Newspace parameters
Level: | \( N \) | \(=\) | \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 570.bb (of order \(18\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.55147291521\) |
Analytic rank: | \(0\) |
Dimension: | \(84\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41.1 | −0.766044 | − | 0.642788i | −1.71584 | − | 0.236392i | 0.173648 | + | 0.984808i | −0.984808 | − | 0.173648i | 1.16246 | + | 1.28401i | −1.76528 | − | 3.05755i | 0.500000 | − | 0.866025i | 2.88824 | + | 0.811224i | 0.642788 | + | 0.766044i |
41.2 | −0.766044 | − | 0.642788i | −1.50714 | − | 0.853538i | 0.173648 | + | 0.984808i | 0.984808 | + | 0.173648i | 0.605893 | + | 1.62262i | 1.94656 | + | 3.37154i | 0.500000 | − | 0.866025i | 1.54295 | + | 2.57280i | −0.642788 | − | 0.766044i |
41.3 | −0.766044 | − | 0.642788i | −1.15586 | − | 1.28996i | 0.173648 | + | 0.984808i | 0.984808 | + | 0.173648i | 0.0562681 | + | 1.73114i | −0.561471 | − | 0.972497i | 0.500000 | − | 0.866025i | −0.327989 | + | 2.98202i | −0.642788 | − | 0.766044i |
41.4 | −0.766044 | − | 0.642788i | −1.07847 | + | 1.35533i | 0.173648 | + | 0.984808i | −0.984808 | − | 0.173648i | 1.69734 | − | 0.345017i | −0.267952 | − | 0.464106i | 0.500000 | − | 0.866025i | −0.673825 | − | 2.92335i | 0.642788 | + | 0.766044i |
41.5 | −0.766044 | − | 0.642788i | −1.01882 | + | 1.40072i | 0.173648 | + | 0.984808i | 0.984808 | + | 0.173648i | 1.68082 | − | 0.418131i | 0.0247885 | + | 0.0429350i | 0.500000 | − | 0.866025i | −0.924029 | − | 2.85415i | −0.642788 | − | 0.766044i |
41.6 | −0.766044 | − | 0.642788i | −0.169275 | − | 1.72376i | 0.173648 | + | 0.984808i | −0.984808 | − | 0.173648i | −0.978339 | + | 1.42928i | 1.36690 | + | 2.36755i | 0.500000 | − | 0.866025i | −2.94269 | + | 0.583578i | 0.642788 | + | 0.766044i |
41.7 | −0.766044 | − | 0.642788i | 0.0507095 | + | 1.73131i | 0.173648 | + | 0.984808i | 0.984808 | + | 0.173648i | 1.07402 | − | 1.35885i | 0.847833 | + | 1.46849i | 0.500000 | − | 0.866025i | −2.99486 | + | 0.175587i | −0.642788 | − | 0.766044i |
41.8 | −0.766044 | − | 0.642788i | 0.446223 | + | 1.67358i | 0.173648 | + | 0.984808i | −0.984808 | − | 0.173648i | 0.733933 | − | 1.56887i | 2.13041 | + | 3.68998i | 0.500000 | − | 0.866025i | −2.60177 | + | 1.49358i | 0.642788 | + | 0.766044i |
41.9 | −0.766044 | − | 0.642788i | 0.902121 | − | 1.47857i | 0.173648 | + | 0.984808i | −0.984808 | − | 0.173648i | −1.64147 | + | 0.552780i | −1.68197 | − | 2.91326i | 0.500000 | − | 0.866025i | −1.37235 | − | 2.66770i | 0.642788 | + | 0.766044i |
41.10 | −0.766044 | − | 0.642788i | 0.964794 | + | 1.43846i | 0.173648 | + | 0.984808i | −0.984808 | − | 0.173648i | 0.185551 | − | 1.72208i | −1.20034 | − | 2.07905i | 0.500000 | − | 0.866025i | −1.13835 | + | 2.77564i | 0.642788 | + | 0.766044i |
41.11 | −0.766044 | − | 0.642788i | 1.46696 | − | 0.920884i | 0.173648 | + | 0.984808i | 0.984808 | + | 0.173648i | −1.71569 | − | 0.237506i | −2.15391 | − | 3.73068i | 0.500000 | − | 0.866025i | 1.30395 | − | 2.70180i | −0.642788 | − | 0.766044i |
41.12 | −0.766044 | − | 0.642788i | 1.48528 | + | 0.891036i | 0.173648 | + | 0.984808i | 0.984808 | + | 0.173648i | −0.565043 | − | 1.63729i | −2.04901 | − | 3.54899i | 0.500000 | − | 0.866025i | 1.41211 | + | 2.64687i | −0.642788 | − | 0.766044i |
41.13 | −0.766044 | − | 0.642788i | 1.59014 | − | 0.686630i | 0.173648 | + | 0.984808i | −0.984808 | − | 0.173648i | −1.65947 | − | 0.496132i | 1.07093 | + | 1.85491i | 0.500000 | − | 0.866025i | 2.05708 | − | 2.18367i | 0.642788 | + | 0.766044i |
41.14 | −0.766044 | − | 0.642788i | 1.61856 | − | 0.616663i | 0.173648 | + | 0.984808i | 0.984808 | + | 0.173648i | −1.63627 | − | 0.567997i | 1.59792 | + | 2.76767i | 0.500000 | − | 0.866025i | 2.23945 | − | 1.99621i | −0.642788 | − | 0.766044i |
71.1 | 0.939693 | − | 0.342020i | −1.66038 | − | 0.493094i | 0.766044 | − | 0.642788i | 0.642788 | − | 0.766044i | −1.72889 | + | 0.104526i | 0.222334 | + | 0.385093i | 0.500000 | − | 0.866025i | 2.51372 | + | 1.63745i | 0.342020 | − | 0.939693i |
71.2 | 0.939693 | − | 0.342020i | −1.63144 | + | 0.581714i | 0.766044 | − | 0.642788i | −0.642788 | + | 0.766044i | −1.33410 | + | 1.10462i | −0.223800 | − | 0.387633i | 0.500000 | − | 0.866025i | 2.32322 | − | 1.89807i | −0.342020 | + | 0.939693i |
71.3 | 0.939693 | − | 0.342020i | −1.49197 | − | 0.879786i | 0.766044 | − | 0.642788i | −0.642788 | + | 0.766044i | −1.70290 | − | 0.316445i | −1.40312 | − | 2.43028i | 0.500000 | − | 0.866025i | 1.45195 | + | 2.62523i | −0.342020 | + | 0.939693i |
71.4 | 0.939693 | − | 0.342020i | −1.12629 | − | 1.31585i | 0.766044 | − | 0.642788i | −0.642788 | + | 0.766044i | −1.50842 | − | 0.851282i | 2.21271 | + | 3.83252i | 0.500000 | − | 0.866025i | −0.462935 | + | 2.96407i | −0.342020 | + | 0.939693i |
71.5 | 0.939693 | − | 0.342020i | −0.950784 | + | 1.44776i | 0.766044 | − | 0.642788i | 0.642788 | − | 0.766044i | −0.398282 | + | 1.68564i | −2.26841 | − | 3.92899i | 0.500000 | − | 0.866025i | −1.19202 | − | 2.75301i | 0.342020 | − | 0.939693i |
71.6 | 0.939693 | − | 0.342020i | −0.936498 | + | 1.45704i | 0.766044 | − | 0.642788i | 0.642788 | − | 0.766044i | −0.381683 | + | 1.68947i | 0.199417 | + | 0.345401i | 0.500000 | − | 0.866025i | −1.24594 | − | 2.72903i | 0.342020 | − | 0.939693i |
See all 84 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
57.j | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 570.2.bb.b | yes | 84 |
3.b | odd | 2 | 1 | 570.2.bb.a | ✓ | 84 | |
19.f | odd | 18 | 1 | 570.2.bb.a | ✓ | 84 | |
57.j | even | 18 | 1 | inner | 570.2.bb.b | yes | 84 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
570.2.bb.a | ✓ | 84 | 3.b | odd | 2 | 1 | |
570.2.bb.a | ✓ | 84 | 19.f | odd | 18 | 1 | |
570.2.bb.b | yes | 84 | 1.a | even | 1 | 1 | trivial |
570.2.bb.b | yes | 84 | 57.j | even | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(37\!\cdots\!79\)\( T_{11}^{70} - \)\(32\!\cdots\!96\)\( T_{11}^{69} + \)\(13\!\cdots\!38\)\( T_{11}^{68} + \)\(14\!\cdots\!78\)\( T_{11}^{67} - \)\(41\!\cdots\!89\)\( T_{11}^{66} - \)\(54\!\cdots\!78\)\( T_{11}^{65} + \)\(11\!\cdots\!14\)\( T_{11}^{64} + \)\(17\!\cdots\!92\)\( T_{11}^{63} - \)\(25\!\cdots\!80\)\( T_{11}^{62} - \)\(46\!\cdots\!52\)\( T_{11}^{61} + \)\(52\!\cdots\!57\)\( T_{11}^{60} + \)\(10\!\cdots\!18\)\( T_{11}^{59} - \)\(92\!\cdots\!84\)\( T_{11}^{58} - \)\(22\!\cdots\!02\)\( T_{11}^{57} + \)\(14\!\cdots\!27\)\( T_{11}^{56} + \)\(39\!\cdots\!82\)\( T_{11}^{55} - \)\(18\!\cdots\!41\)\( T_{11}^{54} - \)\(60\!\cdots\!86\)\( T_{11}^{53} + \)\(21\!\cdots\!77\)\( T_{11}^{52} + \)\(81\!\cdots\!28\)\( T_{11}^{51} - \)\(21\!\cdots\!66\)\( T_{11}^{50} - \)\(95\!\cdots\!20\)\( T_{11}^{49} + \)\(16\!\cdots\!53\)\( T_{11}^{48} + \)\(98\!\cdots\!80\)\( T_{11}^{47} - \)\(10\!\cdots\!02\)\( T_{11}^{46} - \)\(86\!\cdots\!96\)\( T_{11}^{45} + \)\(43\!\cdots\!02\)\( T_{11}^{44} + \)\(66\!\cdots\!82\)\( T_{11}^{43} + \)\(10\!\cdots\!16\)\( T_{11}^{42} - \)\(43\!\cdots\!86\)\( T_{11}^{41} - \)\(21\!\cdots\!99\)\( T_{11}^{40} + \)\(24\!\cdots\!60\)\( T_{11}^{39} + \)\(23\!\cdots\!81\)\( T_{11}^{38} - \)\(11\!\cdots\!08\)\( T_{11}^{37} - \)\(16\!\cdots\!90\)\( T_{11}^{36} + \)\(40\!\cdots\!56\)\( T_{11}^{35} + \)\(91\!\cdots\!51\)\( T_{11}^{34} - \)\(11\!\cdots\!00\)\( T_{11}^{33} - \)\(39\!\cdots\!14\)\( T_{11}^{32} + \)\(17\!\cdots\!36\)\( T_{11}^{31} + \)\(13\!\cdots\!77\)\( T_{11}^{30} + \)\(20\!\cdots\!80\)\( T_{11}^{29} - \)\(35\!\cdots\!72\)\( T_{11}^{28} - \)\(24\!\cdots\!80\)\( T_{11}^{27} + \)\(69\!\cdots\!15\)\( T_{11}^{26} + \)\(88\!\cdots\!48\)\( T_{11}^{25} - \)\(88\!\cdots\!15\)\( T_{11}^{24} - \)\(20\!\cdots\!76\)\( T_{11}^{23} + \)\(37\!\cdots\!09\)\( T_{11}^{22} + \)\(33\!\cdots\!72\)\( T_{11}^{21} + \)\(12\!\cdots\!28\)\( T_{11}^{20} - \)\(33\!\cdots\!10\)\( T_{11}^{19} - \)\(29\!\cdots\!71\)\( T_{11}^{18} + \)\(20\!\cdots\!86\)\( T_{11}^{17} + \)\(35\!\cdots\!45\)\( T_{11}^{16} + \)\(90\!\cdots\!32\)\( T_{11}^{15} - \)\(23\!\cdots\!38\)\( T_{11}^{14} - \)\(86\!\cdots\!52\)\( T_{11}^{13} + \)\(97\!\cdots\!87\)\( T_{11}^{12} + \)\(77\!\cdots\!68\)\( T_{11}^{11} - \)\(11\!\cdots\!30\)\( T_{11}^{10} - \)\(28\!\cdots\!44\)\( T_{11}^{9} - \)\(34\!\cdots\!27\)\( T_{11}^{8} + \)\(72\!\cdots\!98\)\( T_{11}^{7} + \)\(30\!\cdots\!04\)\( T_{11}^{6} - \)\(34\!\cdots\!70\)\( T_{11}^{5} - \)\(41\!\cdots\!21\)\( T_{11}^{4} - \)\(11\!\cdots\!02\)\( T_{11}^{3} + \)\(47\!\cdots\!83\)\( T_{11}^{2} + \)\(13\!\cdots\!02\)\( T_{11} + \)\(12\!\cdots\!49\)\( \)">\(T_{11}^{84} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(570, [\chi])\).