Defining parameters
Level: | \( N \) | \(=\) | \( 5610 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5610.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 63 \) | ||
Sturm bound: | \(2592\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(13\), \(19\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5610))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1312 | 111 | 1201 |
Cusp forms | 1281 | 111 | 1170 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(11\) | \(17\) | Fricke | Dim |
---|---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(5\) |
\(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(2\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(4\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(3\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(4\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(4\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(5\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(3\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(7\) |
Plus space | \(+\) | \(44\) | ||||
Minus space | \(-\) | \(67\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5610))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5610))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5610)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(187))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(374))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(510))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(561))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(935))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1122))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1870))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2805))\)\(^{\oplus 2}\)