Properties

Label 5610.2.a.cb.1.2
Level $5610$
Weight $2$
Character 5610.1
Self dual yes
Analytic conductor $44.796$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5610,2,Mod(1,5610)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5610.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5610, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5610.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,3,3,3,-3,3,-3,3,-3,-3,3,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.7960755339\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2089.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 13x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.309984\) of defining polynomial
Character \(\chi\) \(=\) 5610.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{6} +0.690016 q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} -1.00000 q^{11} +1.00000 q^{12} +4.00000 q^{13} -0.690016 q^{14} +1.00000 q^{15} +1.00000 q^{16} +1.00000 q^{17} -1.00000 q^{18} +1.00000 q^{20} +0.690016 q^{21} +1.00000 q^{22} -8.90391 q^{23} -1.00000 q^{24} +1.00000 q^{25} -4.00000 q^{26} +1.00000 q^{27} +0.690016 q^{28} -0.690016 q^{29} -1.00000 q^{30} +1.30998 q^{31} -1.00000 q^{32} -1.00000 q^{33} -1.00000 q^{34} +0.690016 q^{35} +1.00000 q^{36} +9.59393 q^{37} +4.00000 q^{39} -1.00000 q^{40} -7.59393 q^{41} -0.690016 q^{42} +7.30998 q^{43} -1.00000 q^{44} +1.00000 q^{45} +8.90391 q^{46} +7.59393 q^{47} +1.00000 q^{48} -6.52388 q^{49} -1.00000 q^{50} +1.00000 q^{51} +4.00000 q^{52} +6.97396 q^{53} -1.00000 q^{54} -1.00000 q^{55} -0.690016 q^{56} +0.690016 q^{58} +9.59393 q^{59} +1.00000 q^{60} +2.00000 q^{61} -1.30998 q^{62} +0.690016 q^{63} +1.00000 q^{64} +4.00000 q^{65} +1.00000 q^{66} -8.21389 q^{67} +1.00000 q^{68} -8.90391 q^{69} -0.690016 q^{70} +14.8339 q^{71} -1.00000 q^{72} +10.2139 q^{73} -9.59393 q^{74} +1.00000 q^{75} -0.690016 q^{77} -4.00000 q^{78} +15.1879 q^{79} +1.00000 q^{80} +1.00000 q^{81} +7.59393 q^{82} -15.1879 q^{83} +0.690016 q^{84} +1.00000 q^{85} -7.30998 q^{86} -0.690016 q^{87} +1.00000 q^{88} -7.38003 q^{89} -1.00000 q^{90} +2.76007 q^{91} -8.90391 q^{92} +1.30998 q^{93} -7.59393 q^{94} -1.00000 q^{96} -19.1178 q^{97} +6.52388 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{3} + 3 q^{4} + 3 q^{5} - 3 q^{6} + 3 q^{7} - 3 q^{8} + 3 q^{9} - 3 q^{10} - 3 q^{11} + 3 q^{12} + 12 q^{13} - 3 q^{14} + 3 q^{15} + 3 q^{16} + 3 q^{17} - 3 q^{18} + 3 q^{20} + 3 q^{21}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) −1.00000 −0.408248
\(7\) 0.690016 0.260802 0.130401 0.991461i \(-0.458374\pi\)
0.130401 + 0.991461i \(0.458374\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511
\(12\) 1.00000 0.288675
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) −0.690016 −0.184415
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −1.00000 −0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 1.00000 0.223607
\(21\) 0.690016 0.150574
\(22\) 1.00000 0.213201
\(23\) −8.90391 −1.85659 −0.928297 0.371840i \(-0.878727\pi\)
−0.928297 + 0.371840i \(0.878727\pi\)
\(24\) −1.00000 −0.204124
\(25\) 1.00000 0.200000
\(26\) −4.00000 −0.784465
\(27\) 1.00000 0.192450
\(28\) 0.690016 0.130401
\(29\) −0.690016 −0.128133 −0.0640664 0.997946i \(-0.520407\pi\)
−0.0640664 + 0.997946i \(0.520407\pi\)
\(30\) −1.00000 −0.182574
\(31\) 1.30998 0.235280 0.117640 0.993056i \(-0.462467\pi\)
0.117640 + 0.993056i \(0.462467\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.00000 −0.174078
\(34\) −1.00000 −0.171499
\(35\) 0.690016 0.116634
\(36\) 1.00000 0.166667
\(37\) 9.59393 1.57723 0.788616 0.614886i \(-0.210798\pi\)
0.788616 + 0.614886i \(0.210798\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) −1.00000 −0.158114
\(41\) −7.59393 −1.18597 −0.592986 0.805213i \(-0.702051\pi\)
−0.592986 + 0.805213i \(0.702051\pi\)
\(42\) −0.690016 −0.106472
\(43\) 7.30998 1.11476 0.557381 0.830257i \(-0.311806\pi\)
0.557381 + 0.830257i \(0.311806\pi\)
\(44\) −1.00000 −0.150756
\(45\) 1.00000 0.149071
\(46\) 8.90391 1.31281
\(47\) 7.59393 1.10769 0.553844 0.832620i \(-0.313160\pi\)
0.553844 + 0.832620i \(0.313160\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.52388 −0.931982
\(50\) −1.00000 −0.141421
\(51\) 1.00000 0.140028
\(52\) 4.00000 0.554700
\(53\) 6.97396 0.957947 0.478974 0.877829i \(-0.341009\pi\)
0.478974 + 0.877829i \(0.341009\pi\)
\(54\) −1.00000 −0.136083
\(55\) −1.00000 −0.134840
\(56\) −0.690016 −0.0922073
\(57\) 0 0
\(58\) 0.690016 0.0906036
\(59\) 9.59393 1.24902 0.624511 0.781016i \(-0.285298\pi\)
0.624511 + 0.781016i \(0.285298\pi\)
\(60\) 1.00000 0.129099
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −1.30998 −0.166368
\(63\) 0.690016 0.0869339
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 1.00000 0.123091
\(67\) −8.21389 −1.00349 −0.501743 0.865016i \(-0.667308\pi\)
−0.501743 + 0.865016i \(0.667308\pi\)
\(68\) 1.00000 0.121268
\(69\) −8.90391 −1.07190
\(70\) −0.690016 −0.0824727
\(71\) 14.8339 1.76046 0.880228 0.474552i \(-0.157390\pi\)
0.880228 + 0.474552i \(0.157390\pi\)
\(72\) −1.00000 −0.117851
\(73\) 10.2139 1.19545 0.597723 0.801703i \(-0.296072\pi\)
0.597723 + 0.801703i \(0.296072\pi\)
\(74\) −9.59393 −1.11527
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −0.690016 −0.0786347
\(78\) −4.00000 −0.452911
\(79\) 15.1879 1.70877 0.854383 0.519643i \(-0.173935\pi\)
0.854383 + 0.519643i \(0.173935\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) 7.59393 0.838609
\(83\) −15.1879 −1.66708 −0.833542 0.552456i \(-0.813691\pi\)
−0.833542 + 0.552456i \(0.813691\pi\)
\(84\) 0.690016 0.0752870
\(85\) 1.00000 0.108465
\(86\) −7.30998 −0.788256
\(87\) −0.690016 −0.0739775
\(88\) 1.00000 0.106600
\(89\) −7.38003 −0.782282 −0.391141 0.920331i \(-0.627920\pi\)
−0.391141 + 0.920331i \(0.627920\pi\)
\(90\) −1.00000 −0.105409
\(91\) 2.76007 0.289334
\(92\) −8.90391 −0.928297
\(93\) 1.30998 0.135839
\(94\) −7.59393 −0.783254
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −19.1178 −1.94112 −0.970559 0.240862i \(-0.922570\pi\)
−0.970559 + 0.240862i \(0.922570\pi\)
\(98\) 6.52388 0.659011
\(99\) −1.00000 −0.100504
\(100\) 1.00000 0.100000
\(101\) 6.21389 0.618306 0.309153 0.951012i \(-0.399955\pi\)
0.309153 + 0.951012i \(0.399955\pi\)
\(102\) −1.00000 −0.0990148
\(103\) −2.28394 −0.225044 −0.112522 0.993649i \(-0.535893\pi\)
−0.112522 + 0.993649i \(0.535893\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0.690016 0.0673387
\(106\) −6.97396 −0.677371
\(107\) 10.2839 0.994186 0.497093 0.867697i \(-0.334401\pi\)
0.497093 + 0.867697i \(0.334401\pi\)
\(108\) 1.00000 0.0962250
\(109\) −4.61997 −0.442513 −0.221256 0.975216i \(-0.571016\pi\)
−0.221256 + 0.975216i \(0.571016\pi\)
\(110\) 1.00000 0.0953463
\(111\) 9.59393 0.910615
\(112\) 0.690016 0.0652004
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) −8.90391 −0.830294
\(116\) −0.690016 −0.0640664
\(117\) 4.00000 0.369800
\(118\) −9.59393 −0.883193
\(119\) 0.690016 0.0632537
\(120\) −1.00000 −0.0912871
\(121\) 1.00000 0.0909091
\(122\) −2.00000 −0.181071
\(123\) −7.59393 −0.684721
\(124\) 1.30998 0.117640
\(125\) 1.00000 0.0894427
\(126\) −0.690016 −0.0614716
\(127\) 16.9740 1.50620 0.753098 0.657909i \(-0.228559\pi\)
0.753098 + 0.657909i \(0.228559\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 7.30998 0.643608
\(130\) −4.00000 −0.350823
\(131\) 5.23993 0.457815 0.228908 0.973448i \(-0.426485\pi\)
0.228908 + 0.973448i \(0.426485\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 0 0
\(134\) 8.21389 0.709572
\(135\) 1.00000 0.0860663
\(136\) −1.00000 −0.0857493
\(137\) 5.66398 0.483906 0.241953 0.970288i \(-0.422212\pi\)
0.241953 + 0.970288i \(0.422212\pi\)
\(138\) 8.90391 0.757951
\(139\) 18.1438 1.53894 0.769470 0.638682i \(-0.220520\pi\)
0.769470 + 0.638682i \(0.220520\pi\)
\(140\) 0.690016 0.0583170
\(141\) 7.59393 0.639524
\(142\) −14.8339 −1.24483
\(143\) −4.00000 −0.334497
\(144\) 1.00000 0.0833333
\(145\) −0.690016 −0.0573027
\(146\) −10.2139 −0.845308
\(147\) −6.52388 −0.538080
\(148\) 9.59393 0.788616
\(149\) −3.59393 −0.294426 −0.147213 0.989105i \(-0.547030\pi\)
−0.147213 + 0.989105i \(0.547030\pi\)
\(150\) −1.00000 −0.0816497
\(151\) 0.406073 0.0330458 0.0165229 0.999863i \(-0.494740\pi\)
0.0165229 + 0.999863i \(0.494740\pi\)
\(152\) 0 0
\(153\) 1.00000 0.0808452
\(154\) 0.690016 0.0556031
\(155\) 1.30998 0.105220
\(156\) 4.00000 0.320256
\(157\) −12.9740 −1.03543 −0.517717 0.855552i \(-0.673218\pi\)
−0.517717 + 0.855552i \(0.673218\pi\)
\(158\) −15.1879 −1.20828
\(159\) 6.97396 0.553071
\(160\) −1.00000 −0.0790569
\(161\) −6.14384 −0.484203
\(162\) −1.00000 −0.0785674
\(163\) 11.5239 0.902620 0.451310 0.892367i \(-0.350957\pi\)
0.451310 + 0.892367i \(0.350957\pi\)
\(164\) −7.59393 −0.592986
\(165\) −1.00000 −0.0778499
\(166\) 15.1879 1.17881
\(167\) −4.97396 −0.384897 −0.192448 0.981307i \(-0.561643\pi\)
−0.192448 + 0.981307i \(0.561643\pi\)
\(168\) −0.690016 −0.0532359
\(169\) 3.00000 0.230769
\(170\) −1.00000 −0.0766965
\(171\) 0 0
\(172\) 7.30998 0.557381
\(173\) −10.8339 −0.823683 −0.411842 0.911255i \(-0.635114\pi\)
−0.411842 + 0.911255i \(0.635114\pi\)
\(174\) 0.690016 0.0523100
\(175\) 0.690016 0.0521603
\(176\) −1.00000 −0.0753778
\(177\) 9.59393 0.721124
\(178\) 7.38003 0.553157
\(179\) 13.5939 1.01606 0.508029 0.861340i \(-0.330374\pi\)
0.508029 + 0.861340i \(0.330374\pi\)
\(180\) 1.00000 0.0745356
\(181\) −21.2579 −1.58009 −0.790044 0.613050i \(-0.789942\pi\)
−0.790044 + 0.613050i \(0.789942\pi\)
\(182\) −2.76007 −0.204590
\(183\) 2.00000 0.147844
\(184\) 8.90391 0.656405
\(185\) 9.59393 0.705360
\(186\) −1.30998 −0.0960527
\(187\) −1.00000 −0.0731272
\(188\) 7.59393 0.553844
\(189\) 0.690016 0.0501913
\(190\) 0 0
\(191\) 12.4978 0.904312 0.452156 0.891939i \(-0.350655\pi\)
0.452156 + 0.891939i \(0.350655\pi\)
\(192\) 1.00000 0.0721688
\(193\) 19.4538 1.40032 0.700159 0.713987i \(-0.253113\pi\)
0.700159 + 0.713987i \(0.253113\pi\)
\(194\) 19.1178 1.37258
\(195\) 4.00000 0.286446
\(196\) −6.52388 −0.465991
\(197\) −10.9740 −0.781862 −0.390931 0.920420i \(-0.627847\pi\)
−0.390931 + 0.920420i \(0.627847\pi\)
\(198\) 1.00000 0.0710669
\(199\) −10.3540 −0.733975 −0.366988 0.930226i \(-0.619611\pi\)
−0.366988 + 0.930226i \(0.619611\pi\)
\(200\) −1.00000 −0.0707107
\(201\) −8.21389 −0.579363
\(202\) −6.21389 −0.437208
\(203\) −0.476123 −0.0334173
\(204\) 1.00000 0.0700140
\(205\) −7.59393 −0.530383
\(206\) 2.28394 0.159130
\(207\) −8.90391 −0.618865
\(208\) 4.00000 0.277350
\(209\) 0 0
\(210\) −0.690016 −0.0476157
\(211\) 0.336024 0.0231328 0.0115664 0.999933i \(-0.496318\pi\)
0.0115664 + 0.999933i \(0.496318\pi\)
\(212\) 6.97396 0.478974
\(213\) 14.8339 1.01640
\(214\) −10.2839 −0.702996
\(215\) 7.30998 0.498537
\(216\) −1.00000 −0.0680414
\(217\) 0.903910 0.0613614
\(218\) 4.61997 0.312904
\(219\) 10.2139 0.690191
\(220\) −1.00000 −0.0674200
\(221\) 4.00000 0.269069
\(222\) −9.59393 −0.643902
\(223\) 20.9039 1.39983 0.699915 0.714226i \(-0.253221\pi\)
0.699915 + 0.714226i \(0.253221\pi\)
\(224\) −0.690016 −0.0461037
\(225\) 1.00000 0.0666667
\(226\) −2.00000 −0.133038
\(227\) −10.4240 −0.691868 −0.345934 0.938259i \(-0.612438\pi\)
−0.345934 + 0.938259i \(0.612438\pi\)
\(228\) 0 0
\(229\) 11.3800 0.752014 0.376007 0.926617i \(-0.377297\pi\)
0.376007 + 0.926617i \(0.377297\pi\)
\(230\) 8.90391 0.587106
\(231\) −0.690016 −0.0453997
\(232\) 0.690016 0.0453018
\(233\) 0.283943 0.0186017 0.00930086 0.999957i \(-0.497039\pi\)
0.00930086 + 0.999957i \(0.497039\pi\)
\(234\) −4.00000 −0.261488
\(235\) 7.59393 0.495373
\(236\) 9.59393 0.624511
\(237\) 15.1879 0.986557
\(238\) −0.690016 −0.0447271
\(239\) 28.5679 1.84790 0.923951 0.382510i \(-0.124940\pi\)
0.923951 + 0.382510i \(0.124940\pi\)
\(240\) 1.00000 0.0645497
\(241\) −0.283943 −0.0182904 −0.00914519 0.999958i \(-0.502911\pi\)
−0.00914519 + 0.999958i \(0.502911\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 1.00000 0.0641500
\(244\) 2.00000 0.128037
\(245\) −6.52388 −0.416795
\(246\) 7.59393 0.484171
\(247\) 0 0
\(248\) −1.30998 −0.0831840
\(249\) −15.1879 −0.962491
\(250\) −1.00000 −0.0632456
\(251\) −23.4017 −1.47711 −0.738553 0.674196i \(-0.764490\pi\)
−0.738553 + 0.674196i \(0.764490\pi\)
\(252\) 0.690016 0.0434670
\(253\) 8.90391 0.559784
\(254\) −16.9740 −1.06504
\(255\) 1.00000 0.0626224
\(256\) 1.00000 0.0625000
\(257\) −21.6640 −1.35136 −0.675681 0.737194i \(-0.736150\pi\)
−0.675681 + 0.737194i \(0.736150\pi\)
\(258\) −7.30998 −0.455100
\(259\) 6.61997 0.411345
\(260\) 4.00000 0.248069
\(261\) −0.690016 −0.0427109
\(262\) −5.23993 −0.323724
\(263\) 11.5239 0.710593 0.355296 0.934754i \(-0.384380\pi\)
0.355296 + 0.934754i \(0.384380\pi\)
\(264\) 1.00000 0.0615457
\(265\) 6.97396 0.428407
\(266\) 0 0
\(267\) −7.38003 −0.451651
\(268\) −8.21389 −0.501743
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) −1.00000 −0.0608581
\(271\) 29.7378 1.80644 0.903220 0.429177i \(-0.141196\pi\)
0.903220 + 0.429177i \(0.141196\pi\)
\(272\) 1.00000 0.0606339
\(273\) 2.76007 0.167047
\(274\) −5.66398 −0.342173
\(275\) −1.00000 −0.0603023
\(276\) −8.90391 −0.535952
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −18.1438 −1.08820
\(279\) 1.30998 0.0784267
\(280\) −0.690016 −0.0412364
\(281\) −5.52388 −0.329527 −0.164763 0.986333i \(-0.552686\pi\)
−0.164763 + 0.986333i \(0.552686\pi\)
\(282\) −7.59393 −0.452212
\(283\) −19.0478 −1.13227 −0.566136 0.824312i \(-0.691562\pi\)
−0.566136 + 0.824312i \(0.691562\pi\)
\(284\) 14.8339 0.880228
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) −5.23993 −0.309304
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) 0.690016 0.0405192
\(291\) −19.1178 −1.12071
\(292\) 10.2139 0.597723
\(293\) −20.1438 −1.17682 −0.588408 0.808564i \(-0.700245\pi\)
−0.588408 + 0.808564i \(0.700245\pi\)
\(294\) 6.52388 0.380480
\(295\) 9.59393 0.558580
\(296\) −9.59393 −0.557636
\(297\) −1.00000 −0.0580259
\(298\) 3.59393 0.208191
\(299\) −35.6156 −2.05971
\(300\) 1.00000 0.0577350
\(301\) 5.04401 0.290732
\(302\) −0.406073 −0.0233669
\(303\) 6.21389 0.356979
\(304\) 0 0
\(305\) 2.00000 0.114520
\(306\) −1.00000 −0.0571662
\(307\) 15.4017 0.879024 0.439512 0.898237i \(-0.355151\pi\)
0.439512 + 0.898237i \(0.355151\pi\)
\(308\) −0.690016 −0.0393173
\(309\) −2.28394 −0.129929
\(310\) −1.30998 −0.0744021
\(311\) −14.9740 −0.849095 −0.424548 0.905406i \(-0.639567\pi\)
−0.424548 + 0.905406i \(0.639567\pi\)
\(312\) −4.00000 −0.226455
\(313\) 18.3057 1.03470 0.517348 0.855775i \(-0.326919\pi\)
0.517348 + 0.855775i \(0.326919\pi\)
\(314\) 12.9740 0.732163
\(315\) 0.690016 0.0388780
\(316\) 15.1879 0.854383
\(317\) 0.283943 0.0159478 0.00797392 0.999968i \(-0.497462\pi\)
0.00797392 + 0.999968i \(0.497462\pi\)
\(318\) −6.97396 −0.391080
\(319\) 0.690016 0.0386335
\(320\) 1.00000 0.0559017
\(321\) 10.2839 0.573994
\(322\) 6.14384 0.342383
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 4.00000 0.221880
\(326\) −11.5239 −0.638249
\(327\) −4.61997 −0.255485
\(328\) 7.59393 0.419304
\(329\) 5.23993 0.288887
\(330\) 1.00000 0.0550482
\(331\) −3.52388 −0.193690 −0.0968449 0.995299i \(-0.530875\pi\)
−0.0968449 + 0.995299i \(0.530875\pi\)
\(332\) −15.1879 −0.833542
\(333\) 9.59393 0.525744
\(334\) 4.97396 0.272163
\(335\) −8.21389 −0.448773
\(336\) 0.690016 0.0376435
\(337\) −15.4538 −0.841824 −0.420912 0.907102i \(-0.638290\pi\)
−0.420912 + 0.907102i \(0.638290\pi\)
\(338\) −3.00000 −0.163178
\(339\) 2.00000 0.108625
\(340\) 1.00000 0.0542326
\(341\) −1.30998 −0.0709396
\(342\) 0 0
\(343\) −9.33170 −0.503864
\(344\) −7.30998 −0.394128
\(345\) −8.90391 −0.479370
\(346\) 10.8339 0.582432
\(347\) −21.6677 −1.16318 −0.581592 0.813481i \(-0.697570\pi\)
−0.581592 + 0.813481i \(0.697570\pi\)
\(348\) −0.690016 −0.0369888
\(349\) 18.8339 1.00815 0.504077 0.863659i \(-0.331833\pi\)
0.504077 + 0.863659i \(0.331833\pi\)
\(350\) −0.690016 −0.0368829
\(351\) 4.00000 0.213504
\(352\) 1.00000 0.0533002
\(353\) 14.9039 0.793255 0.396628 0.917980i \(-0.370180\pi\)
0.396628 + 0.917980i \(0.370180\pi\)
\(354\) −9.59393 −0.509911
\(355\) 14.8339 0.787300
\(356\) −7.38003 −0.391141
\(357\) 0.690016 0.0365195
\(358\) −13.5939 −0.718461
\(359\) −21.8078 −1.15097 −0.575486 0.817811i \(-0.695187\pi\)
−0.575486 + 0.817811i \(0.695187\pi\)
\(360\) −1.00000 −0.0527046
\(361\) −19.0000 −1.00000
\(362\) 21.2579 1.11729
\(363\) 1.00000 0.0524864
\(364\) 2.76007 0.144667
\(365\) 10.2139 0.534620
\(366\) −2.00000 −0.104542
\(367\) 24.3757 1.27240 0.636201 0.771524i \(-0.280505\pi\)
0.636201 + 0.771524i \(0.280505\pi\)
\(368\) −8.90391 −0.464148
\(369\) −7.59393 −0.395324
\(370\) −9.59393 −0.498764
\(371\) 4.81215 0.249834
\(372\) 1.30998 0.0679195
\(373\) 0.140099 0.00725403 0.00362702 0.999993i \(-0.498845\pi\)
0.00362702 + 0.999993i \(0.498845\pi\)
\(374\) 1.00000 0.0517088
\(375\) 1.00000 0.0516398
\(376\) −7.59393 −0.391627
\(377\) −2.76007 −0.142151
\(378\) −0.690016 −0.0354906
\(379\) −16.7080 −0.858232 −0.429116 0.903250i \(-0.641175\pi\)
−0.429116 + 0.903250i \(0.641175\pi\)
\(380\) 0 0
\(381\) 16.9740 0.869602
\(382\) −12.4978 −0.639445
\(383\) 5.64601 0.288498 0.144249 0.989541i \(-0.453923\pi\)
0.144249 + 0.989541i \(0.453923\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −0.690016 −0.0351665
\(386\) −19.4538 −0.990174
\(387\) 7.30998 0.371587
\(388\) −19.1178 −0.970559
\(389\) −15.0478 −0.762951 −0.381476 0.924379i \(-0.624584\pi\)
−0.381476 + 0.924379i \(0.624584\pi\)
\(390\) −4.00000 −0.202548
\(391\) −8.90391 −0.450290
\(392\) 6.52388 0.329506
\(393\) 5.23993 0.264320
\(394\) 10.9740 0.552860
\(395\) 15.1879 0.764184
\(396\) −1.00000 −0.0502519
\(397\) −26.8339 −1.34675 −0.673376 0.739300i \(-0.735157\pi\)
−0.673376 + 0.739300i \(0.735157\pi\)
\(398\) 10.3540 0.518999
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −2.12213 −0.105974 −0.0529871 0.998595i \(-0.516874\pi\)
−0.0529871 + 0.998595i \(0.516874\pi\)
\(402\) 8.21389 0.409672
\(403\) 5.23993 0.261020
\(404\) 6.21389 0.309153
\(405\) 1.00000 0.0496904
\(406\) 0.476123 0.0236296
\(407\) −9.59393 −0.475553
\(408\) −1.00000 −0.0495074
\(409\) 4.19218 0.207290 0.103645 0.994614i \(-0.466949\pi\)
0.103645 + 0.994614i \(0.466949\pi\)
\(410\) 7.59393 0.375037
\(411\) 5.66398 0.279383
\(412\) −2.28394 −0.112522
\(413\) 6.61997 0.325747
\(414\) 8.90391 0.437603
\(415\) −15.1879 −0.745542
\(416\) −4.00000 −0.196116
\(417\) 18.1438 0.888508
\(418\) 0 0
\(419\) 24.0918 1.17696 0.588480 0.808512i \(-0.299727\pi\)
0.588480 + 0.808512i \(0.299727\pi\)
\(420\) 0.690016 0.0336694
\(421\) 13.8599 0.675490 0.337745 0.941238i \(-0.390336\pi\)
0.337745 + 0.941238i \(0.390336\pi\)
\(422\) −0.336024 −0.0163574
\(423\) 7.59393 0.369229
\(424\) −6.97396 −0.338685
\(425\) 1.00000 0.0485071
\(426\) −14.8339 −0.718703
\(427\) 1.38003 0.0667845
\(428\) 10.2839 0.497093
\(429\) −4.00000 −0.193122
\(430\) −7.30998 −0.352519
\(431\) 26.2319 1.26354 0.631772 0.775154i \(-0.282328\pi\)
0.631772 + 0.775154i \(0.282328\pi\)
\(432\) 1.00000 0.0481125
\(433\) −3.80782 −0.182992 −0.0914961 0.995805i \(-0.529165\pi\)
−0.0914961 + 0.995805i \(0.529165\pi\)
\(434\) −0.903910 −0.0433891
\(435\) −0.690016 −0.0330838
\(436\) −4.61997 −0.221256
\(437\) 0 0
\(438\) −10.2139 −0.488039
\(439\) −1.80782 −0.0862826 −0.0431413 0.999069i \(-0.513737\pi\)
−0.0431413 + 0.999069i \(0.513737\pi\)
\(440\) 1.00000 0.0476731
\(441\) −6.52388 −0.310661
\(442\) −4.00000 −0.190261
\(443\) 19.9517 0.947932 0.473966 0.880543i \(-0.342822\pi\)
0.473966 + 0.880543i \(0.342822\pi\)
\(444\) 9.59393 0.455308
\(445\) −7.38003 −0.349847
\(446\) −20.9039 −0.989829
\(447\) −3.59393 −0.169987
\(448\) 0.690016 0.0326002
\(449\) 34.4458 1.62560 0.812798 0.582546i \(-0.197943\pi\)
0.812798 + 0.582546i \(0.197943\pi\)
\(450\) −1.00000 −0.0471405
\(451\) 7.59393 0.357584
\(452\) 2.00000 0.0940721
\(453\) 0.406073 0.0190790
\(454\) 10.4240 0.489225
\(455\) 2.76007 0.129394
\(456\) 0 0
\(457\) 31.6677 1.48135 0.740677 0.671862i \(-0.234505\pi\)
0.740677 + 0.671862i \(0.234505\pi\)
\(458\) −11.3800 −0.531754
\(459\) 1.00000 0.0466760
\(460\) −8.90391 −0.415147
\(461\) 23.4538 1.09235 0.546177 0.837670i \(-0.316083\pi\)
0.546177 + 0.837670i \(0.316083\pi\)
\(462\) 0.690016 0.0321025
\(463\) −13.9479 −0.648215 −0.324107 0.946020i \(-0.605064\pi\)
−0.324107 + 0.946020i \(0.605064\pi\)
\(464\) −0.690016 −0.0320332
\(465\) 1.30998 0.0607490
\(466\) −0.283943 −0.0131534
\(467\) −35.6156 −1.64810 −0.824048 0.566520i \(-0.808289\pi\)
−0.824048 + 0.566520i \(0.808289\pi\)
\(468\) 4.00000 0.184900
\(469\) −5.66772 −0.261711
\(470\) −7.59393 −0.350282
\(471\) −12.9740 −0.597808
\(472\) −9.59393 −0.441596
\(473\) −7.30998 −0.336113
\(474\) −15.1879 −0.697601
\(475\) 0 0
\(476\) 0.690016 0.0316269
\(477\) 6.97396 0.319316
\(478\) −28.5679 −1.30666
\(479\) 9.66398 0.441558 0.220779 0.975324i \(-0.429140\pi\)
0.220779 + 0.975324i \(0.429140\pi\)
\(480\) −1.00000 −0.0456435
\(481\) 38.3757 1.74978
\(482\) 0.283943 0.0129333
\(483\) −6.14384 −0.279555
\(484\) 1.00000 0.0454545
\(485\) −19.1178 −0.868095
\(486\) −1.00000 −0.0453609
\(487\) −32.3757 −1.46708 −0.733542 0.679644i \(-0.762134\pi\)
−0.733542 + 0.679644i \(0.762134\pi\)
\(488\) −2.00000 −0.0905357
\(489\) 11.5239 0.521128
\(490\) 6.52388 0.294719
\(491\) 27.4017 1.23662 0.618312 0.785933i \(-0.287817\pi\)
0.618312 + 0.785933i \(0.287817\pi\)
\(492\) −7.59393 −0.342361
\(493\) −0.690016 −0.0310768
\(494\) 0 0
\(495\) −1.00000 −0.0449467
\(496\) 1.30998 0.0588200
\(497\) 10.2356 0.459130
\(498\) 15.1879 0.680584
\(499\) 1.52013 0.0680504 0.0340252 0.999421i \(-0.489167\pi\)
0.0340252 + 0.999421i \(0.489167\pi\)
\(500\) 1.00000 0.0447214
\(501\) −4.97396 −0.222220
\(502\) 23.4017 1.04447
\(503\) 21.5418 0.960503 0.480252 0.877131i \(-0.340545\pi\)
0.480252 + 0.877131i \(0.340545\pi\)
\(504\) −0.690016 −0.0307358
\(505\) 6.21389 0.276515
\(506\) −8.90391 −0.395827
\(507\) 3.00000 0.133235
\(508\) 16.9740 0.753098
\(509\) −15.0478 −0.666980 −0.333490 0.942754i \(-0.608226\pi\)
−0.333490 + 0.942754i \(0.608226\pi\)
\(510\) −1.00000 −0.0442807
\(511\) 7.04775 0.311774
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 21.6640 0.955557
\(515\) −2.28394 −0.100643
\(516\) 7.30998 0.321804
\(517\) −7.59393 −0.333981
\(518\) −6.61997 −0.290865
\(519\) −10.8339 −0.475554
\(520\) −4.00000 −0.175412
\(521\) −5.78611 −0.253494 −0.126747 0.991935i \(-0.540454\pi\)
−0.126747 + 0.991935i \(0.540454\pi\)
\(522\) 0.690016 0.0302012
\(523\) −9.92995 −0.434206 −0.217103 0.976149i \(-0.569661\pi\)
−0.217103 + 0.976149i \(0.569661\pi\)
\(524\) 5.23993 0.228908
\(525\) 0.690016 0.0301148
\(526\) −11.5239 −0.502465
\(527\) 1.30998 0.0570638
\(528\) −1.00000 −0.0435194
\(529\) 56.2796 2.44694
\(530\) −6.97396 −0.302929
\(531\) 9.59393 0.416341
\(532\) 0 0
\(533\) −30.3757 −1.31572
\(534\) 7.38003 0.319365
\(535\) 10.2839 0.444614
\(536\) 8.21389 0.354786
\(537\) 13.5939 0.586621
\(538\) 10.0000 0.431131
\(539\) 6.52388 0.281003
\(540\) 1.00000 0.0430331
\(541\) 15.3800 0.661239 0.330620 0.943764i \(-0.392742\pi\)
0.330620 + 0.943764i \(0.392742\pi\)
\(542\) −29.7378 −1.27735
\(543\) −21.2579 −0.912264
\(544\) −1.00000 −0.0428746
\(545\) −4.61997 −0.197898
\(546\) −2.76007 −0.118120
\(547\) 37.8078 1.61655 0.808273 0.588808i \(-0.200403\pi\)
0.808273 + 0.588808i \(0.200403\pi\)
\(548\) 5.66398 0.241953
\(549\) 2.00000 0.0853579
\(550\) 1.00000 0.0426401
\(551\) 0 0
\(552\) 8.90391 0.378976
\(553\) 10.4799 0.445649
\(554\) 2.00000 0.0849719
\(555\) 9.59393 0.407240
\(556\) 18.1438 0.769470
\(557\) 4.14384 0.175580 0.0877902 0.996139i \(-0.472020\pi\)
0.0877902 + 0.996139i \(0.472020\pi\)
\(558\) −1.30998 −0.0554560
\(559\) 29.2399 1.23672
\(560\) 0.690016 0.0291585
\(561\) −1.00000 −0.0422200
\(562\) 5.52388 0.233011
\(563\) 1.94792 0.0820950 0.0410475 0.999157i \(-0.486931\pi\)
0.0410475 + 0.999157i \(0.486931\pi\)
\(564\) 7.59393 0.319762
\(565\) 2.00000 0.0841406
\(566\) 19.0478 0.800637
\(567\) 0.690016 0.0289780
\(568\) −14.8339 −0.622415
\(569\) 43.6677 1.83065 0.915323 0.402720i \(-0.131935\pi\)
0.915323 + 0.402720i \(0.131935\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) −4.00000 −0.167248
\(573\) 12.4978 0.522105
\(574\) 5.23993 0.218711
\(575\) −8.90391 −0.371319
\(576\) 1.00000 0.0416667
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 19.4538 0.808474
\(580\) −0.690016 −0.0286514
\(581\) −10.4799 −0.434778
\(582\) 19.1178 0.792458
\(583\) −6.97396 −0.288832
\(584\) −10.2139 −0.422654
\(585\) 4.00000 0.165380
\(586\) 20.1438 0.832135
\(587\) −33.4718 −1.38153 −0.690764 0.723080i \(-0.742726\pi\)
−0.690764 + 0.723080i \(0.742726\pi\)
\(588\) −6.52388 −0.269040
\(589\) 0 0
\(590\) −9.59393 −0.394976
\(591\) −10.9740 −0.451408
\(592\) 9.59393 0.394308
\(593\) −27.1358 −1.11433 −0.557166 0.830401i \(-0.688111\pi\)
−0.557166 + 0.830401i \(0.688111\pi\)
\(594\) 1.00000 0.0410305
\(595\) 0.690016 0.0282879
\(596\) −3.59393 −0.147213
\(597\) −10.3540 −0.423761
\(598\) 35.6156 1.45643
\(599\) −2.83012 −0.115635 −0.0578177 0.998327i \(-0.518414\pi\)
−0.0578177 + 0.998327i \(0.518414\pi\)
\(600\) −1.00000 −0.0408248
\(601\) 35.6677 1.45492 0.727458 0.686152i \(-0.240701\pi\)
0.727458 + 0.686152i \(0.240701\pi\)
\(602\) −5.04401 −0.205578
\(603\) −8.21389 −0.334496
\(604\) 0.406073 0.0165229
\(605\) 1.00000 0.0406558
\(606\) −6.21389 −0.252422
\(607\) −13.4538 −0.546074 −0.273037 0.962004i \(-0.588028\pi\)
−0.273037 + 0.962004i \(0.588028\pi\)
\(608\) 0 0
\(609\) −0.476123 −0.0192935
\(610\) −2.00000 −0.0809776
\(611\) 30.3757 1.22887
\(612\) 1.00000 0.0404226
\(613\) 8.14010 0.328775 0.164388 0.986396i \(-0.447435\pi\)
0.164388 + 0.986396i \(0.447435\pi\)
\(614\) −15.4017 −0.621564
\(615\) −7.59393 −0.306217
\(616\) 0.690016 0.0278016
\(617\) −16.3757 −0.659261 −0.329631 0.944110i \(-0.606924\pi\)
−0.329631 + 0.944110i \(0.606924\pi\)
\(618\) 2.28394 0.0918737
\(619\) −0.567886 −0.0228253 −0.0114126 0.999935i \(-0.503633\pi\)
−0.0114126 + 0.999935i \(0.503633\pi\)
\(620\) 1.30998 0.0526102
\(621\) −8.90391 −0.357302
\(622\) 14.9740 0.600401
\(623\) −5.09234 −0.204020
\(624\) 4.00000 0.160128
\(625\) 1.00000 0.0400000
\(626\) −18.3057 −0.731641
\(627\) 0 0
\(628\) −12.9740 −0.517717
\(629\) 9.59393 0.382535
\(630\) −0.690016 −0.0274909
\(631\) −43.7557 −1.74189 −0.870944 0.491382i \(-0.836492\pi\)
−0.870944 + 0.491382i \(0.836492\pi\)
\(632\) −15.1879 −0.604140
\(633\) 0.336024 0.0133558
\(634\) −0.283943 −0.0112768
\(635\) 16.9740 0.673591
\(636\) 6.97396 0.276535
\(637\) −26.0955 −1.03394
\(638\) −0.690016 −0.0273180
\(639\) 14.8339 0.586818
\(640\) −1.00000 −0.0395285
\(641\) −16.3577 −0.646092 −0.323046 0.946383i \(-0.604707\pi\)
−0.323046 + 0.946383i \(0.604707\pi\)
\(642\) −10.2839 −0.405875
\(643\) −4.33602 −0.170996 −0.0854980 0.996338i \(-0.527248\pi\)
−0.0854980 + 0.996338i \(0.527248\pi\)
\(644\) −6.14384 −0.242101
\(645\) 7.30998 0.287830
\(646\) 0 0
\(647\) −27.8816 −1.09614 −0.548070 0.836433i \(-0.684637\pi\)
−0.548070 + 0.836433i \(0.684637\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −9.59393 −0.376595
\(650\) −4.00000 −0.156893
\(651\) 0.903910 0.0354270
\(652\) 11.5239 0.451310
\(653\) −23.3317 −0.913040 −0.456520 0.889713i \(-0.650904\pi\)
−0.456520 + 0.889713i \(0.650904\pi\)
\(654\) 4.61997 0.180655
\(655\) 5.23993 0.204741
\(656\) −7.59393 −0.296493
\(657\) 10.2139 0.398482
\(658\) −5.23993 −0.204274
\(659\) 11.4501 0.446032 0.223016 0.974815i \(-0.428410\pi\)
0.223016 + 0.974815i \(0.428410\pi\)
\(660\) −1.00000 −0.0389249
\(661\) 28.6200 1.11319 0.556594 0.830785i \(-0.312108\pi\)
0.556594 + 0.830785i \(0.312108\pi\)
\(662\) 3.52388 0.136959
\(663\) 4.00000 0.155347
\(664\) 15.1879 0.589403
\(665\) 0 0
\(666\) −9.59393 −0.371757
\(667\) 6.14384 0.237891
\(668\) −4.97396 −0.192448
\(669\) 20.9039 0.808192
\(670\) 8.21389 0.317330
\(671\) −2.00000 −0.0772091
\(672\) −0.690016 −0.0266180
\(673\) 7.16614 0.276234 0.138117 0.990416i \(-0.455895\pi\)
0.138117 + 0.990416i \(0.455895\pi\)
\(674\) 15.4538 0.595259
\(675\) 1.00000 0.0384900
\(676\) 3.00000 0.115385
\(677\) −14.4061 −0.553670 −0.276835 0.960917i \(-0.589286\pi\)
−0.276835 + 0.960917i \(0.589286\pi\)
\(678\) −2.00000 −0.0768095
\(679\) −13.1916 −0.506247
\(680\) −1.00000 −0.0383482
\(681\) −10.4240 −0.399450
\(682\) 1.30998 0.0501619
\(683\) 6.76007 0.258667 0.129333 0.991601i \(-0.458716\pi\)
0.129333 + 0.991601i \(0.458716\pi\)
\(684\) 0 0
\(685\) 5.66398 0.216409
\(686\) 9.33170 0.356286
\(687\) 11.3800 0.434175
\(688\) 7.30998 0.278691
\(689\) 27.8958 1.06275
\(690\) 8.90391 0.338966
\(691\) 5.66772 0.215610 0.107805 0.994172i \(-0.465618\pi\)
0.107805 + 0.994172i \(0.465618\pi\)
\(692\) −10.8339 −0.411842
\(693\) −0.690016 −0.0262116
\(694\) 21.6677 0.822495
\(695\) 18.1438 0.688235
\(696\) 0.690016 0.0261550
\(697\) −7.59393 −0.287640
\(698\) −18.8339 −0.712872
\(699\) 0.283943 0.0107397
\(700\) 0.690016 0.0260802
\(701\) −17.4017 −0.657255 −0.328627 0.944460i \(-0.606586\pi\)
−0.328627 + 0.944460i \(0.606586\pi\)
\(702\) −4.00000 −0.150970
\(703\) 0 0
\(704\) −1.00000 −0.0376889
\(705\) 7.59393 0.286004
\(706\) −14.9039 −0.560916
\(707\) 4.28769 0.161255
\(708\) 9.59393 0.360562
\(709\) −16.0738 −0.603664 −0.301832 0.953361i \(-0.597598\pi\)
−0.301832 + 0.953361i \(0.597598\pi\)
\(710\) −14.8339 −0.556705
\(711\) 15.1879 0.569589
\(712\) 7.38003 0.276578
\(713\) −11.6640 −0.436819
\(714\) −0.690016 −0.0258232
\(715\) −4.00000 −0.149592
\(716\) 13.5939 0.508029
\(717\) 28.5679 1.06689
\(718\) 21.8078 0.813861
\(719\) −31.5418 −1.17631 −0.588156 0.808747i \(-0.700146\pi\)
−0.588156 + 0.808747i \(0.700146\pi\)
\(720\) 1.00000 0.0372678
\(721\) −1.57596 −0.0586918
\(722\) 19.0000 0.707107
\(723\) −0.283943 −0.0105600
\(724\) −21.2579 −0.790044
\(725\) −0.690016 −0.0256266
\(726\) −1.00000 −0.0371135
\(727\) 31.3838 1.16396 0.581980 0.813203i \(-0.302278\pi\)
0.581980 + 0.813203i \(0.302278\pi\)
\(728\) −2.76007 −0.102295
\(729\) 1.00000 0.0370370
\(730\) −10.2139 −0.378033
\(731\) 7.30998 0.270370
\(732\) 2.00000 0.0739221
\(733\) −49.6677 −1.83452 −0.917260 0.398290i \(-0.869604\pi\)
−0.917260 + 0.398290i \(0.869604\pi\)
\(734\) −24.3757 −0.899724
\(735\) −6.52388 −0.240637
\(736\) 8.90391 0.328202
\(737\) 8.21389 0.302563
\(738\) 7.59393 0.279536
\(739\) 40.5679 1.49231 0.746157 0.665770i \(-0.231897\pi\)
0.746157 + 0.665770i \(0.231897\pi\)
\(740\) 9.59393 0.352680
\(741\) 0 0
\(742\) −4.81215 −0.176659
\(743\) 7.87412 0.288874 0.144437 0.989514i \(-0.453863\pi\)
0.144437 + 0.989514i \(0.453863\pi\)
\(744\) −1.30998 −0.0480263
\(745\) −3.59393 −0.131671
\(746\) −0.140099 −0.00512938
\(747\) −15.1879 −0.555694
\(748\) −1.00000 −0.0365636
\(749\) 7.09609 0.259285
\(750\) −1.00000 −0.0365148
\(751\) 7.11780 0.259732 0.129866 0.991532i \(-0.458545\pi\)
0.129866 + 0.991532i \(0.458545\pi\)
\(752\) 7.59393 0.276922
\(753\) −23.4017 −0.852807
\(754\) 2.76007 0.100516
\(755\) 0.406073 0.0147785
\(756\) 0.690016 0.0250957
\(757\) −25.4501 −0.924999 −0.462499 0.886620i \(-0.653047\pi\)
−0.462499 + 0.886620i \(0.653047\pi\)
\(758\) 16.7080 0.606861
\(759\) 8.90391 0.323191
\(760\) 0 0
\(761\) −43.3317 −1.57077 −0.785386 0.619006i \(-0.787536\pi\)
−0.785386 + 0.619006i \(0.787536\pi\)
\(762\) −16.9740 −0.614902
\(763\) −3.18785 −0.115408
\(764\) 12.4978 0.452156
\(765\) 1.00000 0.0361551
\(766\) −5.64601 −0.203999
\(767\) 38.3757 1.38567
\(768\) 1.00000 0.0360844
\(769\) 41.6156 1.50070 0.750349 0.661042i \(-0.229885\pi\)
0.750349 + 0.661042i \(0.229885\pi\)
\(770\) 0.690016 0.0248665
\(771\) −21.6640 −0.780209
\(772\) 19.4538 0.700159
\(773\) 30.1618 1.08485 0.542423 0.840106i \(-0.317507\pi\)
0.542423 + 0.840106i \(0.317507\pi\)
\(774\) −7.30998 −0.262752
\(775\) 1.30998 0.0470560
\(776\) 19.1178 0.686289
\(777\) 6.61997 0.237490
\(778\) 15.0478 0.539488
\(779\) 0 0
\(780\) 4.00000 0.143223
\(781\) −14.8339 −0.530797
\(782\) 8.90391 0.318403
\(783\) −0.690016 −0.0246592
\(784\) −6.52388 −0.232996
\(785\) −12.9740 −0.463060
\(786\) −5.23993 −0.186902
\(787\) −34.8035 −1.24061 −0.620305 0.784360i \(-0.712991\pi\)
−0.620305 + 0.784360i \(0.712991\pi\)
\(788\) −10.9740 −0.390931
\(789\) 11.5239 0.410261
\(790\) −15.1879 −0.540360
\(791\) 1.38003 0.0490683
\(792\) 1.00000 0.0355335
\(793\) 8.00000 0.284088
\(794\) 26.8339 0.952298
\(795\) 6.97396 0.247341
\(796\) −10.3540 −0.366988
\(797\) −1.73403 −0.0614223 −0.0307112 0.999528i \(-0.509777\pi\)
−0.0307112 + 0.999528i \(0.509777\pi\)
\(798\) 0 0
\(799\) 7.59393 0.268654
\(800\) −1.00000 −0.0353553
\(801\) −7.38003 −0.260761
\(802\) 2.12213 0.0749350
\(803\) −10.2139 −0.360440
\(804\) −8.21389 −0.289682
\(805\) −6.14384 −0.216542
\(806\) −5.23993 −0.184569
\(807\) −10.0000 −0.352017
\(808\) −6.21389 −0.218604
\(809\) 20.6938 0.727554 0.363777 0.931486i \(-0.381487\pi\)
0.363777 + 0.931486i \(0.381487\pi\)
\(810\) −1.00000 −0.0351364
\(811\) −6.76007 −0.237378 −0.118689 0.992931i \(-0.537869\pi\)
−0.118689 + 0.992931i \(0.537869\pi\)
\(812\) −0.476123 −0.0167086
\(813\) 29.7378 1.04295
\(814\) 9.59393 0.336267
\(815\) 11.5239 0.403664
\(816\) 1.00000 0.0350070
\(817\) 0 0
\(818\) −4.19218 −0.146576
\(819\) 2.76007 0.0964445
\(820\) −7.59393 −0.265191
\(821\) 29.1178 1.01622 0.508109 0.861293i \(-0.330345\pi\)
0.508109 + 0.861293i \(0.330345\pi\)
\(822\) −5.66398 −0.197554
\(823\) −11.5201 −0.401567 −0.200783 0.979636i \(-0.564349\pi\)
−0.200783 + 0.979636i \(0.564349\pi\)
\(824\) 2.28394 0.0795649
\(825\) −1.00000 −0.0348155
\(826\) −6.61997 −0.230338
\(827\) −35.0961 −1.22041 −0.610205 0.792243i \(-0.708913\pi\)
−0.610205 + 0.792243i \(0.708913\pi\)
\(828\) −8.90391 −0.309432
\(829\) 35.9479 1.24852 0.624261 0.781216i \(-0.285400\pi\)
0.624261 + 0.781216i \(0.285400\pi\)
\(830\) 15.1879 0.527178
\(831\) −2.00000 −0.0693792
\(832\) 4.00000 0.138675
\(833\) −6.52388 −0.226039
\(834\) −18.1438 −0.628270
\(835\) −4.97396 −0.172131
\(836\) 0 0
\(837\) 1.30998 0.0452797
\(838\) −24.0918 −0.832236
\(839\) 3.11406 0.107509 0.0537546 0.998554i \(-0.482881\pi\)
0.0537546 + 0.998554i \(0.482881\pi\)
\(840\) −0.690016 −0.0238078
\(841\) −28.5239 −0.983582
\(842\) −13.8599 −0.477644
\(843\) −5.52388 −0.190252
\(844\) 0.336024 0.0115664
\(845\) 3.00000 0.103203
\(846\) −7.59393 −0.261085
\(847\) 0.690016 0.0237092
\(848\) 6.97396 0.239487
\(849\) −19.0478 −0.653717
\(850\) −1.00000 −0.0342997
\(851\) −85.4235 −2.92828
\(852\) 14.8339 0.508200
\(853\) −10.9039 −0.373343 −0.186671 0.982422i \(-0.559770\pi\)
−0.186671 + 0.982422i \(0.559770\pi\)
\(854\) −1.38003 −0.0472238
\(855\) 0 0
\(856\) −10.2839 −0.351498
\(857\) 36.0397 1.23109 0.615546 0.788101i \(-0.288936\pi\)
0.615546 + 0.788101i \(0.288936\pi\)
\(858\) 4.00000 0.136558
\(859\) 33.0440 1.12745 0.563724 0.825964i \(-0.309368\pi\)
0.563724 + 0.825964i \(0.309368\pi\)
\(860\) 7.30998 0.249268
\(861\) −5.23993 −0.178576
\(862\) −26.2319 −0.893461
\(863\) −10.3540 −0.352454 −0.176227 0.984350i \(-0.556389\pi\)
−0.176227 + 0.984350i \(0.556389\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −10.8339 −0.368362
\(866\) 3.80782 0.129395
\(867\) 1.00000 0.0339618
\(868\) 0.903910 0.0306807
\(869\) −15.1879 −0.515213
\(870\) 0.690016 0.0233937
\(871\) −32.8556 −1.11327
\(872\) 4.61997 0.156452
\(873\) −19.1178 −0.647040
\(874\) 0 0
\(875\) 0.690016 0.0233268
\(876\) 10.2139 0.345095
\(877\) −48.4675 −1.63663 −0.818315 0.574770i \(-0.805092\pi\)
−0.818315 + 0.574770i \(0.805092\pi\)
\(878\) 1.80782 0.0610110
\(879\) −20.1438 −0.679435
\(880\) −1.00000 −0.0337100
\(881\) 45.8779 1.54566 0.772832 0.634610i \(-0.218839\pi\)
0.772832 + 0.634610i \(0.218839\pi\)
\(882\) 6.52388 0.219670
\(883\) 46.5896 1.56786 0.783932 0.620846i \(-0.213211\pi\)
0.783932 + 0.620846i \(0.213211\pi\)
\(884\) 4.00000 0.134535
\(885\) 9.59393 0.322496
\(886\) −19.9517 −0.670289
\(887\) 31.2096 1.04791 0.523957 0.851744i \(-0.324455\pi\)
0.523957 + 0.851744i \(0.324455\pi\)
\(888\) −9.59393 −0.321951
\(889\) 11.7123 0.392818
\(890\) 7.38003 0.247379
\(891\) −1.00000 −0.0335013
\(892\) 20.9039 0.699915
\(893\) 0 0
\(894\) 3.59393 0.120199
\(895\) 13.5939 0.454395
\(896\) −0.690016 −0.0230518
\(897\) −35.6156 −1.18917
\(898\) −34.4458 −1.14947
\(899\) −0.903910 −0.0301471
\(900\) 1.00000 0.0333333
\(901\) 6.97396 0.232336
\(902\) −7.59393 −0.252850
\(903\) 5.04401 0.167854
\(904\) −2.00000 −0.0665190
\(905\) −21.2579 −0.706637
\(906\) −0.406073 −0.0134909
\(907\) −35.5239 −1.17955 −0.589775 0.807567i \(-0.700784\pi\)
−0.589775 + 0.807567i \(0.700784\pi\)
\(908\) −10.4240 −0.345934
\(909\) 6.21389 0.206102
\(910\) −2.76007 −0.0914953
\(911\) −45.4538 −1.50595 −0.752976 0.658048i \(-0.771383\pi\)
−0.752976 + 0.658048i \(0.771383\pi\)
\(912\) 0 0
\(913\) 15.1879 0.502645
\(914\) −31.6677 −1.04748
\(915\) 2.00000 0.0661180
\(916\) 11.3800 0.376007
\(917\) 3.61564 0.119399
\(918\) −1.00000 −0.0330049
\(919\) 25.4501 0.839521 0.419760 0.907635i \(-0.362114\pi\)
0.419760 + 0.907635i \(0.362114\pi\)
\(920\) 8.90391 0.293553
\(921\) 15.4017 0.507505
\(922\) −23.4538 −0.772411
\(923\) 59.3354 1.95305
\(924\) −0.690016 −0.0226999
\(925\) 9.59393 0.315446
\(926\) 13.9479 0.458357
\(927\) −2.28394 −0.0750145
\(928\) 0.690016 0.0226509
\(929\) −51.5456 −1.69116 −0.845578 0.533852i \(-0.820744\pi\)
−0.845578 + 0.533852i \(0.820744\pi\)
\(930\) −1.30998 −0.0429561
\(931\) 0 0
\(932\) 0.283943 0.00930086
\(933\) −14.9740 −0.490225
\(934\) 35.6156 1.16538
\(935\) −1.00000 −0.0327035
\(936\) −4.00000 −0.130744
\(937\) 0.479868 0.0156766 0.00783831 0.999969i \(-0.497505\pi\)
0.00783831 + 0.999969i \(0.497505\pi\)
\(938\) 5.66772 0.185058
\(939\) 18.3057 0.597383
\(940\) 7.59393 0.247687
\(941\) 24.5016 0.798729 0.399364 0.916792i \(-0.369231\pi\)
0.399364 + 0.916792i \(0.369231\pi\)
\(942\) 12.9740 0.422714
\(943\) 67.6156 2.20187
\(944\) 9.59393 0.312256
\(945\) 0.690016 0.0224462
\(946\) 7.30998 0.237668
\(947\) 28.1835 0.915842 0.457921 0.888993i \(-0.348594\pi\)
0.457921 + 0.888993i \(0.348594\pi\)
\(948\) 15.1879 0.493279
\(949\) 40.8556 1.32623
\(950\) 0 0
\(951\) 0.283943 0.00920749
\(952\) −0.690016 −0.0223636
\(953\) −31.9479 −1.03489 −0.517447 0.855715i \(-0.673118\pi\)
−0.517447 + 0.855715i \(0.673118\pi\)
\(954\) −6.97396 −0.225790
\(955\) 12.4978 0.404421
\(956\) 28.5679 0.923951
\(957\) 0.690016 0.0223051
\(958\) −9.66398 −0.312229
\(959\) 3.90824 0.126204
\(960\) 1.00000 0.0322749
\(961\) −29.2839 −0.944643
\(962\) −38.3757 −1.23728
\(963\) 10.2839 0.331395
\(964\) −0.283943 −0.00914519
\(965\) 19.4538 0.626241
\(966\) 6.14384 0.197675
\(967\) 38.1097 1.22553 0.612763 0.790267i \(-0.290058\pi\)
0.612763 + 0.790267i \(0.290058\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 19.1178 0.613836
\(971\) −22.1618 −0.711206 −0.355603 0.934637i \(-0.615725\pi\)
−0.355603 + 0.934637i \(0.615725\pi\)
\(972\) 1.00000 0.0320750
\(973\) 12.5196 0.401358
\(974\) 32.3757 1.03738
\(975\) 4.00000 0.128103
\(976\) 2.00000 0.0640184
\(977\) −38.7080 −1.23838 −0.619189 0.785242i \(-0.712539\pi\)
−0.619189 + 0.785242i \(0.712539\pi\)
\(978\) −11.5239 −0.368493
\(979\) 7.38003 0.235867
\(980\) −6.52388 −0.208398
\(981\) −4.61997 −0.147504
\(982\) −27.4017 −0.874425
\(983\) −34.1438 −1.08902 −0.544510 0.838755i \(-0.683284\pi\)
−0.544510 + 0.838755i \(0.683284\pi\)
\(984\) 7.59393 0.242086
\(985\) −10.9740 −0.349659
\(986\) 0.690016 0.0219746
\(987\) 5.23993 0.166789
\(988\) 0 0
\(989\) −65.0874 −2.06966
\(990\) 1.00000 0.0317821
\(991\) −31.9659 −1.01543 −0.507715 0.861525i \(-0.669510\pi\)
−0.507715 + 0.861525i \(0.669510\pi\)
\(992\) −1.30998 −0.0415920
\(993\) −3.52388 −0.111827
\(994\) −10.2356 −0.324654
\(995\) −10.3540 −0.328244
\(996\) −15.1879 −0.481246
\(997\) −33.5239 −1.06171 −0.530856 0.847462i \(-0.678129\pi\)
−0.530856 + 0.847462i \(0.678129\pi\)
\(998\) −1.52013 −0.0481189
\(999\) 9.59393 0.303538
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5610.2.a.cb.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5610.2.a.cb.1.2 3 1.1 even 1 trivial