Defining parameters
Level: | \( N \) | \(=\) | \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 570.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(570, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 128 | 16 | 112 |
Cusp forms | 112 | 16 | 96 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(570, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
570.2.d.a | $2$ | $4.551$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+iq^{2}+iq^{3}-q^{4}+(-1-2i)q^{5}+\cdots\) |
570.2.d.b | $2$ | $4.551$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+iq^{2}+iq^{3}-q^{4}+(2+i)q^{5}-q^{6}+\cdots\) |
570.2.d.c | $6$ | $4.551$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{1}q^{3}-q^{4}+\beta _{3}q^{5}-q^{6}+\cdots\) |
570.2.d.d | $6$ | $4.551$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{1}q^{3}-q^{4}-\beta _{5}q^{5}+q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(570, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(570, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)