Properties

Label 5616.2.d.n
Level $5616$
Weight $2$
Character orbit 5616.d
Analytic conductor $44.844$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5616,2,Mod(2159,5616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5616.2159"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5616 = 2^{4} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5616.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,-60,0,0,0,0, 0,0,0,0,0,0,0,-20,0,0,0,0,0,0,0,0,0,0,0,-68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(49)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.8439857752\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.769500892944.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + 6x^{5} - 14x^{4} + 36x^{3} + 36x^{2} - 648x + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{43}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{5} + ( - \beta_{5} - \beta_{4}) q^{7} + \beta_{2} q^{11} + q^{13} + 2 \beta_{4} q^{19} - \beta_{2} q^{23} + ( - \beta_{6} - 7) q^{25} - \beta_1 q^{29} + ( - \beta_{5} - \beta_{4}) q^{31}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{13} - 60 q^{25} - 20 q^{37} - 68 q^{49} - 36 q^{61} + 32 q^{73} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} + x^{6} + 6x^{5} - 14x^{4} + 36x^{3} + 36x^{2} - 648x + 1296 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{7} + 312\nu^{6} - 478\nu^{5} + 465\nu^{4} + 482\nu^{3} + 2874\nu^{2} - 17028\nu + 17388 ) / 18468 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{7} - 3\nu^{6} + 11\nu^{5} - 39\nu^{4} - 100\nu^{3} + 354\nu^{2} - 288\nu - 756 ) / 972 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -59\nu^{7} - 60\nu^{6} - 500\nu^{5} - 267\nu^{4} + 736\nu^{3} + 3354\nu^{2} - 7380\nu + 10152 ) / 18468 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 61\nu^{7} - 51\nu^{6} - 83\nu^{5} - 150\nu^{4} + 1378\nu^{3} + 2184\nu^{2} + 4500\nu - 26460 ) / 18468 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 109\nu^{7} - 150\nu^{6} - 224\nu^{5} + 1641\nu^{4} - 3290\nu^{3} + 6846\nu^{2} + 21564\nu - 66960 ) / 18468 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -7\nu^{7} + 24\nu^{6} + 2\nu^{5} - 93\nu^{4} + 26\nu^{3} + 30\nu^{2} + 1332\nu + 4104 ) / 972 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -13\nu^{7} + 6\nu^{6} + 50\nu^{5} - 3\nu^{4} + 164\nu^{3} + 318\nu^{2} - 1692\nu + 5400 ) / 972 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + \beta_{5} + \beta_{4} - \beta_{2} - \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{7} + \beta_{6} + 3\beta_{5} + 5\beta_{4} + 2\beta_{3} + 3\beta_{2} + \beta _1 + 3 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{7} - \beta_{5} + 13\beta_{4} - 5\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 10\beta_{7} - 7\beta_{6} + 21\beta_{5} - 5\beta_{4} - 10\beta_{3} - 27\beta_{2} + 9\beta _1 + 19 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 26\beta_{7} - \beta_{6} + \beta_{5} + 15\beta_{4} - 78\beta_{3} + 17\beta_{2} - 17\beta _1 - 43 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 27\beta_{6} - 62\beta_{3} + 67\beta _1 - 143 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -102\beta_{7} - 83\beta_{6} - 83\beta_{5} + 379\beta_{4} - 306\beta_{3} + 149\beta_{2} + 149\beta _1 + 1303 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5616\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2081\) \(3889\) \(4213\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2159.1
1.69817 + 1.76528i
2.37786 0.588018i
−2.26116 0.941894i
−0.314875 2.42917i
−0.314875 + 2.42917i
−2.26116 + 0.941894i
2.37786 + 0.588018i
1.69817 1.76528i
0 0 0 4.37631i 0 4.70660i 0 0 0
2159.2 0 0 0 4.37631i 0 4.70660i 0 0 0
2159.3 0 0 0 2.41825i 0 2.97455i 0 0 0
2159.4 0 0 0 2.41825i 0 2.97455i 0 0 0
2159.5 0 0 0 2.41825i 0 2.97455i 0 0 0
2159.6 0 0 0 2.41825i 0 2.97455i 0 0 0
2159.7 0 0 0 4.37631i 0 4.70660i 0 0 0
2159.8 0 0 0 4.37631i 0 4.70660i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2159.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5616.2.d.n 8
3.b odd 2 1 inner 5616.2.d.n 8
4.b odd 2 1 inner 5616.2.d.n 8
12.b even 2 1 inner 5616.2.d.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5616.2.d.n 8 1.a even 1 1 trivial
5616.2.d.n 8 3.b odd 2 1 inner
5616.2.d.n 8 4.b odd 2 1 inner
5616.2.d.n 8 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5616, [\chi])\):

\( T_{5}^{4} + 25T_{5}^{2} + 112 \) Copy content Toggle raw display
\( T_{7}^{4} + 31T_{7}^{2} + 196 \) Copy content Toggle raw display
\( T_{11}^{4} - 17T_{11}^{2} + 28 \) Copy content Toggle raw display
\( T_{23}^{4} - 17T_{23}^{2} + 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 25 T^{2} + 112)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 31 T^{2} + 196)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 17 T^{2} + 28)^{2} \) Copy content Toggle raw display
$13$ \( (T - 1)^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} - 17 T^{2} + 28)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 51 T^{2} + 252)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 31 T^{2} + 196)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 5 T - 38)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 100 T^{2} + 1792)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 3)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} - 119 T^{2} + 1372)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 127 T^{2} + 448)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 192 T^{2} + 7623)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 9 T - 24)^{4} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{4} - 299 T^{2} + 21952)^{2} \) Copy content Toggle raw display
$73$ \( (T - 4)^{8} \) Copy content Toggle raw display
$79$ \( (T^{4} + 124 T^{2} + 3136)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 264 T^{2} + 3087)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 448 T^{2} + 41503)^{2} \) Copy content Toggle raw display
$97$ \( (T + 12)^{8} \) Copy content Toggle raw display
show more
show less