Properties

Label 570.2.q.c.49.5
Level $570$
Weight $2$
Character 570.49
Analytic conductor $4.551$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 49 x^{16} - 8 x^{15} + 72 x^{13} + 2145 x^{12} - 648 x^{11} + 32 x^{10} - 7056 x^{9} - 11968 x^{8} + 10368 x^{7} + 9344 x^{6} + 18176 x^{5} + 56320 x^{4} + 28160 x^{3} + 8192 x^{2} + 4096 x + 1024\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.5
Root \(-0.372041 + 0.0996880i\) of defining polynomial
Character \(\chi\) \(=\) 570.49
Dual form 570.2.q.c.349.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(2.05825 + 0.873846i) q^{5} +(-0.500000 - 0.866025i) q^{6} +2.32136i q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(2.05825 + 0.873846i) q^{5} +(-0.500000 - 0.866025i) q^{6} +2.32136i q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(-1.34557 - 1.78590i) q^{10} -2.85165 q^{11} +1.00000i q^{12} +(5.20277 - 3.00382i) q^{13} +(1.16068 - 2.01036i) q^{14} +(1.34557 + 1.78590i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.79487 + 2.19097i) q^{17} -1.00000i q^{18} +(-2.63121 + 3.47516i) q^{19} +(0.272353 + 2.21942i) q^{20} +(-1.16068 + 2.01036i) q^{21} +(2.46960 + 1.42582i) q^{22} +(-4.36172 + 2.51824i) q^{23} +(0.500000 - 0.866025i) q^{24} +(3.47279 + 3.59719i) q^{25} -6.00764 q^{26} +1.00000i q^{27} +(-2.01036 + 1.16068i) q^{28} +(-4.41039 - 7.63902i) q^{29} +(-0.272353 - 2.21942i) q^{30} -0.685205 q^{31} +(0.866025 - 0.500000i) q^{32} +(-2.46960 - 1.42582i) q^{33} +(-2.19097 - 3.79487i) q^{34} +(-2.02851 + 4.77794i) q^{35} +(-0.500000 + 0.866025i) q^{36} +7.79872i q^{37} +(4.01627 - 1.69397i) q^{38} +6.00764 q^{39} +(0.873846 - 2.05825i) q^{40} +(2.58128 - 4.47091i) q^{41} +(2.01036 - 1.16068i) q^{42} +(2.24057 + 1.29360i) q^{43} +(-1.42582 - 2.46960i) q^{44} +(0.272353 + 2.21942i) q^{45} +5.03648 q^{46} +(6.83132 - 3.94406i) q^{47} +(-0.866025 + 0.500000i) q^{48} +1.61129 q^{49} +(-1.20893 - 4.85165i) q^{50} +(2.19097 + 3.79487i) q^{51} +(5.20277 + 3.00382i) q^{52} +(-4.86905 + 2.81115i) q^{53} +(0.500000 - 0.866025i) q^{54} +(-5.86941 - 2.49190i) q^{55} +2.32136 q^{56} +(-4.01627 + 1.69397i) q^{57} +8.82078i q^{58} +(-0.724643 + 1.25512i) q^{59} +(-0.873846 + 2.05825i) q^{60} +(5.40264 + 9.35765i) q^{61} +(0.593405 + 0.342602i) q^{62} +(-2.01036 + 1.16068i) q^{63} -1.00000 q^{64} +(13.3335 - 1.63620i) q^{65} +(1.42582 + 2.46960i) q^{66} +(5.89514 - 3.40356i) q^{67} +4.38194i q^{68} -5.03648 q^{69} +(4.14571 - 3.12356i) q^{70} +(1.15149 - 1.99443i) q^{71} +(0.866025 - 0.500000i) q^{72} +(-5.38195 - 3.10727i) q^{73} +(3.89936 - 6.75389i) q^{74} +(1.20893 + 4.85165i) q^{75} +(-4.32518 - 0.541114i) q^{76} -6.61970i q^{77} +(-5.20277 - 3.00382i) q^{78} +(2.00683 - 3.47593i) q^{79} +(-1.78590 + 1.34557i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-4.47091 + 2.58128i) q^{82} -12.2192i q^{83} -2.32136 q^{84} +(5.89622 + 7.82569i) q^{85} +(-1.29360 - 2.24057i) q^{86} -8.82078i q^{87} +2.85165i q^{88} +(-4.34444 - 7.52479i) q^{89} +(0.873846 - 2.05825i) q^{90} +(6.97295 + 12.0775i) q^{91} +(-4.36172 - 2.51824i) q^{92} +(-0.593405 - 0.342602i) q^{93} -7.88813 q^{94} +(-8.45244 + 4.85348i) q^{95} +1.00000 q^{96} +(5.79684 + 3.34681i) q^{97} +(-1.39542 - 0.805646i) q^{98} +(-1.42582 - 2.46960i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} + O(q^{10}) \) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} - 2q^{10} + 12q^{11} + 10q^{14} + 2q^{15} - 10q^{16} + 6q^{19} - 10q^{21} + 10q^{24} + 14q^{25} + 8q^{29} + 40q^{31} + 12q^{34} + 2q^{35} - 10q^{36} + 2q^{40} - 14q^{41} + 6q^{44} + 44q^{46} - 8q^{49} - 8q^{50} - 12q^{51} + 10q^{54} + 20q^{56} + 8q^{59} - 2q^{60} + 16q^{61} - 20q^{64} + 40q^{65} - 6q^{66} - 44q^{69} + 8q^{70} - 4q^{71} + 26q^{74} + 8q^{75} + 8q^{79} - 10q^{81} - 20q^{84} - 16q^{85} - 20q^{86} - 2q^{89} + 2q^{90} - 44q^{91} - 32q^{94} - 80q^{95} + 20q^{96} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 2.05825 + 0.873846i 0.920477 + 0.390796i
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) 2.32136i 0.877391i 0.898636 + 0.438696i \(0.144559\pi\)
−0.898636 + 0.438696i \(0.855441\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) −1.34557 1.78590i −0.425508 0.564750i
\(11\) −2.85165 −0.859804 −0.429902 0.902875i \(-0.641452\pi\)
−0.429902 + 0.902875i \(0.641452\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 5.20277 3.00382i 1.44299 0.833110i 0.444941 0.895560i \(-0.353224\pi\)
0.998048 + 0.0624492i \(0.0198911\pi\)
\(14\) 1.16068 2.01036i 0.310205 0.537290i
\(15\) 1.34557 + 1.78590i 0.347426 + 0.461117i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.79487 + 2.19097i 0.920391 + 0.531388i 0.883760 0.467941i \(-0.155004\pi\)
0.0366311 + 0.999329i \(0.488337\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −2.63121 + 3.47516i −0.603641 + 0.797256i
\(20\) 0.272353 + 2.21942i 0.0608999 + 0.496277i
\(21\) −1.16068 + 2.01036i −0.253281 + 0.438696i
\(22\) 2.46960 + 1.42582i 0.526520 + 0.303987i
\(23\) −4.36172 + 2.51824i −0.909481 + 0.525089i −0.880264 0.474484i \(-0.842635\pi\)
−0.0292169 + 0.999573i \(0.509301\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 3.47279 + 3.59719i 0.694558 + 0.719437i
\(26\) −6.00764 −1.17820
\(27\) 1.00000i 0.192450i
\(28\) −2.01036 + 1.16068i −0.379922 + 0.219348i
\(29\) −4.41039 7.63902i −0.818989 1.41853i −0.906428 0.422360i \(-0.861202\pi\)
0.0874397 0.996170i \(-0.472131\pi\)
\(30\) −0.272353 2.21942i −0.0497246 0.405209i
\(31\) −0.685205 −0.123066 −0.0615332 0.998105i \(-0.519599\pi\)
−0.0615332 + 0.998105i \(0.519599\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) −2.46960 1.42582i −0.429902 0.248204i
\(34\) −2.19097 3.79487i −0.375748 0.650815i
\(35\) −2.02851 + 4.77794i −0.342881 + 0.807619i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 7.79872i 1.28210i 0.767499 + 0.641050i \(0.221501\pi\)
−0.767499 + 0.641050i \(0.778499\pi\)
\(38\) 4.01627 1.69397i 0.651526 0.274799i
\(39\) 6.00764 0.961993
\(40\) 0.873846 2.05825i 0.138167 0.325438i
\(41\) 2.58128 4.47091i 0.403128 0.698239i −0.590973 0.806691i \(-0.701256\pi\)
0.994102 + 0.108452i \(0.0345895\pi\)
\(42\) 2.01036 1.16068i 0.310205 0.179097i
\(43\) 2.24057 + 1.29360i 0.341684 + 0.197271i 0.661017 0.750371i \(-0.270125\pi\)
−0.319332 + 0.947643i \(0.603459\pi\)
\(44\) −1.42582 2.46960i −0.214951 0.372306i
\(45\) 0.272353 + 2.21942i 0.0405999 + 0.330852i
\(46\) 5.03648 0.742588
\(47\) 6.83132 3.94406i 0.996450 0.575301i 0.0892540 0.996009i \(-0.471552\pi\)
0.907196 + 0.420708i \(0.138218\pi\)
\(48\) −0.866025 + 0.500000i −0.125000 + 0.0721688i
\(49\) 1.61129 0.230184
\(50\) −1.20893 4.85165i −0.170968 0.686127i
\(51\) 2.19097 + 3.79487i 0.306797 + 0.531388i
\(52\) 5.20277 + 3.00382i 0.721495 + 0.416555i
\(53\) −4.86905 + 2.81115i −0.668815 + 0.386141i −0.795628 0.605786i \(-0.792859\pi\)
0.126812 + 0.991927i \(0.459525\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) −5.86941 2.49190i −0.791430 0.336008i
\(56\) 2.32136 0.310205
\(57\) −4.01627 + 1.69397i −0.531968 + 0.224372i
\(58\) 8.82078i 1.15822i
\(59\) −0.724643 + 1.25512i −0.0943405 + 0.163403i −0.909333 0.416069i \(-0.863408\pi\)
0.814993 + 0.579471i \(0.196741\pi\)
\(60\) −0.873846 + 2.05825i −0.112813 + 0.265719i
\(61\) 5.40264 + 9.35765i 0.691737 + 1.19812i 0.971268 + 0.237987i \(0.0764876\pi\)
−0.279531 + 0.960137i \(0.590179\pi\)
\(62\) 0.593405 + 0.342602i 0.0753625 + 0.0435105i
\(63\) −2.01036 + 1.16068i −0.253281 + 0.146232i
\(64\) −1.00000 −0.125000
\(65\) 13.3335 1.63620i 1.65382 0.202945i
\(66\) 1.42582 + 2.46960i 0.175507 + 0.303987i
\(67\) 5.89514 3.40356i 0.720206 0.415811i −0.0946224 0.995513i \(-0.530164\pi\)
0.814829 + 0.579702i \(0.196831\pi\)
\(68\) 4.38194i 0.531388i
\(69\) −5.03648 −0.606321
\(70\) 4.14571 3.12356i 0.495507 0.373337i
\(71\) 1.15149 1.99443i 0.136656 0.236696i −0.789573 0.613657i \(-0.789698\pi\)
0.926229 + 0.376961i \(0.123031\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) −5.38195 3.10727i −0.629909 0.363678i 0.150808 0.988563i \(-0.451813\pi\)
−0.780717 + 0.624885i \(0.785146\pi\)
\(74\) 3.89936 6.75389i 0.453291 0.785123i
\(75\) 1.20893 + 4.85165i 0.139595 + 0.560220i
\(76\) −4.32518 0.541114i −0.496132 0.0620700i
\(77\) 6.61970i 0.754385i
\(78\) −5.20277 3.00382i −0.589098 0.340116i
\(79\) 2.00683 3.47593i 0.225786 0.391072i −0.730769 0.682625i \(-0.760838\pi\)
0.956555 + 0.291552i \(0.0941718\pi\)
\(80\) −1.78590 + 1.34557i −0.199669 + 0.150440i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −4.47091 + 2.58128i −0.493729 + 0.285055i
\(83\) 12.2192i 1.34123i −0.741806 0.670614i \(-0.766031\pi\)
0.741806 0.670614i \(-0.233969\pi\)
\(84\) −2.32136 −0.253281
\(85\) 5.89622 + 7.82569i 0.639535 + 0.848815i
\(86\) −1.29360 2.24057i −0.139492 0.241607i
\(87\) 8.82078i 0.945687i
\(88\) 2.85165i 0.303987i
\(89\) −4.34444 7.52479i −0.460510 0.797626i 0.538477 0.842640i \(-0.319000\pi\)
−0.998986 + 0.0450142i \(0.985667\pi\)
\(90\) 0.873846 2.05825i 0.0921114 0.216959i
\(91\) 6.97295 + 12.0775i 0.730964 + 1.26607i
\(92\) −4.36172 2.51824i −0.454740 0.262545i
\(93\) −0.593405 0.342602i −0.0615332 0.0355262i
\(94\) −7.88813 −0.813598
\(95\) −8.45244 + 4.85348i −0.867202 + 0.497956i
\(96\) 1.00000 0.102062
\(97\) 5.79684 + 3.34681i 0.588580 + 0.339817i 0.764536 0.644581i \(-0.222968\pi\)
−0.175956 + 0.984398i \(0.556302\pi\)
\(98\) −1.39542 0.805646i −0.140959 0.0813825i
\(99\) −1.42582 2.46960i −0.143301 0.248204i
\(100\) −1.37886 + 4.80612i −0.137886 + 0.480612i
\(101\) −7.02206 12.1626i −0.698721 1.21022i −0.968910 0.247413i \(-0.920419\pi\)
0.270189 0.962807i \(-0.412914\pi\)
\(102\) 4.38194i 0.433876i
\(103\) 14.0958i 1.38890i −0.719542 0.694449i \(-0.755648\pi\)
0.719542 0.694449i \(-0.244352\pi\)
\(104\) −3.00382 5.20277i −0.294549 0.510174i
\(105\) −4.14571 + 3.12356i −0.404580 + 0.304828i
\(106\) 5.62229 0.546085
\(107\) 16.7729i 1.62150i 0.585395 + 0.810748i \(0.300940\pi\)
−0.585395 + 0.810748i \(0.699060\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 4.45191 7.71093i 0.426416 0.738573i −0.570136 0.821550i \(-0.693109\pi\)
0.996551 + 0.0829770i \(0.0264428\pi\)
\(110\) 3.83710 + 5.09275i 0.365854 + 0.485575i
\(111\) −3.89936 + 6.75389i −0.370111 + 0.641050i
\(112\) −2.01036 1.16068i −0.189961 0.109674i
\(113\) 11.8870i 1.11824i −0.829087 0.559120i \(-0.811139\pi\)
0.829087 0.559120i \(-0.188861\pi\)
\(114\) 4.32518 + 0.541114i 0.405090 + 0.0506799i
\(115\) −11.1781 + 1.37170i −1.04236 + 0.127912i
\(116\) 4.41039 7.63902i 0.409494 0.709265i
\(117\) 5.20277 + 3.00382i 0.480997 + 0.277703i
\(118\) 1.25512 0.724643i 0.115543 0.0667088i
\(119\) −5.08602 + 8.80925i −0.466235 + 0.807543i
\(120\) 1.78590 1.34557i 0.163029 0.122834i
\(121\) −2.86810 −0.260737
\(122\) 10.8053i 0.978264i
\(123\) 4.47091 2.58128i 0.403128 0.232746i
\(124\) −0.342602 0.593405i −0.0307666 0.0532893i
\(125\) 4.00448 + 10.4386i 0.358172 + 0.933656i
\(126\) 2.32136 0.206803
\(127\) −7.72660 + 4.46095i −0.685625 + 0.395846i −0.801971 0.597363i \(-0.796215\pi\)
0.116346 + 0.993209i \(0.462882\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 1.29360 + 2.24057i 0.113895 + 0.197271i
\(130\) −12.3652 5.24975i −1.08450 0.460434i
\(131\) 0.0274319 0.0475134i 0.00239673 0.00415127i −0.864825 0.502074i \(-0.832570\pi\)
0.867221 + 0.497923i \(0.165904\pi\)
\(132\) 2.85165i 0.248204i
\(133\) −8.06710 6.10798i −0.699506 0.529629i
\(134\) −6.80712 −0.588046
\(135\) −0.873846 + 2.05825i −0.0752087 + 0.177146i
\(136\) 2.19097 3.79487i 0.187874 0.325407i
\(137\) −15.5732 + 8.99119i −1.33051 + 0.768169i −0.985377 0.170386i \(-0.945499\pi\)
−0.345131 + 0.938555i \(0.612165\pi\)
\(138\) 4.36172 + 2.51824i 0.371294 + 0.214367i
\(139\) −10.3327 17.8967i −0.876405 1.51798i −0.855258 0.518202i \(-0.826601\pi\)
−0.0211474 0.999776i \(-0.506732\pi\)
\(140\) −5.15207 + 0.632228i −0.435429 + 0.0534330i
\(141\) 7.88813 0.664300
\(142\) −1.99443 + 1.15149i −0.167369 + 0.0966306i
\(143\) −14.8365 + 8.56584i −1.24069 + 0.716312i
\(144\) −1.00000 −0.0833333
\(145\) −2.40236 19.5770i −0.199505 1.62578i
\(146\) 3.10727 + 5.38195i 0.257159 + 0.445413i
\(147\) 1.39542 + 0.805646i 0.115092 + 0.0664485i
\(148\) −6.75389 + 3.89936i −0.555166 + 0.320525i
\(149\) −1.92651 + 3.33682i −0.157826 + 0.273363i −0.934084 0.357052i \(-0.883782\pi\)
0.776258 + 0.630415i \(0.217115\pi\)
\(150\) 1.37886 4.80612i 0.112583 0.392418i
\(151\) 7.77324 0.632577 0.316289 0.948663i \(-0.397563\pi\)
0.316289 + 0.948663i \(0.397563\pi\)
\(152\) 3.47516 + 2.63121i 0.281873 + 0.213419i
\(153\) 4.38194i 0.354259i
\(154\) −3.30985 + 5.73283i −0.266715 + 0.461964i
\(155\) −1.41032 0.598763i −0.113280 0.0480938i
\(156\) 3.00382 + 5.20277i 0.240498 + 0.416555i
\(157\) −16.6929 9.63765i −1.33224 0.769169i −0.346596 0.938014i \(-0.612663\pi\)
−0.985642 + 0.168846i \(0.945996\pi\)
\(158\) −3.47593 + 2.00683i −0.276530 + 0.159655i
\(159\) −5.62229 −0.445877
\(160\) 2.21942 0.272353i 0.175461 0.0215314i
\(161\) −5.84574 10.1251i −0.460709 0.797971i
\(162\) 0.866025 0.500000i 0.0680414 0.0392837i
\(163\) 15.9168i 1.24670i −0.781944 0.623348i \(-0.785772\pi\)
0.781944 0.623348i \(-0.214228\pi\)
\(164\) 5.16256 0.403128
\(165\) −3.83710 5.09275i −0.298718 0.396470i
\(166\) −6.10958 + 10.5821i −0.474196 + 0.821331i
\(167\) 16.4675 9.50754i 1.27430 0.735716i 0.298503 0.954409i \(-0.403513\pi\)
0.975794 + 0.218693i \(0.0701793\pi\)
\(168\) 2.01036 + 1.16068i 0.155102 + 0.0895484i
\(169\) 11.5459 19.9981i 0.888146 1.53831i
\(170\) −1.19343 9.72536i −0.0915321 0.745901i
\(171\) −4.32518 0.541114i −0.330755 0.0413800i
\(172\) 2.58719i 0.197271i
\(173\) 12.3792 + 7.14712i 0.941172 + 0.543386i 0.890327 0.455321i \(-0.150475\pi\)
0.0508444 + 0.998707i \(0.483809\pi\)
\(174\) −4.41039 + 7.63902i −0.334351 + 0.579112i
\(175\) −8.35036 + 8.06159i −0.631228 + 0.609399i
\(176\) 1.42582 2.46960i 0.107476 0.186153i
\(177\) −1.25512 + 0.724643i −0.0943405 + 0.0544675i
\(178\) 8.68888i 0.651259i
\(179\) −6.66682 −0.498301 −0.249151 0.968465i \(-0.580151\pi\)
−0.249151 + 0.968465i \(0.580151\pi\)
\(180\) −1.78590 + 1.34557i −0.133113 + 0.100293i
\(181\) −3.06793 5.31382i −0.228038 0.394973i 0.729189 0.684313i \(-0.239898\pi\)
−0.957226 + 0.289340i \(0.906564\pi\)
\(182\) 13.9459i 1.03374i
\(183\) 10.8053i 0.798749i
\(184\) 2.51824 + 4.36172i 0.185647 + 0.321550i
\(185\) −6.81487 + 16.0517i −0.501039 + 1.18014i
\(186\) 0.342602 + 0.593405i 0.0251208 + 0.0435105i
\(187\) −10.8216 6.24787i −0.791356 0.456890i
\(188\) 6.83132 + 3.94406i 0.498225 + 0.287650i
\(189\) −2.32136 −0.168854
\(190\) 9.74677 + 0.0229835i 0.707105 + 0.00166740i
\(191\) −18.8448 −1.36356 −0.681780 0.731557i \(-0.738794\pi\)
−0.681780 + 0.731557i \(0.738794\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 14.3105 + 8.26218i 1.03009 + 0.594725i 0.917012 0.398861i \(-0.130594\pi\)
0.113082 + 0.993586i \(0.463928\pi\)
\(194\) −3.34681 5.79684i −0.240287 0.416189i
\(195\) 12.3652 + 5.24975i 0.885493 + 0.375943i
\(196\) 0.805646 + 1.39542i 0.0575461 + 0.0996728i
\(197\) 6.90254i 0.491786i 0.969297 + 0.245893i \(0.0790811\pi\)
−0.969297 + 0.245893i \(0.920919\pi\)
\(198\) 2.85165i 0.202658i
\(199\) 3.26514 + 5.65540i 0.231460 + 0.400900i 0.958238 0.285972i \(-0.0923164\pi\)
−0.726778 + 0.686872i \(0.758983\pi\)
\(200\) 3.59719 3.47279i 0.254359 0.245563i
\(201\) 6.80712 0.480137
\(202\) 14.0441i 0.988141i
\(203\) 17.7329 10.2381i 1.24461 0.718573i
\(204\) −2.19097 + 3.79487i −0.153398 + 0.265694i
\(205\) 9.21980 6.94661i 0.643939 0.485172i
\(206\) −7.04788 + 12.2073i −0.491049 + 0.850522i
\(207\) −4.36172 2.51824i −0.303160 0.175030i
\(208\) 6.00764i 0.416555i
\(209\) 7.50328 9.90993i 0.519013 0.685484i
\(210\) 5.15207 0.632228i 0.355527 0.0436279i
\(211\) −11.1943 + 19.3891i −0.770648 + 1.33480i 0.166560 + 0.986031i \(0.446734\pi\)
−0.937208 + 0.348771i \(0.886599\pi\)
\(212\) −4.86905 2.81115i −0.334408 0.193070i
\(213\) 1.99443 1.15149i 0.136656 0.0788986i
\(214\) 8.38645 14.5258i 0.573286 0.992960i
\(215\) 3.48126 + 4.62046i 0.237420 + 0.315113i
\(216\) 1.00000 0.0680414
\(217\) 1.59061i 0.107977i
\(218\) −7.71093 + 4.45191i −0.522250 + 0.301521i
\(219\) −3.10727 5.38195i −0.209970 0.363678i
\(220\) −0.776654 6.32900i −0.0523620 0.426701i
\(221\) 26.3251 1.77082
\(222\) 6.75389 3.89936i 0.453291 0.261708i
\(223\) −1.62511 0.938256i −0.108825 0.0628302i 0.444600 0.895729i \(-0.353346\pi\)
−0.553425 + 0.832899i \(0.686679\pi\)
\(224\) 1.16068 + 2.01036i 0.0775512 + 0.134323i
\(225\) −1.37886 + 4.80612i −0.0919240 + 0.320408i
\(226\) −5.94352 + 10.2945i −0.395357 + 0.684779i
\(227\) 20.3703i 1.35203i −0.736890 0.676013i \(-0.763706\pi\)
0.736890 0.676013i \(-0.236294\pi\)
\(228\) −3.47516 2.63121i −0.230148 0.174256i
\(229\) −10.7813 −0.712449 −0.356224 0.934400i \(-0.615936\pi\)
−0.356224 + 0.934400i \(0.615936\pi\)
\(230\) 10.3663 + 4.40110i 0.683536 + 0.290200i
\(231\) 3.30985 5.73283i 0.217772 0.377192i
\(232\) −7.63902 + 4.41039i −0.501526 + 0.289556i
\(233\) 11.7576 + 6.78823i 0.770263 + 0.444711i 0.832968 0.553321i \(-0.186640\pi\)
−0.0627056 + 0.998032i \(0.519973\pi\)
\(234\) −3.00382 5.20277i −0.196366 0.340116i
\(235\) 17.5071 2.14835i 1.14203 0.140143i
\(236\) −1.44929 −0.0943405
\(237\) 3.47593 2.00683i 0.225786 0.130357i
\(238\) 8.80925 5.08602i 0.571019 0.329678i
\(239\) 2.08081 0.134596 0.0672981 0.997733i \(-0.478562\pi\)
0.0672981 + 0.997733i \(0.478562\pi\)
\(240\) −2.21942 + 0.272353i −0.143263 + 0.0175803i
\(241\) −8.51317 14.7453i −0.548382 0.949825i −0.998386 0.0567985i \(-0.981911\pi\)
0.450004 0.893027i \(-0.351423\pi\)
\(242\) 2.48385 + 1.43405i 0.159668 + 0.0921843i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) −5.40264 + 9.35765i −0.345869 + 0.599062i
\(245\) 3.31644 + 1.40802i 0.211880 + 0.0899551i
\(246\) −5.16256 −0.329153
\(247\) −3.25082 + 25.9842i −0.206845 + 1.65333i
\(248\) 0.685205i 0.0435105i
\(249\) 6.10958 10.5821i 0.387179 0.670614i
\(250\) 1.75131 11.0423i 0.110763 0.698378i
\(251\) 9.62571 + 16.6722i 0.607569 + 1.05234i 0.991640 + 0.129037i \(0.0411886\pi\)
−0.384070 + 0.923304i \(0.625478\pi\)
\(252\) −2.01036 1.16068i −0.126641 0.0731159i
\(253\) 12.4381 7.18113i 0.781976 0.451474i
\(254\) 8.92191 0.559810
\(255\) 1.19343 + 9.72536i 0.0747356 + 0.609026i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −15.3212 + 8.84568i −0.955708 + 0.551779i −0.894850 0.446368i \(-0.852717\pi\)
−0.0608589 + 0.998146i \(0.519384\pi\)
\(258\) 2.58719i 0.161072i
\(259\) −18.1036 −1.12490
\(260\) 8.08373 + 10.7290i 0.501332 + 0.665387i
\(261\) 4.41039 7.63902i 0.272996 0.472843i
\(262\) −0.0475134 + 0.0274319i −0.00293539 + 0.00169475i
\(263\) 9.98291 + 5.76364i 0.615573 + 0.355401i 0.775143 0.631785i \(-0.217678\pi\)
−0.159570 + 0.987187i \(0.551011\pi\)
\(264\) −1.42582 + 2.46960i −0.0877534 + 0.151993i
\(265\) −12.4782 + 1.53125i −0.766532 + 0.0940637i
\(266\) 3.93232 + 9.32321i 0.241106 + 0.571643i
\(267\) 8.68888i 0.531751i
\(268\) 5.89514 + 3.40356i 0.360103 + 0.207906i
\(269\) 10.2776 17.8013i 0.626635 1.08536i −0.361587 0.932338i \(-0.617765\pi\)
0.988222 0.153025i \(-0.0489016\pi\)
\(270\) 1.78590 1.34557i 0.108686 0.0818890i
\(271\) 12.9912 22.5014i 0.789159 1.36686i −0.137324 0.990526i \(-0.543850\pi\)
0.926483 0.376337i \(-0.122816\pi\)
\(272\) −3.79487 + 2.19097i −0.230098 + 0.132847i
\(273\) 13.9459i 0.844044i
\(274\) 17.9824 1.08636
\(275\) −9.90317 10.2579i −0.597184 0.618575i
\(276\) −2.51824 4.36172i −0.151580 0.262545i
\(277\) 4.14296i 0.248926i −0.992224 0.124463i \(-0.960279\pi\)
0.992224 0.124463i \(-0.0397208\pi\)
\(278\) 20.6653i 1.23942i
\(279\) −0.342602 0.593405i −0.0205111 0.0355262i
\(280\) 4.77794 + 2.02851i 0.285536 + 0.121227i
\(281\) −4.29844 7.44511i −0.256423 0.444138i 0.708858 0.705351i \(-0.249211\pi\)
−0.965281 + 0.261213i \(0.915877\pi\)
\(282\) −6.83132 3.94406i −0.406799 0.234866i
\(283\) −12.4490 7.18742i −0.740015 0.427248i 0.0820596 0.996627i \(-0.473850\pi\)
−0.822075 + 0.569379i \(0.807184\pi\)
\(284\) 2.30297 0.136656
\(285\) −9.74677 0.0229835i −0.577349 0.00136143i
\(286\) 17.1317 1.01302
\(287\) 10.3786 + 5.99208i 0.612628 + 0.353701i
\(288\) 0.866025 + 0.500000i 0.0510310 + 0.0294628i
\(289\) 1.10069 + 1.90644i 0.0647462 + 0.112144i
\(290\) −7.70800 + 18.1554i −0.452629 + 1.06612i
\(291\) 3.34681 + 5.79684i 0.196193 + 0.339817i
\(292\) 6.21454i 0.363678i
\(293\) 8.47490i 0.495109i 0.968874 + 0.247554i \(0.0796269\pi\)
−0.968874 + 0.247554i \(0.920373\pi\)
\(294\) −0.805646 1.39542i −0.0469862 0.0813825i
\(295\) −2.58828 + 1.95012i −0.150695 + 0.113541i
\(296\) 7.79872 0.453291
\(297\) 2.85165i 0.165469i
\(298\) 3.33682 1.92651i 0.193297 0.111600i
\(299\) −15.1287 + 26.2037i −0.874914 + 1.51540i
\(300\) −3.59719 + 3.47279i −0.207684 + 0.200502i
\(301\) −3.00290 + 5.20118i −0.173084 + 0.299791i
\(302\) −6.73182 3.88662i −0.387373 0.223650i
\(303\) 14.0441i 0.806814i
\(304\) −1.69397 4.01627i −0.0971560 0.230349i
\(305\) 2.94285 + 23.9814i 0.168507 + 1.37317i
\(306\) 2.19097 3.79487i 0.125249 0.216938i
\(307\) 18.6780 + 10.7838i 1.06601 + 0.615462i 0.927089 0.374841i \(-0.122303\pi\)
0.138922 + 0.990303i \(0.455636\pi\)
\(308\) 5.73283 3.30985i 0.326658 0.188596i
\(309\) 7.04788 12.2073i 0.400940 0.694449i
\(310\) 0.921994 + 1.22371i 0.0523657 + 0.0695018i
\(311\) 6.25433 0.354650 0.177325 0.984152i \(-0.443256\pi\)
0.177325 + 0.984152i \(0.443256\pi\)
\(312\) 6.00764i 0.340116i
\(313\) 15.3732 8.87575i 0.868947 0.501687i 0.00194901 0.999998i \(-0.499380\pi\)
0.866998 + 0.498311i \(0.166046\pi\)
\(314\) 9.63765 + 16.6929i 0.543884 + 0.942035i
\(315\) −5.15207 + 0.632228i −0.290286 + 0.0356220i
\(316\) 4.01365 0.225786
\(317\) 0.640437 0.369757i 0.0359705 0.0207676i −0.481907 0.876222i \(-0.660056\pi\)
0.517877 + 0.855455i \(0.326722\pi\)
\(318\) 4.86905 + 2.81115i 0.273043 + 0.157641i
\(319\) 12.5769 + 21.7838i 0.704170 + 1.21966i
\(320\) −2.05825 0.873846i −0.115060 0.0488495i
\(321\) −8.38645 + 14.5258i −0.468086 + 0.810748i
\(322\) 11.6915i 0.651540i
\(323\) −17.5991 + 7.42288i −0.979238 + 0.413020i
\(324\) −1.00000 −0.0555556
\(325\) 28.8734 + 8.28370i 1.60161 + 0.459497i
\(326\) −7.95838 + 13.7843i −0.440774 + 0.763442i
\(327\) 7.71093 4.45191i 0.426416 0.246191i
\(328\) −4.47091 2.58128i −0.246865 0.142527i
\(329\) 9.15559 + 15.8579i 0.504764 + 0.874277i
\(330\) 0.776654 + 6.32900i 0.0427534 + 0.348400i
\(331\) −4.54461 −0.249794 −0.124897 0.992170i \(-0.539860\pi\)
−0.124897 + 0.992170i \(0.539860\pi\)
\(332\) 10.5821 6.10958i 0.580769 0.335307i
\(333\) −6.75389 + 3.89936i −0.370111 + 0.213683i
\(334\) −19.0151 −1.04046
\(335\) 15.1079 1.85394i 0.825431 0.101291i
\(336\) −1.16068 2.01036i −0.0633203 0.109674i
\(337\) 17.9486 + 10.3626i 0.977722 + 0.564488i 0.901582 0.432609i \(-0.142407\pi\)
0.0761405 + 0.997097i \(0.475740\pi\)
\(338\) −19.9981 + 11.5459i −1.08775 + 0.628014i
\(339\) 5.94352 10.2945i 0.322808 0.559120i
\(340\) −3.82914 + 9.01912i −0.207664 + 0.489131i
\(341\) 1.95396 0.105813
\(342\) 3.47516 + 2.63121i 0.187915 + 0.142279i
\(343\) 19.9899i 1.07935i
\(344\) 1.29360 2.24057i 0.0697460 0.120804i
\(345\) −10.3663 4.40110i −0.558105 0.236947i
\(346\) −7.14712 12.3792i −0.384232 0.665509i
\(347\) 10.7406 + 6.20108i 0.576585 + 0.332891i 0.759775 0.650186i \(-0.225309\pi\)
−0.183190 + 0.983077i \(0.558642\pi\)
\(348\) 7.63902 4.41039i 0.409494 0.236422i
\(349\) 14.4163 0.771684 0.385842 0.922565i \(-0.373911\pi\)
0.385842 + 0.922565i \(0.373911\pi\)
\(350\) 11.2624 2.80636i 0.602002 0.150006i
\(351\) 3.00382 + 5.20277i 0.160332 + 0.277703i
\(352\) −2.46960 + 1.42582i −0.131630 + 0.0759967i
\(353\) 35.6707i 1.89856i −0.314430 0.949281i \(-0.601813\pi\)
0.314430 0.949281i \(-0.398187\pi\)
\(354\) 1.44929 0.0770287
\(355\) 4.11287 3.09882i 0.218289 0.164468i
\(356\) 4.34444 7.52479i 0.230255 0.398813i
\(357\) −8.80925 + 5.08602i −0.466235 + 0.269181i
\(358\) 5.77363 + 3.33341i 0.305146 + 0.176176i
\(359\) 1.15286 1.99682i 0.0608457 0.105388i −0.833998 0.551768i \(-0.813954\pi\)
0.894844 + 0.446380i \(0.147287\pi\)
\(360\) 2.21942 0.272353i 0.116974 0.0143542i
\(361\) −5.15348 18.2877i −0.271236 0.962513i
\(362\) 6.13587i 0.322494i
\(363\) −2.48385 1.43405i −0.130368 0.0752682i
\(364\) −6.97295 + 12.0775i −0.365482 + 0.633033i
\(365\) −8.36212 11.0985i −0.437693 0.580923i
\(366\) 5.40264 9.35765i 0.282400 0.489132i
\(367\) −9.47038 + 5.46773i −0.494350 + 0.285413i −0.726377 0.687296i \(-0.758797\pi\)
0.232027 + 0.972709i \(0.425464\pi\)
\(368\) 5.03648i 0.262545i
\(369\) 5.16256 0.268752
\(370\) 13.9277 10.4937i 0.724067 0.545544i
\(371\) −6.52568 11.3028i −0.338796 0.586813i
\(372\) 0.685205i 0.0355262i
\(373\) 23.3847i 1.21082i −0.795915 0.605408i \(-0.793010\pi\)
0.795915 0.605408i \(-0.206990\pi\)
\(374\) 6.24787 + 10.8216i 0.323070 + 0.559573i
\(375\) −1.75131 + 11.0423i −0.0904373 + 0.570223i
\(376\) −3.94406 6.83132i −0.203400 0.352298i
\(377\) −45.8925 26.4960i −2.36358 1.36462i
\(378\) 2.01036 + 1.16068i 0.103402 + 0.0596989i
\(379\) −23.2493 −1.19424 −0.597118 0.802154i \(-0.703687\pi\)
−0.597118 + 0.802154i \(0.703687\pi\)
\(380\) −8.42946 4.89329i −0.432422 0.251020i
\(381\) −8.92191 −0.457083
\(382\) 16.3200 + 9.42238i 0.835006 + 0.482091i
\(383\) 17.9351 + 10.3548i 0.916441 + 0.529107i 0.882498 0.470317i \(-0.155860\pi\)
0.0339428 + 0.999424i \(0.489194\pi\)
\(384\) 0.500000 + 0.866025i 0.0255155 + 0.0441942i
\(385\) 5.78460 13.6250i 0.294810 0.694394i
\(386\) −8.26218 14.3105i −0.420534 0.728386i
\(387\) 2.58719i 0.131514i
\(388\) 6.69361i 0.339817i
\(389\) 18.1887 + 31.5037i 0.922203 + 1.59730i 0.795999 + 0.605297i \(0.206946\pi\)
0.126203 + 0.992004i \(0.459721\pi\)
\(390\) −8.08373 10.7290i −0.409336 0.543286i
\(391\) −22.0695 −1.11610
\(392\) 1.61129i 0.0813825i
\(393\) 0.0475134 0.0274319i 0.00239673 0.00138376i
\(394\) 3.45127 5.97778i 0.173873 0.301156i
\(395\) 7.16797 5.40067i 0.360660 0.271737i
\(396\) 1.42582 2.46960i 0.0716504 0.124102i
\(397\) 28.6128 + 16.5196i 1.43604 + 0.829096i 0.997571 0.0696530i \(-0.0221892\pi\)
0.438464 + 0.898749i \(0.355523\pi\)
\(398\) 6.53029i 0.327334i
\(399\) −3.93232 9.32321i −0.196862 0.466745i
\(400\) −4.85165 + 1.20893i −0.242582 + 0.0604465i
\(401\) −10.5982 + 18.3566i −0.529249 + 0.916685i 0.470170 + 0.882576i \(0.344193\pi\)
−0.999418 + 0.0341092i \(0.989141\pi\)
\(402\) −5.89514 3.40356i −0.294023 0.169754i
\(403\) −3.56496 + 2.05823i −0.177583 + 0.102528i
\(404\) 7.02206 12.1626i 0.349361 0.605110i
\(405\) −1.78590 + 1.34557i −0.0887420 + 0.0668621i
\(406\) −20.4762 −1.01622
\(407\) 22.2392i 1.10236i
\(408\) 3.79487 2.19097i 0.187874 0.108469i
\(409\) −5.26086 9.11207i −0.260133 0.450563i 0.706144 0.708068i \(-0.250433\pi\)
−0.966277 + 0.257505i \(0.917100\pi\)
\(410\) −11.4579 + 1.40604i −0.565865 + 0.0694392i
\(411\) −17.9824 −0.887005
\(412\) 12.2073 7.04788i 0.601410 0.347224i
\(413\) −2.91358 1.68216i −0.143368 0.0827735i
\(414\) 2.51824 + 4.36172i 0.123765 + 0.214367i
\(415\) 10.6777 25.1501i 0.524146 1.23457i
\(416\) 3.00382 5.20277i 0.147275 0.255087i
\(417\) 20.6653i 1.01199i
\(418\) −11.4530 + 4.83061i −0.560185 + 0.236273i
\(419\) −26.3874 −1.28911 −0.644555 0.764558i \(-0.722957\pi\)
−0.644555 + 0.764558i \(0.722957\pi\)
\(420\) −4.77794 2.02851i −0.233140 0.0989811i
\(421\) −4.24202 + 7.34740i −0.206743 + 0.358090i −0.950687 0.310152i \(-0.899620\pi\)
0.743943 + 0.668243i \(0.232953\pi\)
\(422\) 19.3891 11.1943i 0.943847 0.544931i
\(423\) 6.83132 + 3.94406i 0.332150 + 0.191767i
\(424\) 2.81115 + 4.86905i 0.136521 + 0.236462i
\(425\) 5.29745 + 21.2596i 0.256964 + 1.03124i
\(426\) −2.30297 −0.111579
\(427\) −21.7225 + 12.5415i −1.05122 + 0.606924i
\(428\) −14.5258 + 8.38645i −0.702129 + 0.405374i
\(429\) −17.1317 −0.827126
\(430\) −0.704628 5.74206i −0.0339802 0.276907i
\(431\) 9.83833 + 17.0405i 0.473896 + 0.820811i 0.999553 0.0298849i \(-0.00951409\pi\)
−0.525658 + 0.850696i \(0.676181\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) −12.0899 + 6.98010i −0.581003 + 0.335442i −0.761532 0.648127i \(-0.775552\pi\)
0.180529 + 0.983570i \(0.442219\pi\)
\(434\) −0.795303 + 1.37751i −0.0381758 + 0.0661224i
\(435\) 7.70800 18.1554i 0.369570 0.870483i
\(436\) 8.90382 0.426416
\(437\) 2.72531 21.7837i 0.130369 1.04205i
\(438\) 6.21454i 0.296942i
\(439\) 10.2610 17.7725i 0.489729 0.848236i −0.510201 0.860055i \(-0.670429\pi\)
0.999930 + 0.0118193i \(0.00376230\pi\)
\(440\) −2.49190 + 5.86941i −0.118797 + 0.279813i
\(441\) 0.805646 + 1.39542i 0.0383641 + 0.0664485i
\(442\) −22.7982 13.1626i −1.08440 0.626079i
\(443\) −20.4256 + 11.7927i −0.970450 + 0.560290i −0.899374 0.437181i \(-0.855977\pi\)
−0.0710768 + 0.997471i \(0.522644\pi\)
\(444\) −7.79872 −0.370111
\(445\) −2.36644 19.2843i −0.112180 0.914162i
\(446\) 0.938256 + 1.62511i 0.0444277 + 0.0769510i
\(447\) −3.33682 + 1.92651i −0.157826 + 0.0911209i
\(448\) 2.32136i 0.109674i
\(449\) −28.2500 −1.33320 −0.666601 0.745415i \(-0.732251\pi\)
−0.666601 + 0.745415i \(0.732251\pi\)
\(450\) 3.59719 3.47279i 0.169573 0.163709i
\(451\) −7.36090 + 12.7495i −0.346611 + 0.600349i
\(452\) 10.2945 5.94352i 0.484212 0.279560i
\(453\) 6.73182 + 3.88662i 0.316289 + 0.182609i
\(454\) −10.1852 + 17.6412i −0.478013 + 0.827943i
\(455\) 3.79820 + 30.9518i 0.178063 + 1.45104i
\(456\) 1.69397 + 4.01627i 0.0793275 + 0.188079i
\(457\) 31.6784i 1.48185i 0.671587 + 0.740926i \(0.265613\pi\)
−0.671587 + 0.740926i \(0.734387\pi\)
\(458\) 9.33688 + 5.39065i 0.436284 + 0.251889i
\(459\) −2.19097 + 3.79487i −0.102266 + 0.177129i
\(460\) −6.77695 8.99463i −0.315977 0.419377i
\(461\) 0.595751 1.03187i 0.0277469 0.0480590i −0.851819 0.523837i \(-0.824500\pi\)
0.879565 + 0.475778i \(0.157833\pi\)
\(462\) −5.73283 + 3.30985i −0.266715 + 0.153988i
\(463\) 19.8469i 0.922366i −0.887305 0.461183i \(-0.847425\pi\)
0.887305 0.461183i \(-0.152575\pi\)
\(464\) 8.82078 0.409494
\(465\) −0.921994 1.22371i −0.0427564 0.0567480i
\(466\) −6.78823 11.7576i −0.314458 0.544658i
\(467\) 14.2451i 0.659184i −0.944123 0.329592i \(-0.893089\pi\)
0.944123 0.329592i \(-0.106911\pi\)
\(468\) 6.00764i 0.277703i
\(469\) 7.90089 + 13.6847i 0.364829 + 0.631903i
\(470\) −16.2357 6.89300i −0.748899 0.317951i
\(471\) −9.63765 16.6929i −0.444080 0.769169i
\(472\) 1.25512 + 0.724643i 0.0577715 + 0.0333544i
\(473\) −6.38933 3.68888i −0.293782 0.169615i
\(474\) −4.01365 −0.184353
\(475\) −21.6384 + 2.60355i −0.992839 + 0.119459i
\(476\) −10.1720 −0.466235
\(477\) −4.86905 2.81115i −0.222938 0.128714i
\(478\) −1.80203 1.04040i −0.0824231 0.0475870i
\(479\) 14.3482 + 24.8519i 0.655588 + 1.13551i 0.981746 + 0.190196i \(0.0609123\pi\)
−0.326159 + 0.945315i \(0.605754\pi\)
\(480\) 2.05825 + 0.873846i 0.0939458 + 0.0398854i
\(481\) 23.4260 + 40.5749i 1.06813 + 1.85006i
\(482\) 17.0263i 0.775529i
\(483\) 11.6915i 0.531980i
\(484\) −1.43405 2.48385i −0.0651842 0.112902i
\(485\) 9.00675 + 11.9541i 0.408976 + 0.542808i
\(486\) 1.00000 0.0453609
\(487\) 19.6433i 0.890122i −0.895500 0.445061i \(-0.853182\pi\)
0.895500 0.445061i \(-0.146818\pi\)
\(488\) 9.35765 5.40264i 0.423601 0.244566i
\(489\) 7.95838 13.7843i 0.359890 0.623348i
\(490\) −2.16811 2.87760i −0.0979453 0.129997i
\(491\) 4.99544 8.65235i 0.225441 0.390475i −0.731011 0.682366i \(-0.760951\pi\)
0.956452 + 0.291891i \(0.0942844\pi\)
\(492\) 4.47091 + 2.58128i 0.201564 + 0.116373i
\(493\) 38.6521i 1.74080i
\(494\) 15.8074 20.8775i 0.711207 0.939324i
\(495\) −0.776654 6.32900i −0.0349080 0.284468i
\(496\) 0.342602 0.593405i 0.0153833 0.0266446i
\(497\) 4.62980 + 2.67301i 0.207675 + 0.119901i
\(498\) −10.5821 + 6.10958i −0.474196 + 0.273777i
\(499\) −7.18085 + 12.4376i −0.321459 + 0.556784i −0.980789 0.195070i \(-0.937507\pi\)
0.659330 + 0.751854i \(0.270840\pi\)
\(500\) −7.03784 + 8.68728i −0.314742 + 0.388507i
\(501\) 19.0151 0.849531
\(502\) 19.2514i 0.859233i
\(503\) −7.26003 + 4.19158i −0.323709 + 0.186893i −0.653044 0.757320i \(-0.726509\pi\)
0.329336 + 0.944213i \(0.393175\pi\)
\(504\) 1.16068 + 2.01036i 0.0517008 + 0.0895484i
\(505\) −3.82495 31.1698i −0.170208 1.38704i
\(506\) −14.3623 −0.638480
\(507\) 19.9981 11.5459i 0.888146 0.512771i
\(508\) −7.72660 4.46095i −0.342812 0.197923i
\(509\) 5.67635 + 9.83173i 0.251600 + 0.435784i 0.963966 0.266024i \(-0.0857100\pi\)
−0.712367 + 0.701808i \(0.752377\pi\)
\(510\) 3.82914 9.01912i 0.169557 0.399373i
\(511\) 7.21308 12.4934i 0.319088 0.552677i
\(512\) 1.00000i 0.0441942i
\(513\) −3.47516 2.63121i −0.153432 0.116171i
\(514\) 17.6914 0.780333
\(515\) 12.3175 29.0126i 0.542775 1.27845i
\(516\) −1.29360 + 2.24057i −0.0569474 + 0.0986357i
\(517\) −19.4805 + 11.2471i −0.856752 + 0.494646i
\(518\) 15.6782 + 9.05181i 0.688860 + 0.397714i
\(519\) 7.14712 + 12.3792i 0.313724 + 0.543386i
\(520\) −1.63620 13.3335i −0.0717520 0.584712i
\(521\) −29.3742 −1.28691 −0.643453 0.765485i \(-0.722499\pi\)
−0.643453 + 0.765485i \(0.722499\pi\)
\(522\) −7.63902 + 4.41039i −0.334351 + 0.193037i
\(523\) −35.2243 + 20.3368i −1.54025 + 0.889265i −0.541429 + 0.840746i \(0.682117\pi\)
−0.998822 + 0.0485186i \(0.984550\pi\)
\(524\) 0.0548638 0.00239673
\(525\) −11.2624 + 2.80636i −0.491532 + 0.122480i
\(526\) −5.76364 9.98291i −0.251307 0.435276i
\(527\) −2.60026 1.50126i −0.113269 0.0653960i
\(528\) 2.46960 1.42582i 0.107476 0.0620510i
\(529\) 1.18305 2.04911i 0.0514371 0.0890917i
\(530\) 11.5721 + 4.91302i 0.502659 + 0.213408i
\(531\) −1.44929 −0.0628937
\(532\) 1.25612 10.0403i 0.0544597 0.435302i
\(533\) 31.0148i 1.34340i
\(534\) −4.34444 + 7.52479i −0.188002 + 0.325630i
\(535\) −14.6569 + 34.5228i −0.633674 + 1.49255i
\(536\) −3.40356 5.89514i −0.147011 0.254631i
\(537\) −5.77363 3.33341i −0.249151 0.143847i
\(538\) −17.8013 + 10.2776i −0.767468 + 0.443098i
\(539\) −4.59484 −0.197914
\(540\) −2.21942 + 0.272353i −0.0955086 + 0.0117202i
\(541\) −12.6792 21.9610i −0.545122 0.944179i −0.998599 0.0529108i \(-0.983150\pi\)
0.453478 0.891268i \(-0.350183\pi\)
\(542\) −22.5014 + 12.9912i −0.966518 + 0.558019i
\(543\) 6.13587i 0.263315i
\(544\) 4.38194 0.187874
\(545\) 15.9013 11.9807i 0.681137 0.513199i
\(546\) 6.97295 12.0775i 0.298415 0.516870i
\(547\) −27.8110 + 16.0567i −1.18911 + 0.686535i −0.958105 0.286417i \(-0.907536\pi\)
−0.231009 + 0.972952i \(0.574203\pi\)
\(548\) −15.5732 8.99119i −0.665254 0.384085i
\(549\) −5.40264 + 9.35765i −0.230579 + 0.399375i
\(550\) 3.44744 + 13.8352i 0.146999 + 0.589935i
\(551\) 38.1515 + 4.77304i 1.62531 + 0.203338i
\(552\) 5.03648i 0.214367i
\(553\) 8.06887 + 4.65857i 0.343123 + 0.198102i
\(554\) −2.07148 + 3.58791i −0.0880087 + 0.152435i
\(555\) −13.9277 + 10.4937i −0.591198 + 0.445435i
\(556\) 10.3327 17.8967i 0.438203 0.758989i
\(557\) 6.90306 3.98549i 0.292492 0.168870i −0.346573 0.938023i \(-0.612655\pi\)
0.639065 + 0.769153i \(0.279321\pi\)
\(558\) 0.685205i 0.0290070i
\(559\) 15.5429 0.657396
\(560\) −3.12356 4.14571i −0.131995 0.175188i
\(561\) −6.24787 10.8216i −0.263785 0.456890i
\(562\) 8.59688i 0.362637i
\(563\) 13.8459i 0.583537i 0.956489 + 0.291768i \(0.0942436\pi\)
−0.956489 + 0.291768i \(0.905756\pi\)
\(564\) 3.94406 + 6.83132i 0.166075 + 0.287650i
\(565\) 10.3874 24.4665i 0.437003 1.02931i
\(566\) 7.18742 + 12.4490i 0.302110 + 0.523270i
\(567\) −2.01036 1.16068i −0.0844270 0.0487440i
\(568\) −1.99443 1.15149i −0.0836846 0.0483153i
\(569\) 28.6171 1.19969 0.599845 0.800117i \(-0.295229\pi\)
0.599845 + 0.800117i \(0.295229\pi\)
\(570\) 8.42946 + 4.89329i 0.353071 + 0.204957i
\(571\) 18.2331 0.763033 0.381517 0.924362i \(-0.375402\pi\)
0.381517 + 0.924362i \(0.375402\pi\)
\(572\) −14.8365 8.56584i −0.620344 0.358156i
\(573\) −16.3200 9.42238i −0.681780 0.393626i
\(574\) −5.99208 10.3786i −0.250105 0.433194i
\(575\) −24.2059 6.94460i −1.00946 0.289610i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 37.3878i 1.55647i 0.627970 + 0.778237i \(0.283886\pi\)
−0.627970 + 0.778237i \(0.716114\pi\)
\(578\) 2.20137i 0.0915650i
\(579\) 8.26218 + 14.3105i 0.343365 + 0.594725i
\(580\) 15.7530 11.8690i 0.654108 0.492834i
\(581\) 28.3651 1.17678
\(582\) 6.69361i 0.277459i
\(583\) 13.8848 8.01640i 0.575050 0.332005i
\(584\) −3.10727 + 5.38195i −0.128580 + 0.222707i
\(585\) 8.08373 + 10.7290i 0.334221 + 0.443591i
\(586\) 4.23745 7.33948i 0.175047 0.303191i
\(587\) −1.52408 0.879926i −0.0629053 0.0363184i 0.468217 0.883613i \(-0.344896\pi\)
−0.531123 + 0.847295i \(0.678230\pi\)
\(588\) 1.61129i 0.0664485i
\(589\) 1.80292 2.38120i 0.0742879 0.0981155i
\(590\) 3.21657 0.394717i 0.132424 0.0162502i
\(591\) −3.45127 + 5.97778i −0.141966 + 0.245893i
\(592\) −6.75389 3.89936i −0.277583 0.160263i
\(593\) −9.65263 + 5.57295i −0.396386 + 0.228854i −0.684923 0.728615i \(-0.740164\pi\)
0.288537 + 0.957469i \(0.406831\pi\)
\(594\) −1.42582 + 2.46960i −0.0585023 + 0.101329i
\(595\) −18.1662 + 13.6872i −0.744743 + 0.561122i
\(596\) −3.85302 −0.157826
\(597\) 6.53029i 0.267267i
\(598\) 26.2037 15.1287i 1.07155 0.618658i
\(599\) 19.0286 + 32.9586i 0.777489 + 1.34665i 0.933385 + 0.358877i \(0.116840\pi\)
−0.155896 + 0.987774i \(0.549826\pi\)
\(600\) 4.85165 1.20893i 0.198068 0.0493543i
\(601\) 34.4084 1.40355 0.701775 0.712399i \(-0.252391\pi\)
0.701775 + 0.712399i \(0.252391\pi\)
\(602\) 5.20118 3.00290i 0.211984 0.122389i
\(603\) 5.89514 + 3.40356i 0.240069 + 0.138604i
\(604\) 3.88662 + 6.73182i 0.158144 + 0.273914i
\(605\) −5.90327 2.50628i −0.240002 0.101895i
\(606\) −7.02206 + 12.1626i −0.285252 + 0.494071i
\(607\) 16.1885i 0.657071i 0.944492 + 0.328536i \(0.106555\pi\)
−0.944492 + 0.328536i \(0.893445\pi\)
\(608\) −0.541114 + 4.32518i −0.0219451 + 0.175409i
\(609\) 20.4762 0.829737
\(610\) 9.44215 22.2400i 0.382301 0.900470i
\(611\) 23.6945 41.0401i 0.958578 1.66031i
\(612\) −3.79487 + 2.19097i −0.153398 + 0.0885647i
\(613\) −16.7637 9.67851i −0.677078 0.390911i 0.121675 0.992570i \(-0.461173\pi\)
−0.798753 + 0.601659i \(0.794507\pi\)
\(614\) −10.7838 18.6780i −0.435197 0.753784i
\(615\) 11.4579 1.40604i 0.462027 0.0566969i
\(616\) −6.61970 −0.266715
\(617\) −7.58517 + 4.37930i −0.305367 + 0.176304i −0.644852 0.764308i \(-0.723081\pi\)
0.339484 + 0.940612i \(0.389747\pi\)
\(618\) −12.2073 + 7.04788i −0.491049 + 0.283507i
\(619\) 36.5640 1.46963 0.734815 0.678268i \(-0.237269\pi\)
0.734815 + 0.678268i \(0.237269\pi\)
\(620\) −0.186617 1.52076i −0.00749473 0.0610750i
\(621\) −2.51824 4.36172i −0.101053 0.175030i
\(622\) −5.41641 3.12716i −0.217178 0.125388i
\(623\) 17.4677 10.0850i 0.699830 0.404047i
\(624\) −3.00382 + 5.20277i −0.120249 + 0.208278i
\(625\) −0.879489 + 24.9845i −0.0351796 + 0.999381i
\(626\) −17.7515 −0.709492
\(627\) 11.4530 4.83061i 0.457389 0.192916i
\(628\) 19.2753i 0.769169i
\(629\) −17.0867 + 29.5951i −0.681293 + 1.18003i
\(630\) 4.77794 + 2.02851i 0.190358 + 0.0808178i
\(631\) 12.0437 + 20.8604i 0.479453 + 0.830437i 0.999722 0.0235650i \(-0.00750166\pi\)
−0.520269 + 0.854002i \(0.674168\pi\)
\(632\) −3.47593 2.00683i −0.138265 0.0798273i
\(633\) −19.3891 + 11.1943i −0.770648 + 0.444934i
\(634\) −0.739513 −0.0293698
\(635\) −19.8015 + 2.42991i −0.785797 + 0.0964279i
\(636\) −2.81115 4.86905i −0.111469 0.193070i
\(637\) 8.38318 4.84003i 0.332154 0.191769i
\(638\) 25.1538i 0.995847i
\(639\) 2.30297 0.0911042
\(640\) 1.34557 + 1.78590i 0.0531885 + 0.0705938i
\(641\) −12.7503 + 22.0841i −0.503605 + 0.872270i 0.496386 + 0.868102i \(0.334660\pi\)
−0.999991 + 0.00416788i \(0.998673\pi\)
\(642\) 14.5258 8.38645i 0.573286 0.330987i
\(643\) 8.09885 + 4.67587i 0.319387 + 0.184398i 0.651119 0.758975i \(-0.274300\pi\)
−0.331732 + 0.943374i \(0.607633\pi\)
\(644\) 5.84574 10.1251i 0.230354 0.398985i
\(645\) 0.704628 + 5.74206i 0.0277447 + 0.226094i
\(646\) 18.9527 + 2.37113i 0.745683 + 0.0932907i
\(647\) 2.93501i 0.115387i 0.998334 + 0.0576935i \(0.0183746\pi\)
−0.998334 + 0.0576935i \(0.981625\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) 2.06643 3.57916i 0.0811144 0.140494i
\(650\) −20.8633 21.6106i −0.818325 0.847638i
\(651\) 0.795303 1.37751i 0.0311704 0.0539887i
\(652\) 13.7843 7.95838i 0.539835 0.311674i
\(653\) 13.5336i 0.529613i 0.964302 + 0.264806i \(0.0853080\pi\)
−0.964302 + 0.264806i \(0.914692\pi\)
\(654\) −8.90382 −0.348167
\(655\) 0.0979811 0.0738233i 0.00382844 0.00288451i
\(656\) 2.58128 + 4.47091i 0.100782 + 0.174560i
\(657\) 6.21454i 0.242452i
\(658\) 18.3112i 0.713844i
\(659\) −11.2236 19.4399i −0.437210 0.757270i 0.560263 0.828315i \(-0.310700\pi\)
−0.997473 + 0.0710447i \(0.977367\pi\)
\(660\) 2.49190 5.86941i 0.0969971 0.228466i
\(661\) −4.81389 8.33791i −0.187239 0.324307i 0.757090 0.653311i \(-0.226620\pi\)
−0.944329 + 0.329004i \(0.893287\pi\)
\(662\) 3.93574 + 2.27230i 0.152967 + 0.0883156i
\(663\) 22.7982 + 13.1626i 0.885410 + 0.511191i
\(664\) −12.2192 −0.474196
\(665\) −11.2667 19.6211i −0.436903 0.760876i
\(666\) 7.79872 0.302194
\(667\) 38.4737 + 22.2128i 1.48971 + 0.860084i
\(668\) 16.4675 + 9.50754i 0.637148 + 0.367858i
\(669\) −0.938256 1.62511i −0.0362751 0.0628302i
\(670\) −14.0108 5.94837i −0.541283 0.229806i
\(671\) −15.4064 26.6847i −0.594758 1.03015i
\(672\) 2.32136i 0.0895484i
\(673\) 3.35484i 0.129320i −0.997907 0.0646598i \(-0.979404\pi\)
0.997907 0.0646598i \(-0.0205962\pi\)
\(674\) −10.3626 17.9486i −0.399153 0.691354i
\(675\) −3.59719 + 3.47279i −0.138456 + 0.133668i
\(676\) 23.0918 0.888146
\(677\) 18.6287i 0.715958i 0.933730 + 0.357979i \(0.116534\pi\)
−0.933730 + 0.357979i \(0.883466\pi\)
\(678\) −10.2945 + 5.94352i −0.395357 + 0.228260i
\(679\) −7.76914 + 13.4565i −0.298152 + 0.516415i
\(680\) 7.82569 5.89622i 0.300102 0.226110i
\(681\) 10.1852 17.6412i 0.390296 0.676013i
\(682\) −1.69218 0.976981i −0.0647970 0.0374105i
\(683\) 22.3842i 0.856506i −0.903659 0.428253i \(-0.859129\pi\)
0.903659 0.428253i \(-0.140871\pi\)
\(684\) −1.69397 4.01627i −0.0647707 0.153566i
\(685\) −39.9104 + 4.89755i −1.52490 + 0.187126i
\(686\) 9.99495 17.3118i 0.381609 0.660966i
\(687\) −9.33688 5.39065i −0.356224 0.205666i
\(688\) −2.24057 + 1.29360i −0.0854211 + 0.0493179i
\(689\) −16.8884 + 29.2515i −0.643396 + 1.11439i
\(690\) 6.77695 + 8.99463i 0.257994 + 0.342420i
\(691\) −43.1700 −1.64226 −0.821132 0.570738i \(-0.806657\pi\)
−0.821132 + 0.570738i \(0.806657\pi\)
\(692\) 14.2942i 0.543386i
\(693\) 5.73283 3.30985i 0.217772 0.125731i
\(694\) −6.20108 10.7406i −0.235390 0.407707i
\(695\) −5.62826 45.8651i −0.213492 1.73976i
\(696\) −8.82078 −0.334351
\(697\) 19.5912 11.3110i 0.742071 0.428435i
\(698\) −12.4848 7.20813i −0.472558 0.272832i
\(699\) 6.78823 + 11.7576i 0.256754 + 0.444711i
\(700\) −11.1567 3.20083i −0.421684 0.120980i
\(701\) −14.1571 + 24.5208i −0.534705 + 0.926137i 0.464472 + 0.885588i \(0.346244\pi\)
−0.999178 + 0.0405493i \(0.987089\pi\)
\(702\) 6.00764i 0.226744i
\(703\) −27.1018 20.5200i −1.02216 0.773928i
\(704\) 2.85165 0.107476
\(705\) 16.2357 + 6.89300i 0.611473 + 0.259606i
\(706\) −17.8354 + 30.8918i −0.671243 + 1.16263i
\(707\) 28.2337 16.3007i 1.06184 0.613052i
\(708\) −1.25512 0.724643i −0.0471702 0.0272338i
\(709\) 8.52409 + 14.7642i 0.320129 + 0.554480i 0.980514 0.196447i \(-0.0629404\pi\)
−0.660385 + 0.750927i \(0.729607\pi\)
\(710\) −5.11126 + 0.627221i −0.191822 + 0.0235392i
\(711\) 4.01365 0.150524
\(712\) −7.52479 + 4.34444i −0.282003 + 0.162815i
\(713\) 2.98867 1.72551i 0.111927 0.0646208i
\(714\) 10.1720 0.380679
\(715\) −38.0224 + 4.66586i −1.42196 + 0.174493i
\(716\) −3.33341 5.77363i −0.124575 0.215771i
\(717\) 1.80203 + 1.04040i 0.0672981 + 0.0388546i
\(718\) −1.99682 + 1.15286i −0.0745205 + 0.0430244i
\(719\) −1.65729 + 2.87050i −0.0618063 + 0.107052i −0.895273 0.445518i \(-0.853019\pi\)
0.833467 + 0.552570i \(0.186353\pi\)
\(720\) −2.05825 0.873846i −0.0767065 0.0325663i
\(721\) 32.7213 1.21861
\(722\) −4.68083 + 18.4144i −0.174202 + 0.685313i
\(723\) 17.0263i 0.633217i
\(724\) 3.06793 5.31382i 0.114019 0.197486i
\(725\) 12.1626 42.3937i 0.451708 1.57446i
\(726\) 1.43405 + 2.48385i 0.0532226 + 0.0921843i
\(727\) 29.7663 + 17.1856i 1.10397 + 0.637379i 0.937261 0.348627i \(-0.113352\pi\)
0.166711 + 0.986006i \(0.446685\pi\)
\(728\) 12.0775 6.97295i 0.447622 0.258435i
\(729\) −1.00000 −0.0370370
\(730\) 1.69255 + 13.7927i 0.0626439 + 0.510489i
\(731\) 5.66845 + 9.81805i 0.209655 + 0.363134i
\(732\) −9.35765 + 5.40264i −0.345869 + 0.199687i
\(733\) 39.0068i 1.44075i 0.693585 + 0.720375i \(0.256030\pi\)
−0.693585 + 0.720375i \(0.743970\pi\)
\(734\) 10.9355 0.403635
\(735\) 2.16811 + 2.87760i 0.0799720 + 0.106142i
\(736\) −2.51824 + 4.36172i −0.0928235 + 0.160775i
\(737\) −16.8109 + 9.70576i −0.619236 + 0.357516i
\(738\) −4.47091 2.58128i −0.164576 0.0950182i
\(739\) −4.19339 + 7.26316i −0.154256 + 0.267180i −0.932788 0.360426i \(-0.882631\pi\)
0.778532 + 0.627605i \(0.215965\pi\)
\(740\) −17.3086 + 2.12400i −0.636278 + 0.0780798i
\(741\) −15.8074 + 20.8775i −0.580698 + 0.766955i
\(742\) 13.0514i 0.479131i
\(743\) 1.64985 + 0.952540i 0.0605270 + 0.0349453i 0.529958 0.848024i \(-0.322208\pi\)
−0.469431 + 0.882969i \(0.655541\pi\)
\(744\) −0.342602 + 0.593405i −0.0125604 + 0.0217553i
\(745\) −6.88111 + 5.18453i −0.252104 + 0.189946i
\(746\) −11.6924 + 20.2518i −0.428088 + 0.741470i
\(747\) 10.5821 6.10958i 0.387179 0.223538i
\(748\) 12.4957i 0.456890i
\(749\) −38.9359 −1.42269
\(750\) 7.03784 8.68728i 0.256986 0.317215i
\(751\) −5.63534 9.76069i −0.205636 0.356173i 0.744699 0.667401i \(-0.232593\pi\)
−0.950335 + 0.311228i \(0.899260\pi\)
\(752\) 7.88813i 0.287650i
\(753\) 19.2514i 0.701561i
\(754\) 26.4960 + 45.8925i 0.964929 + 1.67131i
\(755\) 15.9993 + 6.79261i 0.582273 + 0.247208i
\(756\) −1.16068 2.01036i −0.0422135 0.0731159i
\(757\) −38.7692 22.3834i −1.40909 0.813540i −0.413792 0.910372i \(-0.635796\pi\)
−0.995301 + 0.0968318i \(0.969129\pi\)
\(758\) 20.1345 + 11.6246i 0.731317 + 0.422226i
\(759\) 14.3623 0.521317
\(760\) 4.85348 + 8.45244i 0.176054 + 0.306602i
\(761\) −33.7181 −1.22228 −0.611139 0.791523i \(-0.709289\pi\)
−0.611139 + 0.791523i \(0.709289\pi\)
\(762\) 7.72660 + 4.46095i 0.279905 + 0.161603i
\(763\) 17.8998 + 10.3345i 0.648018 + 0.374133i
\(764\) −9.42238 16.3200i −0.340890 0.590439i
\(765\) −3.82914 + 9.01912i −0.138443 + 0.326087i
\(766\) −10.3548 17.9351i −0.374135 0.648021i
\(767\) 8.70680i 0.314384i
\(768\) 1.00000i 0.0360844i
\(769\) 16.2178 + 28.0901i 0.584830 + 1.01296i 0.994897 + 0.100900i \(0.0321723\pi\)
−0.410066 + 0.912056i \(0.634494\pi\)
\(770\) −11.8221 + 8.90730i −0.426039 + 0.320997i
\(771\) −17.6914 −0.637139
\(772\) 16.5244i 0.594725i
\(773\) −35.2122 + 20.3298i −1.26649 + 0.731211i −0.974323 0.225155i \(-0.927711\pi\)
−0.292172 + 0.956366i \(0.594378\pi\)
\(774\) 1.29360 2.24057i 0.0464973 0.0805358i
\(775\) −2.37957 2.46481i −0.0854767 0.0885385i