 3.00382i 0.589098 + 0.340116i
$$79$$ 2.00683 3.47593i 0.225786 0.391072i −0.730769 0.682625i $$-0.760838\pi$$
0.956555 + 0.291552i $$0.0941718\pi$$
$$80$$ 2.05825 0.873846i 0.230119 0.0976989i
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ 4.47091 2.58128i 0.493729 0.285055i
$$83$$ 12.2192i 1.34123i 0.741806 + 0.670614i $$0.233969\pi$$
−0.741806 + 0.670614i $$0.766031\pi$$
$$84$$ −2.32136 −0.253281
$$85$$ 3.82914 + 9.01912i 0.415328 + 0.978261i
$$86$$ −1.29360 2.24057i −0.139492 0.241607i
$$87$$ 8.82078i 0.945687i
$$88$$ 2.85165i 0.303987i
$$89$$ −4.34444 7.52479i −0.460510 0.797626i 0.538477 0.842640i $$-0.319000\pi$$
−0.998986 + 0.0450142i $$0.985667\pi$$
$$90$$ 1.34557 1.78590i 0.141836 0.188250i
$$91$$ 6.97295 + 12.0775i 0.730964 + 1.26607i
$$92$$ 4.36172 + 2.51824i 0.454740 + 0.262545i
$$93$$ 0.593405 + 0.342602i 0.0615332 + 0.0355262i
$$94$$ −7.88813 −0.813598
$$95$$ 9.37516 2.66579i 0.961871 0.273505i
$$96$$ 1.00000 0.102062
$$97$$ −5.79684 3.34681i −0.588580 0.339817i 0.175956 0.984398i $$-0.443698\pi$$
−0.764536 + 0.644581i $$0.777032\pi$$
$$98$$ 1.39542 + 0.805646i 0.140959 + 0.0813825i
$$99$$ −1.42582 2.46960i −0.143301 0.248204i
$$100$$ −3.47279 + 3.59719i −0.347279 + 0.359719i
$$101$$ −7.02206 12.1626i −0.698721 1.21022i −0.968910 0.247413i $$-0.920419\pi$$
0.270189 0.962807i $$-0.412914\pi$$
$$102$$ 4.38194i 0.433876i
$$103$$ 14.0958i 1.38890i 0.719542 + 0.694449i $$0.244352\pi$$
−0.719542 + 0.694449i $$0.755648\pi$$
$$104$$ −3.00382 5.20277i −0.294549 0.510174i
$$105$$ 4.77794 2.02851i 0.466279 0.197962i
$$106$$ 5.62229 0.546085
$$107$$ 16.7729i 1.62150i −0.585395 0.810748i $$-0.699060\pi$$
0.585395 0.810748i $$-0.300940\pi$$
$$108$$ 0.866025 0.500000i 0.0833333 0.0481125i
$$109$$ 4.45191 7.71093i 0.426416 0.738573i −0.570136 0.821550i $$-0.693109\pi$$
0.996551 + 0.0829770i $$0.0264428\pi$$
$$110$$ 2.49190 + 5.86941i 0.237593 + 0.559626i
$$111$$ −3.89936 + 6.75389i −0.370111 + 0.641050i
$$112$$ 2.01036 + 1.16068i 0.189961 + 0.109674i
$$113$$ 11.8870i 1.11824i 0.829087 + 0.559120i $$0.188861\pi$$
−0.829087 + 0.559120i $$0.811139\pi$$
$$114$$ 4.32518 + 0.541114i 0.405090 + 0.0506799i
$$115$$ −11.1781 1.37170i −1.04236 0.127912i
$$116$$ 4.41039 7.63902i 0.409494 0.709265i
$$117$$ −5.20277 3.00382i −0.480997 0.277703i
$$118$$ −1.25512 + 0.724643i −0.115543 + 0.0667088i
$$119$$ −5.08602 + 8.80925i −0.466235 + 0.807543i
$$120$$ −2.05825 + 0.873846i −0.187892 + 0.0797708i
$$121$$ −2.86810 −0.260737
$$122$$ 10.8053i 0.978264i
$$123$$ −4.47091 + 2.58128i −0.403128 + 0.232746i
$$124$$ −0.342602 0.593405i −0.0307666 0.0532893i
$$125$$ 4.00448 10.4386i 0.358172 0.933656i
$$126$$ 2.32136 0.206803
$$127$$ 7.72660 4.46095i 0.685625 0.395846i −0.116346 0.993209i $$-0.537118\pi$$
0.801971 + 0.597363i $$0.203785\pi$$
$$128$$ −0.866025 0.500000i −0.0765466 0.0441942i
$$129$$ 1.29360 + 2.24057i 0.113895 + 0.197271i
$$130$$ 10.7290 + 8.08373i 0.940999 + 0.708990i
$$131$$ 0.0274319 0.0475134i 0.00239673 0.00415127i −0.864825 0.502074i $$-0.832570\pi$$
0.867221 + 0.497923i $$0.165904\pi$$
$$132$$ 2.85165i 0.248204i
$$133$$ 8.06710 + 6.10798i 0.699506 + 0.529629i
$$134$$ −6.80712 −0.588046
$$135$$ −1.34557 + 1.78590i −0.115809 + 0.153706i
$$136$$ 2.19097 3.79487i 0.187874 0.325407i
$$137$$ 15.5732 8.99119i 1.33051 0.768169i 0.345131 0.938555i $$-0.387835\pi$$
0.985377 + 0.170386i $$0.0545013\pi$$
$$138$$ −4.36172 2.51824i −0.371294 0.214367i
$$139$$ −10.3327 17.8967i −0.876405 1.51798i −0.855258 0.518202i $$-0.826601\pi$$
−0.0211474 0.999776i $$-0.506732\pi$$
$$140$$ −5.15207 0.632228i −0.435429 0.0534330i
$$141$$ 7.88813 0.664300
$$142$$ 1.99443 1.15149i 0.167369 0.0966306i
$$143$$ 14.8365 8.56584i 1.24069 0.716312i
$$144$$ −1.00000 −0.0833333
$$145$$ −2.40236 + 19.5770i −0.199505 + 1.62578i
$$146$$ 3.10727 + 5.38195i 0.257159 + 0.445413i
$$147$$ −1.39542 0.805646i −0.115092 0.0664485i
$$148$$ 6.75389 3.89936i 0.555166 0.320525i
$$149$$ −1.92651 + 3.33682i −0.157826 + 0.273363i −0.934084 0.357052i $$-0.883782\pi$$
0.776258 + 0.630415i $$0.217115\pi$$
$$150$$ 3.47279 3.59719i 0.283552 0.293709i
$$151$$ 7.77324 0.632577 0.316289 0.948663i $$-0.397563\pi$$
0.316289 + 0.948663i $$0.397563\pi$$
$$152$$ −3.47516 2.63121i −0.281873 0.213419i
$$153$$ 4.38194i 0.354259i
$$154$$ −3.30985 + 5.73283i −0.266715 + 0.461964i
$$155$$ 1.22371 + 0.921994i 0.0982904 + 0.0740563i
$$156$$ 3.00382 + 5.20277i 0.240498 + 0.416555i
$$157$$ 16.6929 + 9.63765i 1.33224 + 0.769169i 0.985642 0.168846i $$-0.0540040\pi$$
0.346596 + 0.938014i $$0.387337\pi$$
$$158$$ 3.47593 2.00683i 0.276530 0.159655i
$$159$$ −5.62229 −0.445877
$$160$$ 2.21942 + 0.272353i 0.175461 + 0.0215314i
$$161$$ −5.84574 10.1251i −0.460709 0.797971i
$$162$$ −0.866025 + 0.500000i −0.0680414 + 0.0392837i
$$163$$ 15.9168i 1.24670i 0.781944 + 0.623348i $$0.214228\pi$$
−0.781944 + 0.623348i $$0.785772\pi$$
$$164$$ 5.16256 0.403128
$$165$$ −2.49190 5.86941i −0.193994 0.456933i
$$166$$ −6.10958 + 10.5821i −0.474196 + 0.821331i
$$167$$ −16.4675 + 9.50754i −1.27430 + 0.735716i −0.975794 0.218693i $$-0.929821\pi$$
−0.298503 + 0.954409i $$0.596487\pi$$
$$168$$ −2.01036 1.16068i −0.155102 0.0895484i
$$169$$ 11.5459 19.9981i 0.888146 1.53831i
$$170$$ −1.19343 + 9.72536i −0.0915321 + 0.745901i
$$171$$ −4.32518 0.541114i −0.330755 0.0413800i
$$172$$ 2.58719i 0.197271i
$$173$$ −12.3792 7.14712i −0.941172 0.543386i −0.0508444 0.998707i $$-0.516191\pi$$
−0.890327 + 0.455321i $$0.849525\pi$$
$$174$$ −4.41039 + 7.63902i −0.334351 + 0.579112i
$$175$$ 11.1567 3.20083i 0.843369 0.241960i
$$176$$ 1.42582 2.46960i 0.107476 0.186153i
$$177$$ 1.25512 0.724643i 0.0943405 0.0544675i
$$178$$ 8.68888i 0.651259i
$$179$$ −6.66682 −0.498301 −0.249151 0.968465i $$-0.580151\pi$$
−0.249151 + 0.968465i $$0.580151\pi$$
$$180$$ 2.05825 0.873846i 0.153413 0.0651326i
$$181$$ −3.06793 5.31382i −0.228038 0.394973i 0.729189 0.684313i $$-0.239898\pi$$
−0.957226 + 0.289340i $$0.906564\pi$$
$$182$$ 13.9459i 1.03374i
$$183$$ 10.8053i 0.798749i
$$184$$ 2.51824 + 4.36172i 0.185647 + 0.321550i
$$185$$ −10.4937 + 13.9277i −0.771516 + 1.02399i
$$186$$ 0.342602 + 0.593405i 0.0251208 + 0.0435105i
$$187$$ 10.8216 + 6.24787i 0.791356 + 0.456890i
$$188$$ −6.83132 3.94406i −0.498225 0.287650i
$$189$$ −2.32136 −0.168854
$$190$$ 9.45202 + 2.37893i 0.685722 + 0.172586i
$$191$$ −18.8448 −1.36356 −0.681780 0.731557i $$-0.738794\pi$$
−0.681780 + 0.731557i $$0.738794\pi$$
$$192$$ 0.866025 + 0.500000i 0.0625000 + 0.0360844i
$$193$$ −14.3105 8.26218i −1.03009 0.594725i −0.113082 0.993586i $$-0.536072\pi$$
−0.917012 + 0.398861i $$0.869406\pi$$
$$194$$ −3.34681 5.79684i −0.240287 0.416189i
$$195$$ −10.7290 8.08373i −0.768322 0.578888i
$$196$$ 0.805646 + 1.39542i 0.0575461 + 0.0996728i
$$197$$ 6.90254i 0.491786i −0.969297 0.245893i $$-0.920919\pi$$
0.969297 0.245893i $$-0.0790811\pi$$
$$198$$ 2.85165i 0.202658i
$$199$$ 3.26514 + 5.65540i 0.231460 + 0.400900i 0.958238 0.285972i $$-0.0923164\pi$$
−0.726778 + 0.686872i $$0.758983\pi$$
$$200$$ −4.80612 + 1.37886i −0.339844 + 0.0975001i
$$201$$ 6.80712 0.480137
$$202$$ 14.0441i 0.988141i
$$203$$ −17.7329 + 10.2381i −1.24461 + 0.718573i
$$204$$ −2.19097 + 3.79487i −0.153398 + 0.265694i
$$205$$ −10.6258 + 4.51128i −0.742141 + 0.315082i
$$206$$ −7.04788 + 12.2073i −0.491049 + 0.850522i
$$207$$ 4.36172 + 2.51824i 0.303160 + 0.175030i
$$208$$ 6.00764i 0.416555i
$$209$$ 7.50328 9.90993i 0.519013 0.685484i
$$210$$ 5.15207 + 0.632228i 0.355527 + 0.0436279i
$$211$$ −11.1943 + 19.3891i −0.770648 + 1.33480i 0.166560 + 0.986031i $$0.446734\pi$$
−0.937208 + 0.348771i $$0.886599\pi$$
$$212$$ 4.86905 + 2.81115i 0.334408 + 0.193070i
$$213$$ −1.99443 + 1.15149i −0.136656 + 0.0788986i
$$214$$ 8.38645 14.5258i 0.573286 0.992960i
$$215$$ 2.26081 + 5.32509i 0.154186 + 0.363168i
$$216$$ 1.00000 0.0680414
$$217$$ 1.59061i 0.107977i
$$218$$ 7.71093 4.45191i 0.522250 0.301521i
$$219$$ −3.10727 5.38195i −0.209970 0.363678i
$$220$$ −0.776654 + 6.32900i −0.0523620 + 0.426701i
$$221$$ 26.3251 1.77082
$$222$$ −6.75389 + 3.89936i −0.453291 + 0.261708i
$$223$$ 1.62511 + 0.938256i 0.108825 + 0.0628302i 0.553425 0.832899i $$-0.313321\pi$$
−0.444600 + 0.895729i $$0.646654\pi$$
$$224$$ 1.16068 + 2.01036i 0.0775512 + 0.134323i
$$225$$ −3.47279 + 3.59719i −0.231519 + 0.239812i
$$226$$ −5.94352 + 10.2945i −0.395357 + 0.684779i
$$227$$ 20.3703i 1.35203i 0.736890 + 0.676013i $$0.236294\pi$$
−0.736890 + 0.676013i $$0.763706\pi$$
$$228$$ 3.47516 + 2.63121i 0.230148 + 0.174256i
$$229$$ −10.7813 −0.712449 −0.356224 0.934400i $$-0.615936\pi$$
−0.356224 + 0.934400i $$0.615936\pi$$
$$230$$ −8.99463 6.77695i −0.593089 0.446859i
$$231$$ 3.30985 5.73283i 0.217772 0.377192i
$$232$$ 7.63902 4.41039i 0.501526 0.289556i
$$233$$ −11.7576 6.78823i −0.770263 0.444711i 0.0627056 0.998032i $$-0.480027\pi$$
−0.832968 + 0.553321i $$0.813360\pi$$
$$234$$ −3.00382 5.20277i −0.196366 0.340116i
$$235$$ 17.5071 + 2.14835i 1.14203 + 0.140143i
$$236$$ −1.44929 −0.0943405
$$237$$ −3.47593 + 2.00683i −0.225786 + 0.130357i
$$238$$ −8.80925 + 5.08602i −0.571019 + 0.329678i
$$239$$ 2.08081 0.134596 0.0672981 0.997733i $$-0.478562\pi$$
0.0672981 + 0.997733i $$0.478562\pi$$
$$240$$ −2.21942 0.272353i −0.143263 0.0175803i
$$241$$ −8.51317 14.7453i −0.548382 0.949825i −0.998386 0.0567985i $$-0.981911\pi$$
0.450004 0.893027i $$-0.351423\pi$$
$$242$$ −2.48385 1.43405i −0.159668 0.0921843i
$$243$$ 0.866025 0.500000i 0.0555556 0.0320750i
$$244$$ −5.40264 + 9.35765i −0.345869 + 0.599062i
$$245$$ −2.87760 2.16811i −0.183843 0.138516i
$$246$$ −5.16256 −0.329153
$$247$$ 3.25082 25.9842i 0.206845 1.65333i
$$248$$ 0.685205i 0.0435105i
$$249$$ 6.10958 10.5821i 0.387179 0.670614i
$$250$$ 8.68728 7.03784i 0.549432 0.445112i
$$251$$ 9.62571 + 16.6722i 0.607569 + 1.05234i 0.991640 + 0.129037i $$0.0411886\pi$$
−0.384070 + 0.923304i $$0.625478\pi$$
$$252$$ 2.01036 + 1.16068i 0.126641 + 0.0731159i
$$253$$ −12.4381 + 7.18113i −0.781976 + 0.451474i
$$254$$ 8.92191 0.559810
$$255$$ 1.19343 9.72536i 0.0747356 0.609026i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 15.3212 8.84568i 0.955708 0.551779i 0.0608589 0.998146i $$-0.480616\pi$$
0.894850 + 0.446368i $$0.147283\pi$$
$$258$$ 2.58719i 0.161072i
$$259$$ −18.1036 −1.12490
$$260$$ 5.24975 + 12.3652i 0.325576 + 0.766859i
$$261$$ 4.41039 7.63902i 0.272996 0.472843i
$$262$$ 0.0475134 0.0274319i 0.00293539 0.00169475i
$$263$$ −9.98291 5.76364i −0.615573 0.355401i 0.159570 0.987187i $$-0.448989\pi$$
−0.775143 + 0.631785i $$0.782322\pi$$
$$264$$ −1.42582 + 2.46960i −0.0877534 + 0.151993i
$$265$$ −12.4782 1.53125i −0.766532 0.0940637i
$$266$$ 3.93232 + 9.32321i 0.241106 + 0.571643i
$$267$$ 8.68888i 0.531751i
$$268$$ −5.89514 3.40356i −0.360103 0.207906i
$$269$$ 10.2776 17.8013i 0.626635 1.08536i −0.361587 0.932338i $$-0.617765\pi$$
0.988222 0.153025i $$-0.0489016\pi$$
$$270$$ −2.05825 + 0.873846i −0.125261 + 0.0531805i
$$271$$ 12.9912 22.5014i 0.789159 1.36686i −0.137324 0.990526i $$-0.543850\pi$$
0.926483 0.376337i $$-0.122816\pi$$
$$272$$ 3.79487 2.19097i 0.230098 0.132847i
$$273$$ 13.9459i 0.844044i
$$274$$ 17.9824 1.08636
$$275$$ −3.93202 13.7053i −0.237110 0.826464i
$$276$$ −2.51824 4.36172i −0.151580 0.262545i
$$277$$ 4.14296i 0.248926i 0.992224 + 0.124463i $$0.0397208\pi$$
−0.992224 + 0.124463i $$0.960279\pi$$
$$278$$ 20.6653i 1.23942i
$$279$$ −0.342602 0.593405i −0.0205111 0.0355262i
$$280$$ −4.14571 3.12356i −0.247754 0.186668i
$$281$$ −4.29844 7.44511i −0.256423 0.444138i 0.708858 0.705351i $$-0.249211\pi$$
−0.965281 + 0.261213i $$0.915877\pi$$
$$282$$ 6.83132 + 3.94406i 0.406799 + 0.234866i
$$283$$ 12.4490 + 7.18742i 0.740015 + 0.427248i 0.822075 0.569379i $$-0.192816\pi$$
−0.0820596 + 0.996627i $$0.526150\pi$$
$$284$$ 2.30297 0.136656
$$285$$ −9.45202 2.37893i −0.559889 0.140916i
$$286$$ 17.1317 1.01302
$$287$$ −10.3786 5.99208i −0.612628 0.353701i
$$288$$ −0.866025 0.500000i −0.0510310 0.0294628i
$$289$$ 1.10069 + 1.90644i 0.0647462 + 0.112144i
$$290$$ −11.8690 + 15.7530i −0.696972 + 0.925048i
$$291$$ 3.34681 + 5.79684i 0.196193 + 0.339817i
$$292$$ 6.21454i 0.363678i
$$293$$ 8.47490i 0.495109i −0.968874 0.247554i $$-0.920373\pi$$
0.968874 0.247554i $$-0.0796269\pi$$
$$294$$ −0.805646 1.39542i −0.0469862 0.0813825i
$$295$$ 2.98299 1.26645i 0.173677 0.0737357i
$$296$$ 7.79872 0.453291
$$297$$ 2.85165i 0.165469i
$$298$$ −3.33682 + 1.92651i −0.193297 + 0.111600i
$$299$$ −15.1287 + 26.2037i −0.874914 + 1.51540i
$$300$$ 4.80612 1.37886i 0.277481 0.0796085i
$$301$$ −3.00290 + 5.20118i −0.173084 + 0.299791i
$$302$$ 6.73182 + 3.88662i 0.387373 + 0.223650i
$$303$$ 14.0441i 0.806814i
$$304$$ −1.69397 4.01627i −0.0971560 0.230349i
$$305$$ 2.94285 23.9814i 0.168507 1.37317i
$$306$$ 2.19097 3.79487i 0.125249 0.216938i
$$307$$ −18.6780 10.7838i −1.06601 0.615462i −0.138922 0.990303i $$-0.544364\pi$$
−0.927089 + 0.374841i $$0.877697\pi$$
$$308$$ −5.73283 + 3.30985i −0.326658 + 0.188596i
$$309$$ 7.04788 12.2073i 0.400940 0.694449i
$$310$$ 0.598763 + 1.41032i 0.0340074 + 0.0801009i
$$311$$ 6.25433 0.354650 0.177325 0.984152i $$-0.443256\pi$$
0.177325 + 0.984152i $$0.443256\pi$$
$$312$$ 6.00764i 0.340116i
$$313$$ −15.3732 + 8.87575i −0.868947 + 0.501687i −0.866998 0.498311i $$-0.833954\pi$$
−0.00194901 + 0.999998i $$0.500620\pi$$
$$314$$ 9.63765 + 16.6929i 0.543884 + 0.942035i
$$315$$ −5.15207 0.632228i −0.290286 0.0356220i
$$316$$ 4.01365 0.225786
$$317$$ −0.640437 + 0.369757i −0.0359705 + 0.0207676i −0.517877 0.855455i $$-0.673278\pi$$
0.481907 + 0.876222i $$0.339944\pi$$
$$318$$ −4.86905 2.81115i −0.273043 0.157641i
$$319$$ 12.5769 + 21.7838i 0.704170 + 1.21966i
$$320$$ 1.78590 + 1.34557i 0.0998347 + 0.0752199i
$$321$$ −8.38645 + 14.5258i −0.468086 + 0.810748i
$$322$$ 11.6915i 0.651540i
$$323$$ 17.5991 7.42288i 0.979238 0.413020i
$$324$$ −1.00000 −0.0555556
$$325$$ −21.6106 20.8633i −1.19874 1.15729i
$$326$$ −7.95838 + 13.7843i −0.440774 + 0.763442i
$$327$$ −7.71093 + 4.45191i −0.426416 + 0.246191i
$$328$$ 4.47091 + 2.58128i 0.246865 + 0.142527i
$$329$$ 9.15559 + 15.8579i 0.504764 + 0.874277i
$$330$$ 0.776654 6.32900i 0.0427534 0.348400i
$$331$$ −4.54461 −0.249794 −0.124897 0.992170i $$-0.539860\pi$$
−0.124897 + 0.992170i $$0.539860\pi$$
$$332$$ −10.5821 + 6.10958i −0.580769 + 0.335307i
$$333$$ 6.75389 3.89936i 0.370111 0.213683i
$$334$$ −19.0151 −1.04046
$$335$$ 15.1079 + 1.85394i 0.825431 + 0.101291i
$$336$$ −1.16068 2.01036i −0.0633203 0.109674i
$$337$$ −17.9486 10.3626i −0.977722 0.564488i −0.0761405 0.997097i $$-0.524260\pi$$
−0.901582 + 0.432609i $$0.857593\pi$$
$$338$$ 19.9981 11.5459i 1.08775 0.628014i
$$339$$ 5.94352 10.2945i 0.322808 0.559120i
$$340$$ −5.89622 + 7.82569i −0.319767 + 0.424408i
$$341$$ 1.95396 0.105813
$$342$$ −3.47516 2.63121i −0.187915 0.142279i
$$343$$ 19.9899i 1.07935i
$$344$$ 1.29360 2.24057i 0.0697460 0.120804i
$$345$$ 8.99463 + 6.77695i 0.484255 + 0.364859i
$$346$$ −7.14712 12.3792i −0.384232 0.665509i
$$347$$ −10.7406 6.20108i −0.576585 0.332891i 0.183190 0.983077i $$-0.441358\pi$$
−0.759775 + 0.650186i $$0.774691\pi$$
$$348$$ −7.63902 + 4.41039i −0.409494 + 0.236422i
$$349$$ 14.4163 0.771684 0.385842 0.922565i $$-0.373911\pi$$
0.385842 + 0.922565i $$0.373911\pi$$
$$350$$ 11.2624 + 2.80636i 0.602002 + 0.150006i
$$351$$ 3.00382 + 5.20277i 0.160332 + 0.277703i
$$352$$ 2.46960 1.42582i 0.131630 0.0759967i
$$353$$ 35.6707i 1.89856i 0.314430 + 0.949281i $$0.398187\pi$$
−0.314430 + 0.949281i $$0.601813\pi$$
$$354$$ 1.44929 0.0770287
$$355$$ −4.74009 + 2.01244i −0.251578 + 0.106809i
$$356$$ 4.34444 7.52479i 0.230255 0.398813i
$$357$$ 8.80925 5.08602i 0.466235 0.269181i
$$358$$ −5.77363 3.33341i −0.305146 0.176176i
$$359$$ 1.15286 1.99682i 0.0608457 0.105388i −0.833998 0.551768i $$-0.813954\pi$$
0.894844 + 0.446380i $$0.147287\pi$$
$$360$$ 2.21942 + 0.272353i 0.116974 + 0.0143542i
$$361$$ −5.15348 18.2877i −0.271236 0.962513i
$$362$$ 6.13587i 0.322494i
$$363$$ 2.48385 + 1.43405i 0.130368 + 0.0752682i
$$364$$ −6.97295 + 12.0775i −0.365482 + 0.633033i
$$365$$ −5.43054 12.7911i −0.284248 0.669515i
$$366$$ 5.40264 9.35765i 0.282400 0.489132i
$$367$$ 9.47038 5.46773i 0.494350 0.285413i −0.232027 0.972709i $$-0.574536\pi$$
0.726377 + 0.687296i $$0.241203\pi$$
$$368$$ 5.03648i 0.262545i
$$369$$ 5.16256 0.268752
$$370$$ −16.0517 + 6.81487i −0.834489 + 0.354288i
$$371$$ −6.52568 11.3028i −0.338796 0.586813i
$$372$$ 0.685205i 0.0355262i
$$373$$ 23.3847i 1.21082i 0.795915 + 0.605408i $$0.206990\pi$$
−0.795915 + 0.605408i $$0.793010\pi$$
$$374$$ 6.24787 + 10.8216i 0.323070 + 0.559573i
$$375$$ −8.68728 + 7.03784i −0.448609 + 0.363433i
$$376$$ −3.94406 6.83132i −0.203400 0.352298i
$$377$$ 45.8925 + 26.4960i 2.36358 + 1.36462i
$$378$$ −2.01036 1.16068i −0.103402 0.0596989i
$$379$$ −23.2493 −1.19424 −0.597118 0.802154i $$-0.703687\pi$$
−0.597118 + 0.802154i $$0.703687\pi$$
$$380$$ 6.99622 + 6.78623i 0.358899 + 0.348126i
$$381$$ −8.92191 −0.457083
$$382$$ −16.3200 9.42238i −0.835006 0.482091i
$$383$$ −17.9351 10.3548i −0.916441 0.529107i −0.0339428 0.999424i $$-0.510806\pi$$
−0.882498 + 0.470317i $$0.844140\pi$$
$$384$$ 0.500000 + 0.866025i 0.0255155 + 0.0441942i
$$385$$ 8.90730 11.8221i 0.453958 0.602510i
$$386$$ −8.26218 14.3105i −0.420534 0.728386i
$$387$$ 2.58719i 0.131514i
$$388$$ 6.69361i 0.339817i
$$389$$ 18.1887 + 31.5037i 0.922203 + 1.59730i 0.795999 + 0.605297i $$0.206946\pi$$
0.126203 + 0.992004i $$0.459721\pi$$
$$390$$ −5.24975 12.3652i −0.265832 0.626138i
$$391$$ −22.0695 −1.11610
$$392$$ 1.61129i 0.0813825i
$$393$$ −0.0475134 + 0.0274319i −0.00239673 + 0.00138376i
$$394$$ 3.45127 5.97778i 0.173873 0.301156i
$$395$$ −8.26110 + 3.50731i −0.415661 + 0.176472i
$$396$$ 1.42582 2.46960i 0.0716504 0.124102i
$$397$$ −28.6128 16.5196i −1.43604 0.829096i −0.438464 0.898749i $$-0.644477\pi$$
−0.997571 + 0.0696530i $$0.977811\pi$$
$$398$$ 6.53029i 0.327334i
$$399$$ −3.93232 9.32321i −0.196862 0.466745i
$$400$$ −4.85165 1.20893i −0.242582 0.0604465i
$$401$$ −10.5982 + 18.3566i −0.529249 + 0.916685i 0.470170 + 0.882576i $$0.344193\pi$$
−0.999418 + 0.0341092i $$0.989141\pi$$
$$402$$ 5.89514 + 3.40356i 0.294023 + 0.169754i
$$403$$ 3.56496 2.05823i 0.177583 0.102528i
$$404$$ 7.02206 12.1626i 0.349361 0.605110i
$$405$$ 2.05825 0.873846i 0.102275 0.0434217i
$$406$$ −20.4762 −1.01622
$$407$$ 22.2392i 1.10236i
$$408$$ −3.79487 + 2.19097i −0.187874 + 0.108469i
$$409$$ −5.26086 9.11207i −0.260133 0.450563i 0.706144 0.708068i $$-0.250433\pi$$
−0.966277 + 0.257505i $$0.917100\pi$$
$$410$$ −11.4579 1.40604i −0.565865 0.0694392i
$$411$$ −17.9824 −0.887005
$$412$$ −12.2073 + 7.04788i −0.601410 + 0.347224i
$$413$$ 2.91358 + 1.68216i 0.143368 + 0.0827735i
$$414$$ 2.51824 + 4.36172i 0.123765 + 0.214367i
$$415$$ 16.4418 21.8222i 0.807096 1.07121i
$$416$$ 3.00382 5.20277i 0.147275 0.255087i
$$417$$ 20.6653i 1.01199i
$$418$$ 11.4530 4.83061i 0.560185 0.236273i
$$419$$ −26.3874 −1.28911 −0.644555 0.764558i $$-0.722957\pi$$
−0.644555 + 0.764558i $$0.722957\pi$$
$$420$$ 4.14571 + 3.12356i 0.202290 + 0.152414i
$$421$$ −4.24202 + 7.34740i −0.206743 + 0.358090i −0.950687 0.310152i $$-0.899620\pi$$
0.743943 + 0.668243i $$0.232953\pi$$
$$422$$ −19.3891 + 11.1943i −0.943847 + 0.544931i
$$423$$ −6.83132 3.94406i −0.332150 0.191767i
$$424$$ 2.81115 + 4.86905i 0.136521 + 0.236462i
$$425$$ 5.29745 21.2596i 0.256964 1.03124i
$$426$$ −2.30297 −0.111579
$$427$$ 21.7225 12.5415i 1.05122 0.606924i
$$428$$ 14.5258 8.38645i 0.702129 0.405374i
$$429$$ −17.1317 −0.827126
$$430$$ −0.704628 + 5.74206i −0.0339802 + 0.276907i
$$431$$ 9.83833 + 17.0405i 0.473896 + 0.820811i 0.999553 0.0298849i $$-0.00951409\pi$$
−0.525658 + 0.850696i $$0.676181\pi$$
$$432$$ 0.866025 + 0.500000i 0.0416667 + 0.0240563i
$$433$$ 12.0899 6.98010i 0.581003 0.335442i −0.180529 0.983570i $$-0.557781\pi$$
0.761532 + 0.648127i $$0.224448\pi$$
$$434$$ −0.795303 + 1.37751i −0.0381758 + 0.0661224i
$$435$$ 11.8690 15.7530i 0.569075 0.755299i
$$436$$ 8.90382 0.426416
$$437$$ −2.72531 + 21.7837i −0.130369 + 1.04205i
$$438$$ 6.21454i 0.296942i
$$439$$ 10.2610 17.7725i 0.489729 0.848236i −0.510201 0.860055i $$-0.670429\pi$$
0.999930 + 0.0118193i $$0.00376230\pi$$
$$440$$ −3.83710 + 5.09275i −0.182927 + 0.242787i
$$441$$ 0.805646 + 1.39542i 0.0383641 + 0.0664485i
$$442$$ 22.7982 + 13.1626i 1.08440 + 0.626079i
$$443$$ 20.4256 11.7927i 0.970450 0.560290i 0.0710768 0.997471i $$-0.477356\pi$$
0.899374 + 0.437181i $$0.144023\pi$$
$$444$$ −7.79872 −0.370111
$$445$$ −2.36644 + 19.2843i −0.112180 + 0.914162i
$$446$$ 0.938256 + 1.62511i 0.0444277 + 0.0769510i
$$447$$ 3.33682 1.92651i 0.157826 0.0911209i
$$448$$ 2.32136i 0.109674i
$$449$$ −28.2500 −1.33320 −0.666601 0.745415i $$-0.732251\pi$$
−0.666601 + 0.745415i $$0.732251\pi$$
$$450$$ −4.80612 + 1.37886i −0.226562 + 0.0650001i
$$451$$ −7.36090 + 12.7495i −0.346611 + 0.600349i
$$452$$ −10.2945 + 5.94352i −0.484212 + 0.279560i
$$453$$ −6.73182 3.88662i −0.316289 0.182609i
$$454$$ −10.1852 + 17.6412i −0.478013 + 0.827943i
$$455$$ 3.79820 30.9518i 0.178063 1.45104i
$$456$$ 1.69397 + 4.01627i 0.0793275 + 0.188079i
$$457$$ 31.6784i 1.48185i −0.671587 0.740926i $$-0.734387\pi$$
0.671587 0.740926i $$-0.265613\pi$$
$$458$$ −9.33688 5.39065i −0.436284 0.251889i
$$459$$ −2.19097 + 3.79487i −0.102266 + 0.177129i
$$460$$ −4.40110 10.3663i −0.205203 0.483333i
$$461$$ 0.595751 1.03187i 0.0277469 0.0480590i −0.851819 0.523837i $$-0.824500\pi$$
0.879565 + 0.475778i $$0.157833\pi$$
$$462$$ 5.73283 3.30985i 0.266715 0.153988i
$$463$$ 19.8469i 0.922366i 0.887305 + 0.461183i $$0.152575\pi$$
−0.887305 + 0.461183i $$0.847425\pi$$
$$464$$ 8.82078 0.409494
$$465$$ −0.598763 1.41032i −0.0277670 0.0654021i
$$466$$ −6.78823 11.7576i −0.314458 0.544658i
$$467$$ 14.2451i 0.659184i 0.944123 + 0.329592i $$0.106911\pi$$
−0.944123 + 0.329592i $$0.893089\pi$$
$$468$$ 6.00764i 0.277703i
$$469$$ 7.90089 + 13.6847i 0.364829 + 0.631903i
$$470$$ 14.0874 + 10.6141i 0.649803 + 0.489590i
$$471$$ −9.63765 16.6929i −0.444080 0.769169i
$$472$$ −1.25512 0.724643i −0.0577715 0.0333544i
$$473$$ 6.38933 + 3.68888i 0.293782 + 0.169615i
$$474$$ −4.01365 −0.184353
$$475$$ −20.3301 7.85413i −0.932809 0.360372i
$$476$$ −10.1720 −0.466235
$$477$$ 4.86905 + 2.81115i 0.222938 + 0.128714i
$$478$$ 1.80203 + 1.04040i 0.0824231 + 0.0475870i
$$479$$ 14.3482 + 24.8519i 0.655588 + 1.13551i 0.981746 + 0.190196i $$0.0609123\pi$$
−0.326159 + 0.945315i $$0.605754\pi$$
$$480$$ −1.78590 1.34557i −0.0815147 0.0614168i
$$481$$ 23.4260 + 40.5749i 1.06813 + 1.85006i
$$482$$ 17.0263i 0.775529i
$$483$$ 11.6915i 0.531980i
$$484$$ −1.43405 2.48385i −0.0651842 0.112902i
$$485$$ 5.84918 + 13.7771i 0.265598 + 0.625587i
$$486$$ 1.00000 0.0453609
$$487$$ 19.6433i 0.890122i 0.895500 + 0.445061i $$0.146818\pi$$
−0.895500 + 0.445061i $$0.853182\pi$$
$$488$$ −9.35765 + 5.40264i −0.423601 + 0.244566i
$$489$$ 7.95838 13.7843i 0.359890 0.623348i
$$490$$ −1.40802 3.31644i −0.0636079 0.149822i
$$491$$ 4.99544 8.65235i 0.225441 0.390475i −0.731011 0.682366i $$-0.760951\pi$$
0.956452 + 0.291891i $$0.0942844\pi$$
$$492$$ −4.47091 2.58128i −0.201564 0.116373i
$$493$$ 38.6521i 1.74080i
$$494$$ 15.8074 20.8775i 0.711207 0.939324i
$$495$$ −0.776654 + 6.32900i −0.0349080 + 0.284468i
$$496$$ 0.342602 0.593405i 0.0153833 0.0266446i
$$497$$ −4.62980 2.67301i −0.207675 0.119901i
$$498$$ 10.5821 6.10958i 0.474196 0.273777i
$$499$$ −7.18085 + 12.4376i −0.321459 + 0.556784i −0.980789 0.195070i $$-0.937507\pi$$
0.659330 + 0.751854i $$0.270840\pi$$
$$500$$ 11.0423 1.75131i 0.493828 0.0783210i
$$501$$ 19.0151 0.849531
$$502$$ 19.2514i 0.859233i
$$503$$ 7.26003 4.19158i 0.323709 0.186893i −0.329336 0.944213i $$-0.606825\pi$$
0.653044 + 0.757320i $$0.273491\pi$$
$$504$$ 1.16068 + 2.01036i 0.0517008 + 0.0895484i
$$505$$ −3.82495 + 31.1698i −0.170208 + 1.38704i
$$506$$ −14.3623 −0.638480
$$507$$ −19.9981 + 11.5459i −0.888146 + 0.512771i
$$508$$ 7.72660 + 4.46095i 0.342812 + 0.197923i
$$509$$ 5.67635 + 9.83173i 0.251600 + 0.435784i 0.963966 0.266024i $$-0.0857100\pi$$
−0.712367 + 0.701808i $$0.752377\pi$$
$$510$$ 5.89622 7.82569i 0.261089 0.346527i
$$511$$ 7.21308 12.4934i 0.319088 0.552677i
$$512$$ 1.00000i 0.0441942i
$$513$$ 3.47516 + 2.63121i 0.153432 + 0.116171i
$$514$$ 17.6914 0.780333
$$515$$ 18.9669 25.1736i 0.835781 1.10928i
$$516$$ −1.29360 + 2.24057i −0.0569474 + 0.0986357i
$$517$$ 19.4805 11.2471i 0.856752 0.494646i
$$518$$ −15.6782 9.05181i −0.688860 0.397714i
$$519$$ 7.14712 + 12.3792i 0.313724 + 0.543386i
$$520$$ −1.63620 + 13.3335i −0.0717520 + 0.584712i
$$521$$ −29.3742 −1.28691 −0.643453 0.765485i $$-0.722499\pi$$
−0.643453 + 0.765485i $$0.722499\pi$$
$$522$$ 7.63902 4.41039i 0.334351 0.193037i
$$523$$ 35.2243 20.3368i 1.54025 0.889265i 0.541429 0.840746i $$-0.317883\pi$$
0.998822 0.0485186i $$-0.0154500\pi$$
$$524$$ 0.0548638 0.00239673
$$525$$ −11.2624 2.80636i −0.491532 0.122480i
$$526$$ −5.76364 9.98291i −0.251307 0.435276i
$$527$$ 2.60026 + 1.50126i 0.113269 + 0.0653960i
$$528$$ −2.46960 + 1.42582i −0.107476 + 0.0620510i
$$529$$ 1.18305 2.04911i 0.0514371 0.0890917i
$$530$$ −10.0408 7.56521i −0.436146 0.328612i
$$531$$ −1.44929 −0.0628937
$$532$$ −1.25612 + 10.0403i −0.0544597 + 0.435302i
$$533$$ 31.0148i 1.34340i
$$534$$ −4.34444 + 7.52479i −0.188002 + 0.325630i
$$535$$ −22.5692 + 29.9547i −0.975750 + 1.29505i
$$536$$ −3.40356 5.89514i −0.147011 0.254631i
$$537$$ 5.77363 + 3.33341i 0.249151 + 0.143847i
$$538$$ 17.8013 10.2776i 0.767468 0.443098i
$$539$$ −4.59484 −0.197914
$$540$$ −2.21942 0.272353i −0.0955086 0.0117202i
$$541$$ −12.6792 21.9610i −0.545122 0.944179i −0.998599 0.0529108i $$-0.983150\pi$$
0.453478 0.891268i $$-0.350183\pi$$
$$542$$ 22.5014 12.9912i 0.966518 0.558019i
$$543$$ 6.13587i 0.263315i
$$544$$ 4.38194 0.187874
$$545$$ −18.3263 + 7.78056i −0.785012 + 0.333283i
$$546$$ 6.97295 12.0775i 0.298415 0.516870i
$$547$$ 27.8110 16.0567i 1.18911 0.686535i 0.231009 0.972952i $$-0.425797\pi$$
0.958105 + 0.286417i $$0.0924641\pi$$
$$548$$ 15.5732 + 8.99119i 0.665254 + 0.384085i
$$549$$ −5.40264 + 9.35765i −0.230579 + 0.399375i
$$550$$ 3.44744 13.8352i 0.146999 0.589935i
$$551$$ 38.1515 + 4.77304i 1.62531 + 0.203338i
$$552$$ 5.03648i 0.214367i
$$553$$ −8.06887 4.65857i −0.343123 0.198102i
$$554$$ −2.07148 + 3.58791i −0.0880087 + 0.152435i
$$555$$ 16.0517 6.81487i 0.681357 0.289275i
$$556$$ 10.3327 17.8967i 0.438203 0.758989i
$$557$$ −6.90306 + 3.98549i −0.292492 + 0.168870i −0.639065 0.769153i $$-0.720679\pi$$
0.346573 + 0.938023i $$0.387345\pi$$
$$558$$ 0.685205i 0.0290070i
$$559$$ 15.5429 0.657396
$$560$$ −2.02851 4.77794i −0.0857202 0.201905i
$$561$$ −6.24787 10.8216i −0.263785 0.456890i
$$562$$ 8.59688i 0.362637i
$$563$$ 13.8459i 0.583537i −0.956489 0.291768i $$-0.905756\pi$$
0.956489 0.291768i $$-0.0942436\pi$$
$$564$$ 3.94406 + 6.83132i 0.166075 + 0.287650i
$$565$$ 15.9949 21.2290i 0.672911 0.893113i
$$566$$ 7.18742 + 12.4490i 0.302110 + 0.523270i
$$567$$ 2.01036 + 1.16068i 0.0844270 + 0.0487440i
$$568$$ 1.99443 + 1.15149i 0.0836846 + 0.0483153i
$$569$$ 28.6171 1.19969 0.599845 0.800117i $$-0.295229\pi$$
0.599845 + 0.800117i $$0.295229\pi$$
$$570$$ −6.99622 6.78623i −0.293040 0.284244i
$$571$$ 18.2331 0.763033 0.381517 0.924362i $$-0.375402\pi$$
0.381517 + 0.924362i $$0.375402\pi$$
$$572$$ 14.8365 + 8.56584i 0.620344 + 0.358156i
$$573$$ 16.3200 + 9.42238i 0.681780 + 0.393626i
$$574$$ −5.99208 10.3786i −0.250105 0.433194i
$$575$$ 18.1171 + 17.4906i 0.755537 + 0.729409i
$$576$$ −0.500000 0.866025i −0.0208333 0.0360844i
$$577$$ 37.3878i 1.55647i −0.627970 0.778237i $$-0.716114\pi$$
0.627970 0.778237i $$-0.283886\pi$$
$$578$$ 2.20137i 0.0915650i
$$579$$ 8.26218 + 14.3105i 0.343365 + 0.594725i
$$580$$ −18.1554 + 7.70800i −0.753860 + 0.320057i
$$581$$ 28.3651 1.17678
$$582$$ 6.69361i 0.277459i
$$583$$ −13.8848 + 8.01640i −0.575050 + 0.332005i
$$584$$ −3.10727 + 5.38195i −0.128580 + 0.222707i
$$585$$ 5.24975 + 12.3652i 0.217051 + 0.511240i
$$586$$ 4.23745 7.33948i 0.175047 0.303191i
$$587$$ 1.52408 + 0.879926i 0.0629053 + 0.0363184i 0.531123 0.847295i $$-0.321770\pi$$
−0.468217 + 0.883613i $$0.655104\pi$$
$$588$$ 1.61129i 0.0664485i
$$589$$ 1.80292 2.38120i 0.0742879 0.0981155i
$$590$$ 3.21657 + 0.394717i 0.132424 + 0.0162502i
$$591$$ −3.45127 + 5.97778i −0.141966 + 0.245893i
$$592$$ 6.75389 + 3.89936i 0.277583 + 0.160263i
$$593$$ 9.65263 5.57295i 0.396386 0.228854i −0.288537 0.957469i $$-0.593169\pi$$
0.684923 + 0.728615i $$0.259836\pi$$
$$594$$ −1.42582 + 2.46960i −0.0585023 + 0.101329i
$$595$$ 20.9366 8.88880i 0.858318 0.364405i
$$596$$ −3.85302 −0.157826
$$597$$ 6.53029i 0.267267i
$$598$$ −26.2037 + 15.1287i −1.07155 + 0.618658i
$$599$$ 19.0286 + 32.9586i 0.777489 + 1.34665i 0.933385 + 0.358877i $$0.116840\pi$$
−0.155896 + 0.987774i $$0.549826\pi$$
$$600$$ 4.85165 + 1.20893i 0.198068 + 0.0493543i
$$601$$ 34.4084 1.40355 0.701775 0.712399i $$-0.252391\pi$$
0.701775 + 0.712399i $$0.252391\pi$$
$$602$$ −5.20118 + 3.00290i −0.211984 + 0.122389i
$$603$$ −5.89514 3.40356i −0.240069 0.138604i
$$604$$ 3.88662 + 6.73182i 0.158144 + 0.273914i
$$605$$ 5.12214 + 3.85925i 0.208245 + 0.156901i
$$606$$ −7.02206 + 12.1626i −0.285252 + 0.494071i
$$607$$ 16.1885i 0.657071i −0.944492 0.328536i $$-0.893445\pi$$
0.944492 0.328536i $$-0.106555\pi$$
$$608$$ 0.541114 4.32518i 0.0219451 0.175409i
$$609$$ 20.4762 0.829737
$$610$$ 14.5393 19.2971i 0.588679 0.781318i
$$611$$ 23.6945 41.0401i 0.958578 1.66031i
$$612$$ 3.79487 2.19097i 0.153398 0.0885647i
$$613$$ 16.7637 + 9.67851i 0.677078 + 0.390911i 0.798753 0.601659i $$-0.205493\pi$$
−0.121675 + 0.992570i $$0.538827\pi$$
$$614$$ −10.7838 18.6780i −0.435197 0.753784i
$$615$$ 11.4579 + 1.40604i 0.462027 + 0.0566969i
$$616$$ −6.61970 −0.266715
$$617$$ 7.58517 4.37930i 0.305367 0.176304i −0.339484 0.940612i $$-0.610253\pi$$
0.644852 + 0.764308i $$0.276919\pi$$
$$618$$ 12.2073 7.04788i 0.491049 0.283507i
$$619$$ 36.5640 1.46963 0.734815 0.678268i $$-0.237269\pi$$
0.734815 + 0.678268i $$0.237269\pi$$
$$620$$ −0.186617 + 1.52076i −0.00749473 + 0.0610750i
$$621$$ −2.51824 4.36172i −0.101053 0.175030i
$$622$$ 5.41641 + 3.12716i 0.217178 + 0.125388i
$$623$$ −17.4677 + 10.0850i −0.699830 + 0.404047i
$$624$$ −3.00382 + 5.20277i −0.120249 + 0.208278i
$$625$$ −21.1975 + 13.2539i −0.847900 + 0.530157i
$$626$$ −17.7515 −0.709492
$$627$$ −11.4530 + 4.83061i −0.457389 + 0.192916i
$$628$$ 19.2753i 0.769169i
$$629$$ −17.0867 + 29.5951i −0.681293 + 1.18003i
$$630$$ −4.14571 3.12356i −0.165169 0.124446i
$$631$$ 12.0437 + 20.8604i 0.479453 + 0.830437i 0.999722 0.0235650i $$-0.00750166\pi$$
−0.520269 + 0.854002i $$0.674168\pi$$
$$632$$ 3.47593 + 2.00683i 0.138265 + 0.0798273i
$$633$$ 19.3891 11.1943i 0.770648 0.444934i
$$634$$ −0.739513 −0.0293698
$$635$$ −19.8015 2.42991i −0.785797 0.0964279i
$$636$$ −2.81115 4.86905i −0.111469 0.193070i
$$637$$ −8.38318 + 4.84003i −0.332154 + 0.191769i
$$638$$ 25.1538i 0.995847i
$$639$$ 2.30297 0.0911042
$$640$$ 0.873846 + 2.05825i 0.0345418 + 0.0813595i
$$641$$ −12.7503 + 22.0841i −0.503605 + 0.872270i 0.496386 + 0.868102i $$0.334660\pi$$
−0.999991 + 0.00416788i $$0.998673\pi$$
$$642$$ −14.5258 + 8.38645i −0.573286 + 0.330987i
$$643$$ −8.09885 4.67587i −0.319387 0.184398i 0.331732 0.943374i $$-0.392367\pi$$
−0.651119 + 0.758975i $$0.725700\pi$$
$$644$$ 5.84574 10.1251i 0.230354 0.398985i
$$645$$ 0.704628 5.74206i 0.0277447 0.226094i
$$646$$ 18.9527 + 2.37113i 0.745683 + 0.0932907i
$$647$$ 2.93501i 0.115387i −0.998334 0.0576935i $$-0.981625\pi$$
0.998334 0.0576935i $$-0.0183746\pi$$
$$648$$ −0.866025 0.500000i −0.0340207 0.0196419i
$$649$$ 2.06643 3.57916i 0.0811144 0.140494i
$$650$$ −8.28370 28.8734i −0.324914 1.13251i
$$651$$ 0.795303 1.37751i 0.0311704 0.0539887i
$$652$$ −13.7843 + 7.95838i −0.539835 + 0.311674i
$$653$$ 13.5336i 0.529613i −0.964302 0.264806i $$-0.914692\pi$$
0.964302 0.264806i $$-0.0853080\pi$$
$$654$$ −8.90382 −0.348167
$$655$$ −0.112923 + 0.0479425i −0.00441228 + 0.00187327i
$$656$$ 2.58128 + 4.47091i 0.100782 + 0.174560i
$$657$$ 6.21454i 0.242452i
$$658$$ 18.3112i 0.713844i
$$659$$ −11.2236 19.4399i −0.437210 0.757270i 0.560263 0.828315i $$-0.310700\pi$$
−0.997473 + 0.0710447i $$0.977367\pi$$
$$660$$ 3.83710 5.09275i 0.149359 0.198235i
$$661$$ −4.81389 8.33791i −0.187239 0.324307i 0.757090 0.653311i $$-0.226620\pi$$
−0.944329 + 0.329004i $$0.893287\pi$$
$$662$$ −3.93574 2.27230i −0.152967 0.0883156i
$$663$$ −22.7982 13.1626i −0.885410 0.511191i
$$664$$ −12.2192 −0.474196
$$665$$ −6.18826 21.7631i −0.239971 0.843937i
$$666$$ 7.79872 0.302194
$$667$$ −38.4737 22.2128i −1.48971 0.860084i
$$668$$ −16.4675 9.50754i −0.637148 0.367858i
$$669$$ −0.938256 1.62511i −0.0362751 0.0628302i
$$670$$ 12.1568 + 9.15949i 0.469659 + 0.353862i
$$671$$ −15.4064 26.6847i −0.594758 1.03015i
$$672$$ 2.32136i 0.0895484i
$$673$$ 3.35484i 0.129320i 0.997907 + 0.0646598i $$0.0205962\pi$$
−0.997907 + 0.0646598i $$0.979404\pi$$
$$674$$ −10.3626 17.9486i −0.399153 0.691354i
$$675$$ 4.80612 1.37886i 0.184987 0.0530724i
$$676$$ 23.0918 0.888146
$$677$$ 18.6287i 0.715958i −0.933730 0.357979i $$-0.883466\pi$$
0.933730 0.357979i $$-0.116534\pi$$
$$678$$ 10.2945 5.94352i 0.395357 0.228260i
$$679$$ −7.76914 + 13.4565i −0.298152 + 0.516415i
$$680$$ −9.01912 + 3.82914i −0.345868 + 0.146841i
$$681$$ 10.1852 17.6412i 0.390296 0.676013i
$$682$$ 1.69218 + 0.976981i 0.0647970 + 0.0374105i
$$683$$ 22.3842i 0.856506i 0.903659 + 0.428253i $$0.140871\pi$$
−0.903659 + 0.428253i $$0.859129\pi$$
$$684$$ −1.69397 4.01627i −0.0647707 0.153566i
$$685$$ −39.9104 4.89755i −1.52490 0.187126i
$$686$$ 9.99495 17.3118i 0.381609 0.660966i
$$687$$ 9.33688 + 5.39065i 0.356224 + 0.205666i
$$688$$ 2.24057 1.29360i 0.0854211 0.0493179i
$$689$$ −16.8884 + 29.2515i −0.643396 + 1.11439i
$$690$$ 4.40110 + 10.3663i 0.167547 + 0.394639i
$$691$$ −43.1700 −1.64226 −0.821132 0.570738i $$-0.806657\pi$$
−0.821132 + 0.570738i $$0.806657\pi$$
$$692$$ 14.2942i 0.543386i
$$693$$ −5.73283 + 3.30985i −0.217772 + 0.125731i
$$694$$ −6.20108 10.7406i −0.235390 0.407707i
$$695$$ −5.62826 + 45.8651i −0.213492 + 1.73976i
$$696$$ −8.82078 −0.334351
$$697$$ −19.5912 + 11.3110i −0.742071 + 0.428435i
$$698$$ 12.4848 + 7.20813i 0.472558 + 0.272832i
$$699$$ 6.78823 + 11.7576i 0.256754 + 0.444711i
$$700$$ 8.35036 + 8.06159i 0.315614 + 0.304699i
$$701$$ −14.1571 + 24.5208i −0.534705 + 0.926137i 0.464472 + 0.885588i $$0.346244\pi$$
−0.999178 + 0.0405493i $$0.987089\pi$$
$$702$$ 6.00764i 0.226744i
$$703$$ 27.1018 + 20.5200i 1.02216 + 0.773928i
$$704$$ 2.85165 0.107476
$$705$$ −14.0874 10.6141i −0.530562 0.399749i
$$706$$ −17.8354 + 30.8918i −0.671243 + 1.16263i
$$707$$ −28.2337 + 16.3007i −1.06184 + 0.613052i
$$708$$ 1.25512 + 0.724643i 0.0471702 + 0.0272338i
$$709$$ 8.52409 + 14.7642i 0.320129 + 0.554480i 0.980514 0.196447i $$-0.0629404\pi$$
−0.660385 + 0.750927i $$0.729607\pi$$
$$710$$ −5.11126 0.627221i −0.191822 0.0235392i
$$711$$ 4.01365 0.150524
$$712$$ 7.52479 4.34444i 0.282003 0.162815i
$$713$$ −2.98867 + 1.72551i −0.111927 + 0.0646208i
$$714$$ 10.1720 0.380679
$$715$$ −38.0224 4.66586i −1.42196 0.174493i
$$716$$ −3.33341 5.77363i −0.124575 0.215771i
$$717$$ −1.80203 1.04040i −0.0672981 0.0388546i
$$718$$ 1.99682 1.15286i 0.0745205 0.0430244i
$$719$$ −1.65729 + 2.87050i −0.0618063 + 0.107052i −0.895273 0.445518i $$-0.853019\pi$$
0.833467 + 0.552570i $$0.186353\pi$$
$$720$$ 1.78590 + 1.34557i 0.0665565 + 0.0501466i
$$721$$ 32.7213 1.21861
$$722$$ 4.68083 18.4144i 0.174202 0.685313i
$$723$$ 17.0263i 0.633217i
$$724$$ 3.06793 5.31382i 0.114019 0.197486i
$$725$$ 30.6327 31.7300i 1.13767 1.17842i
$$726$$ 1.43405 + 2.48385i 0.0532226 + 0.0921843i
$$727$$ −29.7663 17.1856i −1.10397 0.637379i −0.166711 0.986006i $$-0.553315\pi$$
−0.937261 + 0.348627i $$0.886648\pi$$
$$728$$ −12.0775 + 6.97295i −0.447622 + 0.258435i
$$729$$ −1.00000 −0.0370370
$$730$$ 1.69255 13.7927i 0.0626439 0.510489i
$$731$$ 5.66845 + 9.81805i 0.209655 + 0.363134i
$$732$$ 9.35765 5.40264i 0.345869 0.199687i
$$733$$ 39.0068i 1.44075i −0.693585 0.720375i $$-0.743970\pi$$
0.693585 0.720375i $$-0.256030\pi$$
$$734$$ 10.9355 0.403635
$$735$$ 1.40802 + 3.31644i 0.0519356 + 0.122329i
$$736$$ −2.51824 + 4.36172i −0.0928235 + 0.160775i
$$737$$ 16.8109 9.70576i 0.619236 0.357516i
$$738$$ 4.47091 + 2.58128i 0.164576 + 0.0950182i
$$739$$ −4.19339 + 7.26316i −0.154256 + 0.267180i −0.932788 0.360426i $$-0.882631\pi$$
0.778532 + 0.627605i $$0.215965\pi$$
$$740$$ −17.3086 2.12400i −0.636278 0.0780798i
$$741$$ −15.8074 + 20.8775i −0.580698 + 0.766955i
$$742$$ 13.0514i 0.479131i
$$743$$ −1.64985 0.952540i −0.0605270 0.0349453i 0.469431 0.882969i $$-0.344459\pi$$
−0.529958 + 0.848024i $$0.677792\pi$$
$$744$$ −0.342602 + 0.593405i −0.0125604 + 0.0217553i
$$745$$ 7.93049 3.36695i 0.290551 0.123355i
$$746$$ −11.6924 + 20.2518i −0.428088 + 0.741470i
$$747$$ −10.5821 + 6.10958i −0.387179 + 0.223538i
$$748$$ 12.4957i 0.456890i
$$749$$ −38.9359 −1.42269
$$750$$ −11.0423 + 1.75131i −0.403209 + 0.0639488i
$$751$$ −5.63534 9.76069i −0.205636 0.356173i 0.744699 0.667401i $$-0.232593\pi$$
−0.950335 + 0.311228i $$0.899260\pi$$
$$752$$ 7.88813i 0.287650i
$$753$$ 19.2514i 0.701561i
$$754$$ 26.4960 + 45.8925i 0.964929 + 1.67131i
$$755$$ −13.8822 10.4595i −0.505225 0.380659i
$$756$$ −1.16068 2.01036i −0.0422135 0.0731159i
$$757$$ 38.7692 + 22.3834i 1.40909 + 0.813540i 0.995301 0.0968318i $$-0.0308709\pi$$
0.413792 + 0.910372i $$0.364204\pi$$
$$758$$ −20.1345 11.6246i −0.731317 0.422226i
$$759$$ 14.3623 0.521317
$$760$$ 2.66579 + 9.37516i 0.0966985 + 0.340073i
$$761$$ −33.7181 −1.22228 −0.611139 0.791523i $$-0.709289\pi$$
−0.611139 + 0.791523i $$0.709289\pi$$
$$762$$ −7.72660 4.46095i −0.279905 0.161603i
$$763$$ −17.8998 10.3345i −0.648018 0.374133i
$$764$$ −9.42238 16.3200i −0.340890 0.590439i
$$765$$ −5.89622 + 7.82569i −0.213178 + 0.282938i
$$766$$ −10.3548 17.9351i −0.374135 0.648021i
$$767$$ 8.70680i 0.314384i
$$768$$ 1.00000i 0.0360844i
$$769$$ 16.2178 + 28.0901i 0.584830 + 1.01296i 0.994897 + 0.100900i $$0.0321723\pi$$
−0.410066 + 0.912056i $$0.634494\pi$$
$$770$$ 13.6250 5.78460i 0.491011 0.208462i
$$771$$ −17.6914 −0.637139
$$772$$ 16.5244i 0.594725i
$$773$$ 35.2122 20.3298i 1.26649 0.731211i 0.292172 0.956366i $$-0.405622\pi$$
0.974323 + 0.225155i $$0.0722888\pi$$
$$774$$ 1.29360 2.24057i 0.0464973 0.0805358i
$$775$$ −0.944801 3.29317i −0.0339383