Properties

Label 5658.2.a.j
Level $5658$
Weight $2$
Character orbit 5658.a
Self dual yes
Analytic conductor $45.179$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5658,2,Mod(1,5658)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5658.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5658, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5658 = 2 \cdot 3 \cdot 23 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5658.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-2,2,0,-2,4,2,2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.1793574636\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + 2 \beta q^{5} - q^{6} + 2 q^{7} + q^{8} + q^{9} + 2 \beta q^{10} + 2 q^{11} - q^{12} + 4 q^{13} + 2 q^{14} - 2 \beta q^{15} + q^{16} - 4 q^{17} + q^{18} + ( - 3 \beta + 3) q^{19} + \cdots + 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} + 4 q^{7} + 2 q^{8} + 2 q^{9} + 4 q^{11} - 2 q^{12} + 8 q^{13} + 4 q^{14} + 2 q^{16} - 8 q^{17} + 2 q^{18} + 6 q^{19} - 4 q^{21} + 4 q^{22} - 2 q^{23} - 2 q^{24}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
1.00000 −1.00000 1.00000 −3.46410 −1.00000 2.00000 1.00000 1.00000 −3.46410
1.2 1.00000 −1.00000 1.00000 3.46410 −1.00000 2.00000 1.00000 1.00000 3.46410
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(23\) \( +1 \)
\(41\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5658.2.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5658.2.a.j 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5658))\):

\( T_{5}^{2} - 12 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 12 \) Copy content Toggle raw display
$7$ \( (T - 2)^{2} \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( (T - 4)^{2} \) Copy content Toggle raw display
$17$ \( (T + 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 6T - 18 \) Copy content Toggle raw display
$23$ \( (T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 8T + 4 \) Copy content Toggle raw display
$31$ \( T^{2} - 8T - 32 \) Copy content Toggle raw display
$37$ \( T^{2} + 10T + 22 \) Copy content Toggle raw display
$41$ \( (T + 1)^{2} \) Copy content Toggle raw display
$43$ \( (T + 8)^{2} \) Copy content Toggle raw display
$47$ \( (T - 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 2T - 74 \) Copy content Toggle raw display
$59$ \( T^{2} + 8T - 32 \) Copy content Toggle raw display
$61$ \( T^{2} - 22T + 118 \) Copy content Toggle raw display
$67$ \( T^{2} - 10T - 2 \) Copy content Toggle raw display
$71$ \( T^{2} + 12T + 24 \) Copy content Toggle raw display
$73$ \( T^{2} - 4T - 8 \) Copy content Toggle raw display
$79$ \( T^{2} - 8T + 4 \) Copy content Toggle raw display
$83$ \( T^{2} + 2T - 242 \) Copy content Toggle raw display
$89$ \( T^{2} + 8T - 176 \) Copy content Toggle raw display
$97$ \( T^{2} - 6T - 18 \) Copy content Toggle raw display
show more
show less