Properties

Label 560.3.v.b.447.6
Level $560$
Weight $3$
Character 560.447
Analytic conductor $15.259$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(223,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.223"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 447.6
Character \(\chi\) \(=\) 560.447
Dual form 560.3.v.b.223.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.71375 + 2.71375i) q^{3} +(4.98103 + 0.435186i) q^{5} +(-5.23961 + 4.64182i) q^{7} -5.72885i q^{9} +8.05423i q^{11} +(-12.1277 - 12.1277i) q^{13} +(-14.6982 + 12.3363i) q^{15} +(-4.68539 + 4.68539i) q^{17} +3.49526i q^{19} +(1.62225 - 26.8157i) q^{21} +(4.14599 + 4.14599i) q^{23} +(24.6212 + 4.33534i) q^{25} +(-8.87708 - 8.87708i) q^{27} +42.7116i q^{29} -7.32494 q^{31} +(-21.8572 - 21.8572i) q^{33} +(-28.1187 + 20.8408i) q^{35} +(-10.4184 - 10.4184i) q^{37} +65.8231 q^{39} -51.4638i q^{41} +(-37.8696 - 37.8696i) q^{43} +(2.49311 - 28.5355i) q^{45} +(-49.4674 - 49.4674i) q^{47} +(5.90700 - 48.6426i) q^{49} -25.4299i q^{51} +(-49.7603 + 49.7603i) q^{53} +(-3.50509 + 40.1183i) q^{55} +(-9.48526 - 9.48526i) q^{57} +74.7661i q^{59} -43.1770i q^{61} +(26.5923 + 30.0169i) q^{63} +(-55.1306 - 65.6862i) q^{65} +(57.2502 - 57.2502i) q^{67} -22.5023 q^{69} -45.6576i q^{71} +(-53.0254 - 53.0254i) q^{73} +(-78.5808 + 55.0508i) q^{75} +(-37.3863 - 42.2010i) q^{77} -96.4300 q^{79} +99.7399 q^{81} +(52.7822 - 52.7822i) q^{83} +(-25.3771 + 21.2990i) q^{85} +(-115.909 - 115.909i) q^{87} -31.9308 q^{89} +(119.839 + 7.24980i) q^{91} +(19.8780 - 19.8780i) q^{93} +(-1.52109 + 17.4100i) q^{95} +(19.5610 - 19.5610i) q^{97} +46.1415 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 16 q^{21} - 72 q^{25} + 72 q^{37} + 272 q^{53} - 376 q^{57} - 88 q^{65} + 24 q^{77} - 432 q^{81} + 384 q^{85} + 840 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.71375 + 2.71375i −0.904582 + 0.904582i −0.995828 0.0912459i \(-0.970915\pi\)
0.0912459 + 0.995828i \(0.470915\pi\)
\(4\) 0 0
\(5\) 4.98103 + 0.435186i 0.996205 + 0.0870372i
\(6\) 0 0
\(7\) −5.23961 + 4.64182i −0.748516 + 0.663117i
\(8\) 0 0
\(9\) 5.72885i 0.636539i
\(10\) 0 0
\(11\) 8.05423i 0.732203i 0.930575 + 0.366102i \(0.119308\pi\)
−0.930575 + 0.366102i \(0.880692\pi\)
\(12\) 0 0
\(13\) −12.1277 12.1277i −0.932901 0.932901i 0.0649853 0.997886i \(-0.479300\pi\)
−0.997886 + 0.0649853i \(0.979300\pi\)
\(14\) 0 0
\(15\) −14.6982 + 12.3363i −0.979882 + 0.822417i
\(16\) 0 0
\(17\) −4.68539 + 4.68539i −0.275611 + 0.275611i −0.831354 0.555743i \(-0.812434\pi\)
0.555743 + 0.831354i \(0.312434\pi\)
\(18\) 0 0
\(19\) 3.49526i 0.183961i 0.995761 + 0.0919806i \(0.0293198\pi\)
−0.995761 + 0.0919806i \(0.970680\pi\)
\(20\) 0 0
\(21\) 1.62225 26.8157i 0.0772498 1.27694i
\(22\) 0 0
\(23\) 4.14599 + 4.14599i 0.180260 + 0.180260i 0.791469 0.611209i \(-0.209317\pi\)
−0.611209 + 0.791469i \(0.709317\pi\)
\(24\) 0 0
\(25\) 24.6212 + 4.33534i 0.984849 + 0.173414i
\(26\) 0 0
\(27\) −8.87708 8.87708i −0.328781 0.328781i
\(28\) 0 0
\(29\) 42.7116i 1.47281i 0.676539 + 0.736407i \(0.263479\pi\)
−0.676539 + 0.736407i \(0.736521\pi\)
\(30\) 0 0
\(31\) −7.32494 −0.236288 −0.118144 0.992996i \(-0.537694\pi\)
−0.118144 + 0.992996i \(0.537694\pi\)
\(32\) 0 0
\(33\) −21.8572 21.8572i −0.662338 0.662338i
\(34\) 0 0
\(35\) −28.1187 + 20.8408i −0.803391 + 0.595452i
\(36\) 0 0
\(37\) −10.4184 10.4184i −0.281579 0.281579i 0.552159 0.833739i \(-0.313804\pi\)
−0.833739 + 0.552159i \(0.813804\pi\)
\(38\) 0 0
\(39\) 65.8231 1.68777
\(40\) 0 0
\(41\) 51.4638i 1.25522i −0.778530 0.627608i \(-0.784034\pi\)
0.778530 0.627608i \(-0.215966\pi\)
\(42\) 0 0
\(43\) −37.8696 37.8696i −0.880689 0.880689i 0.112915 0.993605i \(-0.463981\pi\)
−0.993605 + 0.112915i \(0.963981\pi\)
\(44\) 0 0
\(45\) 2.49311 28.5355i 0.0554025 0.634123i
\(46\) 0 0
\(47\) −49.4674 49.4674i −1.05250 1.05250i −0.998543 0.0539550i \(-0.982817\pi\)
−0.0539550 0.998543i \(-0.517183\pi\)
\(48\) 0 0
\(49\) 5.90700 48.6426i 0.120551 0.992707i
\(50\) 0 0
\(51\) 25.4299i 0.498626i
\(52\) 0 0
\(53\) −49.7603 + 49.7603i −0.938873 + 0.938873i −0.998236 0.0593637i \(-0.981093\pi\)
0.0593637 + 0.998236i \(0.481093\pi\)
\(54\) 0 0
\(55\) −3.50509 + 40.1183i −0.0637289 + 0.729424i
\(56\) 0 0
\(57\) −9.48526 9.48526i −0.166408 0.166408i
\(58\) 0 0
\(59\) 74.7661i 1.26722i 0.773652 + 0.633611i \(0.218428\pi\)
−0.773652 + 0.633611i \(0.781572\pi\)
\(60\) 0 0
\(61\) 43.1770i 0.707820i −0.935279 0.353910i \(-0.884852\pi\)
0.935279 0.353910i \(-0.115148\pi\)
\(62\) 0 0
\(63\) 26.5923 + 30.0169i 0.422100 + 0.476459i
\(64\) 0 0
\(65\) −55.1306 65.6862i −0.848164 1.01056i
\(66\) 0 0
\(67\) 57.2502 57.2502i 0.854481 0.854481i −0.136200 0.990681i \(-0.543489\pi\)
0.990681 + 0.136200i \(0.0434890\pi\)
\(68\) 0 0
\(69\) −22.5023 −0.326121
\(70\) 0 0
\(71\) 45.6576i 0.643065i −0.946899 0.321533i \(-0.895802\pi\)
0.946899 0.321533i \(-0.104198\pi\)
\(72\) 0 0
\(73\) −53.0254 53.0254i −0.726375 0.726375i 0.243521 0.969896i \(-0.421698\pi\)
−0.969896 + 0.243521i \(0.921698\pi\)
\(74\) 0 0
\(75\) −78.5808 + 55.0508i −1.04774 + 0.734010i
\(76\) 0 0
\(77\) −37.3863 42.2010i −0.485536 0.548065i
\(78\) 0 0
\(79\) −96.4300 −1.22063 −0.610316 0.792158i \(-0.708958\pi\)
−0.610316 + 0.792158i \(0.708958\pi\)
\(80\) 0 0
\(81\) 99.7399 1.23136
\(82\) 0 0
\(83\) 52.7822 52.7822i 0.635930 0.635930i −0.313619 0.949549i \(-0.601542\pi\)
0.949549 + 0.313619i \(0.101542\pi\)
\(84\) 0 0
\(85\) −25.3771 + 21.2990i −0.298554 + 0.250577i
\(86\) 0 0
\(87\) −115.909 115.909i −1.33228 1.33228i
\(88\) 0 0
\(89\) −31.9308 −0.358773 −0.179387 0.983779i \(-0.557411\pi\)
−0.179387 + 0.983779i \(0.557411\pi\)
\(90\) 0 0
\(91\) 119.839 + 7.24980i 1.31691 + 0.0796682i
\(92\) 0 0
\(93\) 19.8780 19.8780i 0.213742 0.213742i
\(94\) 0 0
\(95\) −1.52109 + 17.4100i −0.0160115 + 0.183263i
\(96\) 0 0
\(97\) 19.5610 19.5610i 0.201660 0.201660i −0.599051 0.800711i \(-0.704455\pi\)
0.800711 + 0.599051i \(0.204455\pi\)
\(98\) 0 0
\(99\) 46.1415 0.466076
\(100\) 0 0
\(101\) 14.0986i 0.139591i 0.997561 + 0.0697953i \(0.0222346\pi\)
−0.997561 + 0.0697953i \(0.977765\pi\)
\(102\) 0 0
\(103\) −2.99656 + 2.99656i −0.0290928 + 0.0290928i −0.721504 0.692411i \(-0.756549\pi\)
0.692411 + 0.721504i \(0.256549\pi\)
\(104\) 0 0
\(105\) 19.7503 132.864i 0.188098 1.26537i
\(106\) 0 0
\(107\) −137.258 + 137.258i −1.28279 + 1.28279i −0.343714 + 0.939074i \(0.611685\pi\)
−0.939074 + 0.343714i \(0.888315\pi\)
\(108\) 0 0
\(109\) 179.722i 1.64883i 0.565988 + 0.824413i \(0.308495\pi\)
−0.565988 + 0.824413i \(0.691505\pi\)
\(110\) 0 0
\(111\) 56.5460 0.509424
\(112\) 0 0
\(113\) −82.1352 + 82.1352i −0.726860 + 0.726860i −0.969993 0.243133i \(-0.921825\pi\)
0.243133 + 0.969993i \(0.421825\pi\)
\(114\) 0 0
\(115\) 18.8470 + 22.4555i 0.163887 + 0.195266i
\(116\) 0 0
\(117\) −69.4778 + 69.4778i −0.593828 + 0.593828i
\(118\) 0 0
\(119\) 2.80087 46.2984i 0.0235367 0.389062i
\(120\) 0 0
\(121\) 56.1293 0.463879
\(122\) 0 0
\(123\) 139.660 + 139.660i 1.13545 + 1.13545i
\(124\) 0 0
\(125\) 120.752 + 32.3093i 0.966018 + 0.258474i
\(126\) 0 0
\(127\) −44.7994 + 44.7994i −0.352751 + 0.352751i −0.861132 0.508381i \(-0.830244\pi\)
0.508381 + 0.861132i \(0.330244\pi\)
\(128\) 0 0
\(129\) 205.537 1.59331
\(130\) 0 0
\(131\) −60.1169 −0.458908 −0.229454 0.973320i \(-0.573694\pi\)
−0.229454 + 0.973320i \(0.573694\pi\)
\(132\) 0 0
\(133\) −16.2244 18.3138i −0.121988 0.137698i
\(134\) 0 0
\(135\) −40.3538 48.0801i −0.298917 0.356149i
\(136\) 0 0
\(137\) 173.938 + 173.938i 1.26962 + 1.26962i 0.946283 + 0.323340i \(0.104806\pi\)
0.323340 + 0.946283i \(0.395194\pi\)
\(138\) 0 0
\(139\) 232.112i 1.66987i 0.550350 + 0.834934i \(0.314494\pi\)
−0.550350 + 0.834934i \(0.685506\pi\)
\(140\) 0 0
\(141\) 268.484 1.90414
\(142\) 0 0
\(143\) 97.6794 97.6794i 0.683073 0.683073i
\(144\) 0 0
\(145\) −18.5875 + 212.748i −0.128190 + 1.46723i
\(146\) 0 0
\(147\) 115.974 + 148.034i 0.788937 + 1.00703i
\(148\) 0 0
\(149\) 3.10175i 0.0208171i 0.999946 + 0.0104085i \(0.00331320\pi\)
−0.999946 + 0.0104085i \(0.996687\pi\)
\(150\) 0 0
\(151\) 146.600i 0.970859i −0.874276 0.485429i \(-0.838663\pi\)
0.874276 0.485429i \(-0.161337\pi\)
\(152\) 0 0
\(153\) 26.8419 + 26.8419i 0.175437 + 0.175437i
\(154\) 0 0
\(155\) −36.4857 3.18771i −0.235392 0.0205659i
\(156\) 0 0
\(157\) −202.634 + 202.634i −1.29066 + 1.29066i −0.356284 + 0.934378i \(0.615956\pi\)
−0.934378 + 0.356284i \(0.884044\pi\)
\(158\) 0 0
\(159\) 270.074i 1.69858i
\(160\) 0 0
\(161\) −40.9683 2.47842i −0.254461 0.0153939i
\(162\) 0 0
\(163\) 92.8155 + 92.8155i 0.569420 + 0.569420i 0.931966 0.362546i \(-0.118092\pi\)
−0.362546 + 0.931966i \(0.618092\pi\)
\(164\) 0 0
\(165\) −99.3591 118.383i −0.602176 0.717473i
\(166\) 0 0
\(167\) 25.5085 + 25.5085i 0.152745 + 0.152745i 0.779343 0.626598i \(-0.215553\pi\)
−0.626598 + 0.779343i \(0.715553\pi\)
\(168\) 0 0
\(169\) 125.163i 0.740608i
\(170\) 0 0
\(171\) 20.0238 0.117098
\(172\) 0 0
\(173\) 204.836 + 204.836i 1.18402 + 1.18402i 0.978693 + 0.205331i \(0.0658271\pi\)
0.205331 + 0.978693i \(0.434173\pi\)
\(174\) 0 0
\(175\) −149.129 + 91.5718i −0.852168 + 0.523268i
\(176\) 0 0
\(177\) −202.896 202.896i −1.14631 1.14631i
\(178\) 0 0
\(179\) 8.40197 0.0469384 0.0234692 0.999725i \(-0.492529\pi\)
0.0234692 + 0.999725i \(0.492529\pi\)
\(180\) 0 0
\(181\) 15.1006i 0.0834286i −0.999130 0.0417143i \(-0.986718\pi\)
0.999130 0.0417143i \(-0.0132819\pi\)
\(182\) 0 0
\(183\) 117.172 + 117.172i 0.640282 + 0.640282i
\(184\) 0 0
\(185\) −47.3605 56.4285i −0.256003 0.305019i
\(186\) 0 0
\(187\) −37.7372 37.7372i −0.201803 0.201803i
\(188\) 0 0
\(189\) 87.7182 + 5.30661i 0.464117 + 0.0280773i
\(190\) 0 0
\(191\) 245.069i 1.28308i −0.767089 0.641541i \(-0.778295\pi\)
0.767089 0.641541i \(-0.221705\pi\)
\(192\) 0 0
\(193\) −90.6786 + 90.6786i −0.469837 + 0.469837i −0.901862 0.432025i \(-0.857799\pi\)
0.432025 + 0.901862i \(0.357799\pi\)
\(194\) 0 0
\(195\) 327.866 + 28.6453i 1.68137 + 0.146899i
\(196\) 0 0
\(197\) −203.386 203.386i −1.03242 1.03242i −0.999457 0.0329592i \(-0.989507\pi\)
−0.0329592 0.999457i \(-0.510493\pi\)
\(198\) 0 0
\(199\) 73.2624i 0.368153i −0.982912 0.184076i \(-0.941071\pi\)
0.982912 0.184076i \(-0.0589294\pi\)
\(200\) 0 0
\(201\) 310.725i 1.54590i
\(202\) 0 0
\(203\) −198.260 223.792i −0.976649 1.10242i
\(204\) 0 0
\(205\) 22.3963 256.343i 0.109250 1.25045i
\(206\) 0 0
\(207\) 23.7517 23.7517i 0.114743 0.114743i
\(208\) 0 0
\(209\) −28.1517 −0.134697
\(210\) 0 0
\(211\) 138.457i 0.656193i −0.944644 0.328096i \(-0.893593\pi\)
0.944644 0.328096i \(-0.106407\pi\)
\(212\) 0 0
\(213\) 123.903 + 123.903i 0.581705 + 0.581705i
\(214\) 0 0
\(215\) −172.149 205.110i −0.800695 0.954000i
\(216\) 0 0
\(217\) 38.3798 34.0010i 0.176865 0.156687i
\(218\) 0 0
\(219\) 287.795 1.31413
\(220\) 0 0
\(221\) 113.646 0.514236
\(222\) 0 0
\(223\) 138.952 138.952i 0.623102 0.623102i −0.323222 0.946323i \(-0.604766\pi\)
0.946323 + 0.323222i \(0.104766\pi\)
\(224\) 0 0
\(225\) 24.8365 141.051i 0.110385 0.626895i
\(226\) 0 0
\(227\) 106.358 + 106.358i 0.468539 + 0.468539i 0.901441 0.432902i \(-0.142510\pi\)
−0.432902 + 0.901441i \(0.642510\pi\)
\(228\) 0 0
\(229\) −262.879 −1.14794 −0.573971 0.818875i \(-0.694598\pi\)
−0.573971 + 0.818875i \(0.694598\pi\)
\(230\) 0 0
\(231\) 215.980 + 13.0659i 0.934978 + 0.0565625i
\(232\) 0 0
\(233\) −99.0110 + 99.0110i −0.424940 + 0.424940i −0.886901 0.461960i \(-0.847146\pi\)
0.461960 + 0.886901i \(0.347146\pi\)
\(234\) 0 0
\(235\) −224.871 267.926i −0.956898 1.14011i
\(236\) 0 0
\(237\) 261.687 261.687i 1.10416 1.10416i
\(238\) 0 0
\(239\) 238.546 0.998101 0.499050 0.866573i \(-0.333682\pi\)
0.499050 + 0.866573i \(0.333682\pi\)
\(240\) 0 0
\(241\) 407.926i 1.69264i 0.532675 + 0.846320i \(0.321187\pi\)
−0.532675 + 0.846320i \(0.678813\pi\)
\(242\) 0 0
\(243\) −190.775 + 190.775i −0.785083 + 0.785083i
\(244\) 0 0
\(245\) 50.5915 239.720i 0.206496 0.978447i
\(246\) 0 0
\(247\) 42.3896 42.3896i 0.171618 0.171618i
\(248\) 0 0
\(249\) 286.475i 1.15050i
\(250\) 0 0
\(251\) 85.4034 0.340253 0.170126 0.985422i \(-0.445582\pi\)
0.170126 + 0.985422i \(0.445582\pi\)
\(252\) 0 0
\(253\) −33.3927 + 33.3927i −0.131987 + 0.131987i
\(254\) 0 0
\(255\) 11.0667 126.667i 0.0433990 0.496734i
\(256\) 0 0
\(257\) 66.5808 66.5808i 0.259069 0.259069i −0.565606 0.824675i \(-0.691358\pi\)
0.824675 + 0.565606i \(0.191358\pi\)
\(258\) 0 0
\(259\) 102.949 + 6.22802i 0.397487 + 0.0240464i
\(260\) 0 0
\(261\) 244.688 0.937503
\(262\) 0 0
\(263\) 16.8482 + 16.8482i 0.0640617 + 0.0640617i 0.738412 0.674350i \(-0.235576\pi\)
−0.674350 + 0.738412i \(0.735576\pi\)
\(264\) 0 0
\(265\) −269.512 + 226.202i −1.01703 + 0.853593i
\(266\) 0 0
\(267\) 86.6521 86.6521i 0.324540 0.324540i
\(268\) 0 0
\(269\) −4.72680 −0.0175717 −0.00878587 0.999961i \(-0.502797\pi\)
−0.00878587 + 0.999961i \(0.502797\pi\)
\(270\) 0 0
\(271\) −487.131 −1.79753 −0.898766 0.438429i \(-0.855535\pi\)
−0.898766 + 0.438429i \(0.855535\pi\)
\(272\) 0 0
\(273\) −344.887 + 305.539i −1.26332 + 1.11919i
\(274\) 0 0
\(275\) −34.9179 + 198.305i −0.126974 + 0.721109i
\(276\) 0 0
\(277\) −318.759 318.759i −1.15076 1.15076i −0.986401 0.164355i \(-0.947446\pi\)
−0.164355 0.986401i \(-0.552554\pi\)
\(278\) 0 0
\(279\) 41.9635i 0.150407i
\(280\) 0 0
\(281\) 318.579 1.13373 0.566866 0.823810i \(-0.308156\pi\)
0.566866 + 0.823810i \(0.308156\pi\)
\(282\) 0 0
\(283\) −273.197 + 273.197i −0.965362 + 0.965362i −0.999420 0.0340583i \(-0.989157\pi\)
0.0340583 + 0.999420i \(0.489157\pi\)
\(284\) 0 0
\(285\) −43.1185 51.3742i −0.151293 0.180260i
\(286\) 0 0
\(287\) 238.886 + 269.650i 0.832355 + 0.939548i
\(288\) 0 0
\(289\) 245.094i 0.848077i
\(290\) 0 0
\(291\) 106.167i 0.364836i
\(292\) 0 0
\(293\) 232.872 + 232.872i 0.794784 + 0.794784i 0.982268 0.187484i \(-0.0600332\pi\)
−0.187484 + 0.982268i \(0.560033\pi\)
\(294\) 0 0
\(295\) −32.5371 + 372.412i −0.110295 + 1.26241i
\(296\) 0 0
\(297\) 71.4980 71.4980i 0.240734 0.240734i
\(298\) 0 0
\(299\) 100.563i 0.336330i
\(300\) 0 0
\(301\) 374.206 + 22.6380i 1.24321 + 0.0752094i
\(302\) 0 0
\(303\) −38.2602 38.2602i −0.126271 0.126271i
\(304\) 0 0
\(305\) 18.7900 215.066i 0.0616067 0.705134i
\(306\) 0 0
\(307\) 359.855 + 359.855i 1.17217 + 1.17217i 0.981692 + 0.190475i \(0.0610030\pi\)
0.190475 + 0.981692i \(0.438997\pi\)
\(308\) 0 0
\(309\) 16.2638i 0.0526337i
\(310\) 0 0
\(311\) −478.684 −1.53918 −0.769588 0.638541i \(-0.779538\pi\)
−0.769588 + 0.638541i \(0.779538\pi\)
\(312\) 0 0
\(313\) −199.146 199.146i −0.636248 0.636248i 0.313380 0.949628i \(-0.398539\pi\)
−0.949628 + 0.313380i \(0.898539\pi\)
\(314\) 0 0
\(315\) 119.394 + 161.088i 0.379028 + 0.511389i
\(316\) 0 0
\(317\) 356.804 + 356.804i 1.12556 + 1.12556i 0.990890 + 0.134675i \(0.0429990\pi\)
0.134675 + 0.990890i \(0.457001\pi\)
\(318\) 0 0
\(319\) −344.009 −1.07840
\(320\) 0 0
\(321\) 744.969i 2.32078i
\(322\) 0 0
\(323\) −16.3767 16.3767i −0.0507018 0.0507018i
\(324\) 0 0
\(325\) −246.021 351.177i −0.756989 1.08054i
\(326\) 0 0
\(327\) −487.720 487.720i −1.49150 1.49150i
\(328\) 0 0
\(329\) 488.809 + 29.5710i 1.48574 + 0.0898816i
\(330\) 0 0
\(331\) 138.262i 0.417711i 0.977946 + 0.208856i \(0.0669739\pi\)
−0.977946 + 0.208856i \(0.933026\pi\)
\(332\) 0 0
\(333\) −59.6857 + 59.6857i −0.179236 + 0.179236i
\(334\) 0 0
\(335\) 310.079 260.250i 0.925610 0.776867i
\(336\) 0 0
\(337\) −64.3676 64.3676i −0.191002 0.191002i 0.605127 0.796129i \(-0.293122\pi\)
−0.796129 + 0.605127i \(0.793122\pi\)
\(338\) 0 0
\(339\) 445.788i 1.31501i
\(340\) 0 0
\(341\) 58.9968i 0.173011i
\(342\) 0 0
\(343\) 194.840 + 282.288i 0.568047 + 0.822996i
\(344\) 0 0
\(345\) −112.085 9.79269i −0.324883 0.0283846i
\(346\) 0 0
\(347\) −250.905 + 250.905i −0.723070 + 0.723070i −0.969229 0.246160i \(-0.920831\pi\)
0.246160 + 0.969229i \(0.420831\pi\)
\(348\) 0 0
\(349\) −638.808 −1.83040 −0.915198 0.403006i \(-0.867966\pi\)
−0.915198 + 0.403006i \(0.867966\pi\)
\(350\) 0 0
\(351\) 215.317i 0.613439i
\(352\) 0 0
\(353\) −233.730 233.730i −0.662125 0.662125i 0.293756 0.955881i \(-0.405095\pi\)
−0.955881 + 0.293756i \(0.905095\pi\)
\(354\) 0 0
\(355\) 19.8695 227.422i 0.0559706 0.640625i
\(356\) 0 0
\(357\) 118.041 + 133.243i 0.330648 + 0.373229i
\(358\) 0 0
\(359\) −182.850 −0.509330 −0.254665 0.967029i \(-0.581965\pi\)
−0.254665 + 0.967029i \(0.581965\pi\)
\(360\) 0 0
\(361\) 348.783 0.966158
\(362\) 0 0
\(363\) −152.321 + 152.321i −0.419617 + 0.419617i
\(364\) 0 0
\(365\) −241.045 287.197i −0.660397 0.786840i
\(366\) 0 0
\(367\) 342.311 + 342.311i 0.932728 + 0.932728i 0.997876 0.0651473i \(-0.0207517\pi\)
−0.0651473 + 0.997876i \(0.520752\pi\)
\(368\) 0 0
\(369\) −294.829 −0.798993
\(370\) 0 0
\(371\) 29.7461 491.702i 0.0801781 1.32534i
\(372\) 0 0
\(373\) −270.236 + 270.236i −0.724492 + 0.724492i −0.969517 0.245025i \(-0.921204\pi\)
0.245025 + 0.969517i \(0.421204\pi\)
\(374\) 0 0
\(375\) −415.370 + 240.012i −1.10765 + 0.640032i
\(376\) 0 0
\(377\) 517.994 517.994i 1.37399 1.37399i
\(378\) 0 0
\(379\) 210.014 0.554126 0.277063 0.960852i \(-0.410639\pi\)
0.277063 + 0.960852i \(0.410639\pi\)
\(380\) 0 0
\(381\) 243.148i 0.638185i
\(382\) 0 0
\(383\) −88.6754 + 88.6754i −0.231529 + 0.231529i −0.813330 0.581802i \(-0.802348\pi\)
0.581802 + 0.813330i \(0.302348\pi\)
\(384\) 0 0
\(385\) −167.857 226.474i −0.435992 0.588245i
\(386\) 0 0
\(387\) −216.949 + 216.949i −0.560593 + 0.560593i
\(388\) 0 0
\(389\) 536.468i 1.37909i −0.724241 0.689547i \(-0.757809\pi\)
0.724241 0.689547i \(-0.242191\pi\)
\(390\) 0 0
\(391\) −38.8511 −0.0993635
\(392\) 0 0
\(393\) 163.142 163.142i 0.415120 0.415120i
\(394\) 0 0
\(395\) −480.320 41.9650i −1.21600 0.106240i
\(396\) 0 0
\(397\) −417.941 + 417.941i −1.05275 + 1.05275i −0.0542180 + 0.998529i \(0.517267\pi\)
−0.998529 + 0.0542180i \(0.982733\pi\)
\(398\) 0 0
\(399\) 93.7280 + 5.67018i 0.234907 + 0.0142110i
\(400\) 0 0
\(401\) 192.581 0.480252 0.240126 0.970742i \(-0.422811\pi\)
0.240126 + 0.970742i \(0.422811\pi\)
\(402\) 0 0
\(403\) 88.8347 + 88.8347i 0.220434 + 0.220434i
\(404\) 0 0
\(405\) 496.807 + 43.4054i 1.22668 + 0.107174i
\(406\) 0 0
\(407\) 83.9125 83.9125i 0.206173 0.206173i
\(408\) 0 0
\(409\) 339.059 0.828994 0.414497 0.910051i \(-0.363958\pi\)
0.414497 + 0.910051i \(0.363958\pi\)
\(410\) 0 0
\(411\) −944.049 −2.29696
\(412\) 0 0
\(413\) −347.051 391.745i −0.840317 0.948535i
\(414\) 0 0
\(415\) 285.879 239.939i 0.688866 0.578167i
\(416\) 0 0
\(417\) −629.892 629.892i −1.51053 1.51053i
\(418\) 0 0
\(419\) 498.049i 1.18866i 0.804221 + 0.594330i \(0.202583\pi\)
−0.804221 + 0.594330i \(0.797417\pi\)
\(420\) 0 0
\(421\) −397.097 −0.943223 −0.471611 0.881807i \(-0.656327\pi\)
−0.471611 + 0.881807i \(0.656327\pi\)
\(422\) 0 0
\(423\) −283.391 + 283.391i −0.669956 + 0.669956i
\(424\) 0 0
\(425\) −135.673 + 95.0473i −0.319230 + 0.223641i
\(426\) 0 0
\(427\) 200.420 + 226.231i 0.469368 + 0.529815i
\(428\) 0 0
\(429\) 530.155i 1.23579i
\(430\) 0 0
\(431\) 40.8156i 0.0946998i 0.998878 + 0.0473499i \(0.0150776\pi\)
−0.998878 + 0.0473499i \(0.984922\pi\)
\(432\) 0 0
\(433\) −298.631 298.631i −0.689679 0.689679i 0.272482 0.962161i \(-0.412155\pi\)
−0.962161 + 0.272482i \(0.912155\pi\)
\(434\) 0 0
\(435\) −526.902 627.785i −1.21127 1.44318i
\(436\) 0 0
\(437\) −14.4913 + 14.4913i −0.0331609 + 0.0331609i
\(438\) 0 0
\(439\) 522.507i 1.19022i 0.803644 + 0.595111i \(0.202892\pi\)
−0.803644 + 0.595111i \(0.797108\pi\)
\(440\) 0 0
\(441\) −278.666 33.8403i −0.631897 0.0767354i
\(442\) 0 0
\(443\) 254.833 + 254.833i 0.575245 + 0.575245i 0.933589 0.358345i \(-0.116659\pi\)
−0.358345 + 0.933589i \(0.616659\pi\)
\(444\) 0 0
\(445\) −159.048 13.8958i −0.357412 0.0312266i
\(446\) 0 0
\(447\) −8.41736 8.41736i −0.0188308 0.0188308i
\(448\) 0 0
\(449\) 15.4094i 0.0343194i 0.999853 + 0.0171597i \(0.00546237\pi\)
−0.999853 + 0.0171597i \(0.994538\pi\)
\(450\) 0 0
\(451\) 414.502 0.919073
\(452\) 0 0
\(453\) 397.835 + 397.835i 0.878222 + 0.878222i
\(454\) 0 0
\(455\) 593.767 + 88.2637i 1.30498 + 0.193986i
\(456\) 0 0
\(457\) 89.3021 + 89.3021i 0.195409 + 0.195409i 0.798029 0.602619i \(-0.205876\pi\)
−0.602619 + 0.798029i \(0.705876\pi\)
\(458\) 0 0
\(459\) 83.1851 0.181231
\(460\) 0 0
\(461\) 519.204i 1.12626i −0.826370 0.563128i \(-0.809598\pi\)
0.826370 0.563128i \(-0.190402\pi\)
\(462\) 0 0
\(463\) 123.120 + 123.120i 0.265918 + 0.265918i 0.827453 0.561535i \(-0.189789\pi\)
−0.561535 + 0.827453i \(0.689789\pi\)
\(464\) 0 0
\(465\) 107.664 90.3623i 0.231535 0.194328i
\(466\) 0 0
\(467\) −398.255 398.255i −0.852795 0.852795i 0.137681 0.990477i \(-0.456035\pi\)
−0.990477 + 0.137681i \(0.956035\pi\)
\(468\) 0 0
\(469\) −34.2235 + 565.714i −0.0729712 + 1.20621i
\(470\) 0 0
\(471\) 1099.79i 2.33502i
\(472\) 0 0
\(473\) 305.011 305.011i 0.644843 0.644843i
\(474\) 0 0
\(475\) −15.1532 + 86.0577i −0.0319014 + 0.181174i
\(476\) 0 0
\(477\) 285.069 + 285.069i 0.597629 + 0.597629i
\(478\) 0 0
\(479\) 838.869i 1.75129i −0.482954 0.875646i \(-0.660436\pi\)
0.482954 0.875646i \(-0.339564\pi\)
\(480\) 0 0
\(481\) 252.704i 0.525371i
\(482\) 0 0
\(483\) 117.903 104.452i 0.244106 0.216256i
\(484\) 0 0
\(485\) 105.947 88.9212i 0.218447 0.183343i
\(486\) 0 0
\(487\) 612.108 612.108i 1.25690 1.25690i 0.304329 0.952567i \(-0.401568\pi\)
0.952567 0.304329i \(-0.0984321\pi\)
\(488\) 0 0
\(489\) −503.755 −1.03017
\(490\) 0 0
\(491\) 301.186i 0.613413i −0.951804 0.306707i \(-0.900773\pi\)
0.951804 0.306707i \(-0.0992270\pi\)
\(492\) 0 0
\(493\) −200.121 200.121i −0.405924 0.405924i
\(494\) 0 0
\(495\) 229.832 + 20.0801i 0.464307 + 0.0405659i
\(496\) 0 0
\(497\) 211.934 + 239.228i 0.426428 + 0.481344i
\(498\) 0 0
\(499\) 717.539 1.43795 0.718977 0.695034i \(-0.244611\pi\)
0.718977 + 0.695034i \(0.244611\pi\)
\(500\) 0 0
\(501\) −138.447 −0.276341
\(502\) 0 0
\(503\) 126.415 126.415i 0.251322 0.251322i −0.570190 0.821513i \(-0.693131\pi\)
0.821513 + 0.570190i \(0.193131\pi\)
\(504\) 0 0
\(505\) −6.13553 + 70.2257i −0.0121496 + 0.139061i
\(506\) 0 0
\(507\) −339.660 339.660i −0.669941 0.669941i
\(508\) 0 0
\(509\) 530.977 1.04318 0.521588 0.853197i \(-0.325340\pi\)
0.521588 + 0.853197i \(0.325340\pi\)
\(510\) 0 0
\(511\) 523.966 + 31.6979i 1.02537 + 0.0620312i
\(512\) 0 0
\(513\) 31.0277 31.0277i 0.0604829 0.0604829i
\(514\) 0 0
\(515\) −16.2300 + 13.6219i −0.0315146 + 0.0264502i
\(516\) 0 0
\(517\) 398.422 398.422i 0.770642 0.770642i
\(518\) 0 0
\(519\) −1111.75 −2.14209
\(520\) 0 0
\(521\) 510.712i 0.980252i 0.871651 + 0.490126i \(0.163049\pi\)
−0.871651 + 0.490126i \(0.836951\pi\)
\(522\) 0 0
\(523\) 396.043 396.043i 0.757253 0.757253i −0.218569 0.975822i \(-0.570139\pi\)
0.975822 + 0.218569i \(0.0701387\pi\)
\(524\) 0 0
\(525\) 156.197 653.203i 0.297518 1.24420i
\(526\) 0 0
\(527\) 34.3202 34.3202i 0.0651237 0.0651237i
\(528\) 0 0
\(529\) 494.622i 0.935012i
\(530\) 0 0
\(531\) 428.324 0.806636
\(532\) 0 0
\(533\) −624.139 + 624.139i −1.17099 + 1.17099i
\(534\) 0 0
\(535\) −743.420 + 623.954i −1.38957 + 1.16627i
\(536\) 0 0
\(537\) −22.8008 + 22.8008i −0.0424596 + 0.0424596i
\(538\) 0 0
\(539\) 391.779 + 47.5764i 0.726863 + 0.0882678i
\(540\) 0 0
\(541\) −444.659 −0.821920 −0.410960 0.911653i \(-0.634806\pi\)
−0.410960 + 0.911653i \(0.634806\pi\)
\(542\) 0 0
\(543\) 40.9792 + 40.9792i 0.0754681 + 0.0754681i
\(544\) 0 0
\(545\) −78.2125 + 895.200i −0.143509 + 1.64257i
\(546\) 0 0
\(547\) −472.552 + 472.552i −0.863898 + 0.863898i −0.991788 0.127890i \(-0.959179\pi\)
0.127890 + 0.991788i \(0.459179\pi\)
\(548\) 0 0
\(549\) −247.355 −0.450555
\(550\) 0 0
\(551\) −149.288 −0.270941
\(552\) 0 0
\(553\) 505.255 447.611i 0.913663 0.809423i
\(554\) 0 0
\(555\) 281.657 + 24.6080i 0.507490 + 0.0443388i
\(556\) 0 0
\(557\) −160.293 160.293i −0.287779 0.287779i 0.548422 0.836201i \(-0.315229\pi\)
−0.836201 + 0.548422i \(0.815229\pi\)
\(558\) 0 0
\(559\) 918.544i 1.64319i
\(560\) 0 0
\(561\) 204.819 0.365096
\(562\) 0 0
\(563\) 389.168 389.168i 0.691240 0.691240i −0.271265 0.962505i \(-0.587442\pi\)
0.962505 + 0.271265i \(0.0874418\pi\)
\(564\) 0 0
\(565\) −444.861 + 373.373i −0.787365 + 0.660838i
\(566\) 0 0
\(567\) −522.598 + 462.975i −0.921690 + 0.816534i
\(568\) 0 0
\(569\) 282.418i 0.496342i −0.968716 0.248171i \(-0.920171\pi\)
0.968716 0.248171i \(-0.0798294\pi\)
\(570\) 0 0
\(571\) 820.860i 1.43758i 0.695225 + 0.718792i \(0.255305\pi\)
−0.695225 + 0.718792i \(0.744695\pi\)
\(572\) 0 0
\(573\) 665.055 + 665.055i 1.16065 + 1.16065i
\(574\) 0 0
\(575\) 84.1050 + 120.054i 0.146270 + 0.208789i
\(576\) 0 0
\(577\) −590.803 + 590.803i −1.02392 + 1.02392i −0.0242155 + 0.999707i \(0.507709\pi\)
−0.999707 + 0.0242155i \(0.992291\pi\)
\(578\) 0 0
\(579\) 492.157i 0.850013i
\(580\) 0 0
\(581\) −31.5526 + 521.563i −0.0543073 + 0.897699i
\(582\) 0 0
\(583\) −400.781 400.781i −0.687445 0.687445i
\(584\) 0 0
\(585\) −376.307 + 315.835i −0.643259 + 0.539889i
\(586\) 0 0
\(587\) −528.165 528.165i −0.899769 0.899769i 0.0956459 0.995415i \(-0.469508\pi\)
−0.995415 + 0.0956459i \(0.969508\pi\)
\(588\) 0 0
\(589\) 25.6026i 0.0434679i
\(590\) 0 0
\(591\) 1103.88 1.86781
\(592\) 0 0
\(593\) −110.999 110.999i −0.187183 0.187183i 0.607294 0.794477i \(-0.292255\pi\)
−0.794477 + 0.607294i \(0.792255\pi\)
\(594\) 0 0
\(595\) 34.0996 229.394i 0.0573102 0.385537i
\(596\) 0 0
\(597\) 198.816 + 198.816i 0.333025 + 0.333025i
\(598\) 0 0
\(599\) −183.200 −0.305843 −0.152921 0.988238i \(-0.548868\pi\)
−0.152921 + 0.988238i \(0.548868\pi\)
\(600\) 0 0
\(601\) 206.129i 0.342977i −0.985186 0.171488i \(-0.945142\pi\)
0.985186 0.171488i \(-0.0548576\pi\)
\(602\) 0 0
\(603\) −327.978 327.978i −0.543910 0.543910i
\(604\) 0 0
\(605\) 279.582 + 24.4267i 0.462118 + 0.0403747i
\(606\) 0 0
\(607\) −222.323 222.323i −0.366265 0.366265i 0.499848 0.866113i \(-0.333389\pi\)
−0.866113 + 0.499848i \(0.833389\pi\)
\(608\) 0 0
\(609\) 1145.34 + 69.2887i 1.88069 + 0.113775i
\(610\) 0 0
\(611\) 1199.85i 1.96375i
\(612\) 0 0
\(613\) 685.546 685.546i 1.11835 1.11835i 0.126362 0.991984i \(-0.459670\pi\)
0.991984 0.126362i \(-0.0403302\pi\)
\(614\) 0 0
\(615\) 634.871 + 756.427i 1.03231 + 1.22996i
\(616\) 0 0
\(617\) −233.208 233.208i −0.377971 0.377971i 0.492399 0.870370i \(-0.336120\pi\)
−0.870370 + 0.492399i \(0.836120\pi\)
\(618\) 0 0
\(619\) 315.750i 0.510097i 0.966928 + 0.255049i \(0.0820915\pi\)
−0.966928 + 0.255049i \(0.917909\pi\)
\(620\) 0 0
\(621\) 73.6085i 0.118532i
\(622\) 0 0
\(623\) 167.305 148.217i 0.268547 0.237909i
\(624\) 0 0
\(625\) 587.410 + 213.483i 0.939855 + 0.341573i
\(626\) 0 0
\(627\) 76.3965 76.3965i 0.121845 0.121845i
\(628\) 0 0
\(629\) 97.6289 0.155213
\(630\) 0 0
\(631\) 458.035i 0.725888i 0.931811 + 0.362944i \(0.118228\pi\)
−0.931811 + 0.362944i \(0.881772\pi\)
\(632\) 0 0
\(633\) 375.736 + 375.736i 0.593580 + 0.593580i
\(634\) 0 0
\(635\) −242.643 + 203.651i −0.382115 + 0.320710i
\(636\) 0 0
\(637\) −661.562 + 518.286i −1.03856 + 0.813635i
\(638\) 0 0
\(639\) −261.566 −0.409336
\(640\) 0 0
\(641\) 325.712 0.508131 0.254066 0.967187i \(-0.418232\pi\)
0.254066 + 0.967187i \(0.418232\pi\)
\(642\) 0 0
\(643\) 716.243 716.243i 1.11391 1.11391i 0.121291 0.992617i \(-0.461297\pi\)
0.992617 0.121291i \(-0.0387034\pi\)
\(644\) 0 0
\(645\) 1023.79 + 89.4469i 1.58727 + 0.138677i
\(646\) 0 0
\(647\) 260.893 + 260.893i 0.403234 + 0.403234i 0.879371 0.476137i \(-0.157963\pi\)
−0.476137 + 0.879371i \(0.657963\pi\)
\(648\) 0 0
\(649\) −602.183 −0.927864
\(650\) 0 0
\(651\) −11.8828 + 196.423i −0.0182532 + 0.301726i
\(652\) 0 0
\(653\) −81.2648 + 81.2648i −0.124448 + 0.124448i −0.766588 0.642139i \(-0.778047\pi\)
0.642139 + 0.766588i \(0.278047\pi\)
\(654\) 0 0
\(655\) −299.444 26.1620i −0.457166 0.0399420i
\(656\) 0 0
\(657\) −303.774 + 303.774i −0.462366 + 0.462366i
\(658\) 0 0
\(659\) −384.242 −0.583069 −0.291534 0.956560i \(-0.594166\pi\)
−0.291534 + 0.956560i \(0.594166\pi\)
\(660\) 0 0
\(661\) 285.270i 0.431573i 0.976441 + 0.215786i \(0.0692315\pi\)
−0.976441 + 0.215786i \(0.930768\pi\)
\(662\) 0 0
\(663\) −308.407 + 308.407i −0.465169 + 0.465169i
\(664\) 0 0
\(665\) −72.8442 98.2822i −0.109540 0.147793i
\(666\) 0 0
\(667\) −177.082 + 177.082i −0.265490 + 0.265490i
\(668\) 0 0
\(669\) 754.160i 1.12729i
\(670\) 0 0
\(671\) 347.758 0.518268
\(672\) 0 0
\(673\) 198.014 198.014i 0.294226 0.294226i −0.544521 0.838747i \(-0.683289\pi\)
0.838747 + 0.544521i \(0.183289\pi\)
\(674\) 0 0
\(675\) −180.079 257.050i −0.266784 0.380814i
\(676\) 0 0
\(677\) 31.7972 31.7972i 0.0469679 0.0469679i −0.683233 0.730201i \(-0.739427\pi\)
0.730201 + 0.683233i \(0.239427\pi\)
\(678\) 0 0
\(679\) −11.6933 + 193.291i −0.0172214 + 0.284670i
\(680\) 0 0
\(681\) −577.260 −0.847665
\(682\) 0 0
\(683\) 38.6769 + 38.6769i 0.0566280 + 0.0566280i 0.734854 0.678226i \(-0.237251\pi\)
−0.678226 + 0.734854i \(0.737251\pi\)
\(684\) 0 0
\(685\) 790.696 + 942.087i 1.15430 + 1.37531i
\(686\) 0 0
\(687\) 713.387 713.387i 1.03841 1.03841i
\(688\) 0 0
\(689\) 1206.96 1.75175
\(690\) 0 0
\(691\) 534.276 0.773193 0.386597 0.922249i \(-0.373651\pi\)
0.386597 + 0.922249i \(0.373651\pi\)
\(692\) 0 0
\(693\) −241.763 + 214.181i −0.348865 + 0.309063i
\(694\) 0 0
\(695\) −101.012 + 1156.15i −0.145341 + 1.66353i
\(696\) 0 0
\(697\) 241.128 + 241.128i 0.345952 + 0.345952i
\(698\) 0 0
\(699\) 537.382i 0.768787i
\(700\) 0 0
\(701\) −824.261 −1.17584 −0.587918 0.808920i \(-0.700052\pi\)
−0.587918 + 0.808920i \(0.700052\pi\)
\(702\) 0 0
\(703\) 36.4152 36.4152i 0.0517997 0.0517997i
\(704\) 0 0
\(705\) 1337.33 + 116.841i 1.89692 + 0.165731i
\(706\) 0 0
\(707\) −65.4434 73.8714i −0.0925649 0.104486i
\(708\) 0 0
\(709\) 1221.60i 1.72300i −0.507761 0.861498i \(-0.669527\pi\)
0.507761 0.861498i \(-0.330473\pi\)
\(710\) 0 0
\(711\) 552.433i 0.776980i
\(712\) 0 0
\(713\) −30.3691 30.3691i −0.0425934 0.0425934i
\(714\) 0 0
\(715\) 529.052 444.035i 0.739933 0.621028i
\(716\) 0 0
\(717\) −647.354 + 647.354i −0.902864 + 0.902864i
\(718\) 0 0
\(719\) 582.080i 0.809569i 0.914412 + 0.404785i \(0.132653\pi\)
−0.914412 + 0.404785i \(0.867347\pi\)
\(720\) 0 0
\(721\) 1.79131 29.6103i 0.00248448 0.0410684i
\(722\) 0 0
\(723\) −1107.01 1107.01i −1.53113 1.53113i
\(724\) 0 0
\(725\) −185.170 + 1051.61i −0.255406 + 1.45050i
\(726\) 0 0
\(727\) −12.6800 12.6800i −0.0174416 0.0174416i 0.698332 0.715774i \(-0.253926\pi\)
−0.715774 + 0.698332i \(0.753926\pi\)
\(728\) 0 0
\(729\) 137.772i 0.188988i
\(730\) 0 0
\(731\) 354.868 0.485456
\(732\) 0 0
\(733\) −87.2303 87.2303i −0.119005 0.119005i 0.645097 0.764101i \(-0.276817\pi\)
−0.764101 + 0.645097i \(0.776817\pi\)
\(734\) 0 0
\(735\) 513.246 + 787.831i 0.698294 + 1.07188i
\(736\) 0 0
\(737\) 461.107 + 461.107i 0.625654 + 0.625654i
\(738\) 0 0
\(739\) 242.125 0.327639 0.163819 0.986490i \(-0.447619\pi\)
0.163819 + 0.986490i \(0.447619\pi\)
\(740\) 0 0
\(741\) 230.069i 0.310485i
\(742\) 0 0
\(743\) 655.242 + 655.242i 0.881887 + 0.881887i 0.993726 0.111840i \(-0.0356743\pi\)
−0.111840 + 0.993726i \(0.535674\pi\)
\(744\) 0 0
\(745\) −1.34984 + 15.4499i −0.00181186 + 0.0207381i
\(746\) 0 0
\(747\) −302.381 302.381i −0.404794 0.404794i
\(748\) 0 0
\(749\) 82.0514 1356.31i 0.109548 1.81083i
\(750\) 0 0
\(751\) 817.498i 1.08855i −0.838908 0.544273i \(-0.816805\pi\)
0.838908 0.544273i \(-0.183195\pi\)
\(752\) 0 0
\(753\) −231.763 + 231.763i −0.307787 + 0.307787i
\(754\) 0 0
\(755\) 63.7981 730.217i 0.0845008 0.967175i
\(756\) 0 0
\(757\) 571.452 + 571.452i 0.754891 + 0.754891i 0.975388 0.220497i \(-0.0707679\pi\)
−0.220497 + 0.975388i \(0.570768\pi\)
\(758\) 0 0
\(759\) 181.239i 0.238786i
\(760\) 0 0
\(761\) 156.705i 0.205920i 0.994685 + 0.102960i \(0.0328314\pi\)
−0.994685 + 0.102960i \(0.967169\pi\)
\(762\) 0 0
\(763\) −834.238 941.673i −1.09337 1.23417i
\(764\) 0 0
\(765\) 122.019 + 145.381i 0.159502 + 0.190041i
\(766\) 0 0
\(767\) 906.741 906.741i 1.18219 1.18219i
\(768\) 0 0
\(769\) −1491.18 −1.93912 −0.969558 0.244861i \(-0.921258\pi\)
−0.969558 + 0.244861i \(0.921258\pi\)
\(770\) 0 0
\(771\) 361.367i 0.468699i
\(772\) 0 0
\(773\) −674.400 674.400i −0.872445 0.872445i 0.120294 0.992738i \(-0.461616\pi\)
−0.992738 + 0.120294i \(0.961616\pi\)
\(774\) 0 0
\(775\) −180.349 31.7561i −0.232708 0.0409756i
\(776\) 0 0
\(777\) −296.279 + 262.476i −0.381311 + 0.337808i
\(778\) 0 0
\(779\) 179.880 0.230911
\(780\) 0 0
\(781\) 367.737 0.470854
\(782\) 0 0
\(783\) 379.154 379.154i 0.484233 0.484233i
\(784\) 0 0
\(785\) −1097.51 + 921.141i −1.39810 + 1.17343i
\(786\) 0 0
\(787\) 50.5124 + 50.5124i 0.0641834 + 0.0641834i 0.738470 0.674286i \(-0.235549\pi\)
−0.674286 + 0.738470i \(0.735549\pi\)
\(788\) 0 0
\(789\) −91.4437 −0.115898
\(790\) 0 0
\(791\) 49.0994 811.613i 0.0620726 1.02606i
\(792\) 0 0
\(793\) −523.639 + 523.639i −0.660326 + 0.660326i
\(794\) 0 0
\(795\) 117.532 1345.24i 0.147839 1.69213i
\(796\) 0 0
\(797\) 321.559 321.559i 0.403462 0.403462i −0.475989 0.879451i \(-0.657910\pi\)
0.879451 + 0.475989i \(0.157910\pi\)
\(798\) 0 0
\(799\) 463.548 0.580161
\(800\) 0 0
\(801\) 182.927i 0.228373i
\(802\) 0 0
\(803\) 427.079 427.079i 0.531854 0.531854i
\(804\) 0 0
\(805\) −202.985 30.1739i −0.252156 0.0374831i
\(806\) 0 0
\(807\) 12.8273 12.8273i 0.0158951 0.0158951i
\(808\) 0 0
\(809\) 540.944i 0.668657i 0.942457 + 0.334329i \(0.108510\pi\)
−0.942457 + 0.334329i \(0.891490\pi\)
\(810\) 0 0
\(811\) −1197.03 −1.47600 −0.737998 0.674803i \(-0.764229\pi\)
−0.737998 + 0.674803i \(0.764229\pi\)
\(812\) 0 0
\(813\) 1321.95 1321.95i 1.62602 1.62602i
\(814\) 0 0
\(815\) 421.924 + 502.708i 0.517698 + 0.616820i
\(816\) 0 0
\(817\) 132.364 132.364i 0.162013 0.162013i
\(818\) 0 0
\(819\) 41.5330 686.540i 0.0507119 0.838267i
\(820\) 0 0
\(821\) −410.181 −0.499612 −0.249806 0.968296i \(-0.580367\pi\)
−0.249806 + 0.968296i \(0.580367\pi\)
\(822\) 0 0
\(823\) 462.410 + 462.410i 0.561859 + 0.561859i 0.929835 0.367976i \(-0.119949\pi\)
−0.367976 + 0.929835i \(0.619949\pi\)
\(824\) 0 0
\(825\) −443.392 632.908i −0.537444 0.767161i
\(826\) 0 0
\(827\) 642.183 642.183i 0.776521 0.776521i −0.202717 0.979237i \(-0.564977\pi\)
0.979237 + 0.202717i \(0.0649771\pi\)
\(828\) 0 0
\(829\) 709.957 0.856402 0.428201 0.903684i \(-0.359148\pi\)
0.428201 + 0.903684i \(0.359148\pi\)
\(830\) 0 0
\(831\) 1730.07 2.08191
\(832\) 0 0
\(833\) 200.233 + 255.586i 0.240376 + 0.306826i
\(834\) 0 0
\(835\) 115.957 + 138.159i 0.138871 + 0.165460i
\(836\) 0 0
\(837\) 65.0240 + 65.0240i 0.0776870 + 0.0776870i
\(838\) 0 0
\(839\) 920.669i 1.09734i 0.836039 + 0.548671i \(0.184866\pi\)
−0.836039 + 0.548671i \(0.815134\pi\)
\(840\) 0 0
\(841\) −983.282 −1.16918
\(842\) 0 0
\(843\) −864.542 + 864.542i −1.02555 + 1.02555i
\(844\) 0 0
\(845\) −54.4691 + 623.439i −0.0644604 + 0.737798i
\(846\) 0 0
\(847\) −294.096 + 260.542i −0.347220 + 0.307606i
\(848\) 0 0
\(849\) 1482.78i 1.74650i
\(850\) 0 0
\(851\) 86.3894i 0.101515i
\(852\) 0 0
\(853\) 331.808 + 331.808i 0.388989 + 0.388989i 0.874327 0.485338i \(-0.161303\pi\)
−0.485338 + 0.874327i \(0.661303\pi\)
\(854\) 0 0
\(855\) 99.7393 + 8.71409i 0.116654 + 0.0101919i
\(856\) 0 0
\(857\) 421.769 421.769i 0.492146 0.492146i −0.416836 0.908982i \(-0.636861\pi\)
0.908982 + 0.416836i \(0.136861\pi\)
\(858\) 0 0
\(859\) 147.485i 0.171694i −0.996308 0.0858471i \(-0.972640\pi\)
0.996308 0.0858471i \(-0.0273596\pi\)
\(860\) 0 0
\(861\) −1380.04 83.4870i −1.60283 0.0969652i
\(862\) 0 0
\(863\) −388.305 388.305i −0.449948 0.449948i 0.445389 0.895337i \(-0.353065\pi\)
−0.895337 + 0.445389i \(0.853065\pi\)
\(864\) 0 0
\(865\) 931.152 + 1109.44i 1.07648 + 1.28258i
\(866\) 0 0
\(867\) −665.124 665.124i −0.767155 0.767155i
\(868\) 0 0
\(869\) 776.670i 0.893751i
\(870\) 0 0
\(871\) −1388.63 −1.59429
\(872\) 0 0
\(873\) −112.062 112.062i −0.128364 0.128364i
\(874\) 0 0
\(875\) −782.668 + 391.223i −0.894478 + 0.447111i
\(876\) 0 0
\(877\) −797.774 797.774i −0.909662 0.909662i 0.0865827 0.996245i \(-0.472405\pi\)
−0.996245 + 0.0865827i \(0.972405\pi\)
\(878\) 0 0
\(879\) −1263.91 −1.43790
\(880\) 0 0
\(881\) 1227.74i 1.39357i −0.717279 0.696786i \(-0.754613\pi\)
0.717279 0.696786i \(-0.245387\pi\)
\(882\) 0 0
\(883\) 41.4471 + 41.4471i 0.0469389 + 0.0469389i 0.730187 0.683248i \(-0.239433\pi\)
−0.683248 + 0.730187i \(0.739433\pi\)
\(884\) 0 0
\(885\) −922.334 1098.93i −1.04219 1.24173i
\(886\) 0 0
\(887\) 909.377 + 909.377i 1.02523 + 1.02523i 0.999673 + 0.0255540i \(0.00813499\pi\)
0.0255540 + 0.999673i \(0.491865\pi\)
\(888\) 0 0
\(889\) 26.7805 442.682i 0.0301243 0.497955i
\(890\) 0 0
\(891\) 803.329i 0.901603i
\(892\) 0 0
\(893\) 172.902 172.902i 0.193619 0.193619i
\(894\) 0 0
\(895\) 41.8504 + 3.65642i 0.0467602 + 0.00408538i
\(896\) 0 0
\(897\) 272.902 + 272.902i 0.304238 + 0.304238i
\(898\) 0 0
\(899\) 312.860i 0.348009i
\(900\) 0 0
\(901\) 466.292i 0.517528i
\(902\) 0 0
\(903\) −1076.94 + 954.067i −1.19262 + 1.05655i
\(904\) 0 0
\(905\) 6.57156 75.2164i 0.00726139 0.0831120i
\(906\) 0 0
\(907\) 265.458 265.458i 0.292677 0.292677i −0.545460 0.838137i \(-0.683645\pi\)
0.838137 + 0.545460i \(0.183645\pi\)
\(908\) 0 0
\(909\) 80.7690 0.0888548
\(910\) 0 0
\(911\) 276.253i 0.303242i 0.988439 + 0.151621i \(0.0484493\pi\)
−0.988439 + 0.151621i \(0.951551\pi\)
\(912\) 0 0
\(913\) 425.120 + 425.120i 0.465630 + 0.465630i
\(914\) 0 0
\(915\) 532.643 + 634.626i 0.582124 + 0.693580i
\(916\) 0 0
\(917\) 314.989 279.052i 0.343500 0.304310i
\(918\) 0 0
\(919\) −330.187 −0.359289 −0.179645 0.983732i \(-0.557495\pi\)
−0.179645 + 0.983732i \(0.557495\pi\)
\(920\) 0 0
\(921\) −1953.11 −2.12064
\(922\) 0 0
\(923\) −553.722 + 553.722i −0.599916 + 0.599916i
\(924\) 0 0
\(925\) −211.347 301.682i −0.228483 0.326143i
\(926\) 0 0
\(927\) 17.1668 + 17.1668i 0.0185187 + 0.0185187i
\(928\) 0 0
\(929\) −572.280 −0.616017 −0.308009 0.951384i \(-0.599663\pi\)
−0.308009 + 0.951384i \(0.599663\pi\)
\(930\) 0 0
\(931\) 170.019 + 20.6465i 0.182620 + 0.0221767i
\(932\) 0 0
\(933\) 1299.03 1299.03i 1.39231 1.39231i
\(934\) 0 0
\(935\) −171.547 204.393i −0.183473 0.218602i
\(936\) 0 0
\(937\) 309.136 309.136i 0.329921 0.329921i −0.522636 0.852556i \(-0.675051\pi\)
0.852556 + 0.522636i \(0.175051\pi\)
\(938\) 0 0
\(939\) 1080.86 1.15108
\(940\) 0 0
\(941\) 58.1636i 0.0618104i −0.999522 0.0309052i \(-0.990161\pi\)
0.999522 0.0309052i \(-0.00983900\pi\)
\(942\) 0 0
\(943\) 213.368 213.368i 0.226266 0.226266i
\(944\) 0 0
\(945\) 434.617 + 64.6061i 0.459912 + 0.0683662i
\(946\) 0 0
\(947\) −762.634 + 762.634i −0.805316 + 0.805316i −0.983921 0.178605i \(-0.942842\pi\)
0.178605 + 0.983921i \(0.442842\pi\)
\(948\) 0 0
\(949\) 1286.15i 1.35527i
\(950\) 0 0
\(951\) −1936.55 −2.03633
\(952\) 0 0
\(953\) 435.670 435.670i 0.457157 0.457157i −0.440564 0.897721i \(-0.645222\pi\)
0.897721 + 0.440564i \(0.145222\pi\)
\(954\) 0 0
\(955\) 106.650 1220.69i 0.111676 1.27821i
\(956\) 0 0
\(957\) 933.554 933.554i 0.975501 0.975501i
\(958\) 0 0
\(959\) −1718.76 103.978i −1.79224 0.108424i
\(960\) 0 0
\(961\) −907.345 −0.944168
\(962\) 0 0
\(963\) 786.332 + 786.332i 0.816544 + 0.816544i
\(964\) 0 0
\(965\) −491.134 + 412.210i −0.508947 + 0.427161i
\(966\) 0 0
\(967\) −339.744 + 339.744i −0.351338 + 0.351338i −0.860607 0.509269i \(-0.829916\pi\)
0.509269 + 0.860607i \(0.329916\pi\)
\(968\) 0 0
\(969\) 88.8843 0.0917279
\(970\) 0 0
\(971\) −888.261 −0.914790 −0.457395 0.889264i \(-0.651217\pi\)
−0.457395 + 0.889264i \(0.651217\pi\)
\(972\) 0 0
\(973\) −1077.42 1216.17i −1.10732 1.24992i
\(974\) 0 0
\(975\) 1620.65 + 285.366i 1.66220 + 0.292683i
\(976\) 0 0
\(977\) 676.782 + 676.782i 0.692714 + 0.692714i 0.962828 0.270114i \(-0.0870615\pi\)
−0.270114 + 0.962828i \(0.587061\pi\)
\(978\) 0 0
\(979\) 257.178i 0.262695i
\(980\) 0 0
\(981\) 1029.60 1.04954
\(982\) 0 0
\(983\) 767.070 767.070i 0.780335 0.780335i −0.199552 0.979887i \(-0.563949\pi\)
0.979887 + 0.199552i \(0.0639487\pi\)
\(984\) 0 0
\(985\) −924.560 1101.58i −0.938639 1.11836i
\(986\) 0 0
\(987\) −1406.75 + 1246.26i −1.42528 + 1.26267i
\(988\) 0 0
\(989\) 314.014i 0.317507i
\(990\) 0 0
\(991\) 688.241i 0.694491i 0.937774 + 0.347246i \(0.112883\pi\)
−0.937774 + 0.347246i \(0.887117\pi\)
\(992\) 0 0
\(993\) −375.209 375.209i −0.377854 0.377854i
\(994\) 0 0
\(995\) 31.8828 364.922i 0.0320430 0.366756i
\(996\) 0 0
\(997\) 705.546 705.546i 0.707669 0.707669i −0.258375 0.966045i \(-0.583187\pi\)
0.966045 + 0.258375i \(0.0831871\pi\)
\(998\) 0 0
\(999\) 184.971i 0.185156i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.3.v.b.447.6 yes 64
4.3 odd 2 inner 560.3.v.b.447.27 yes 64
5.3 odd 4 inner 560.3.v.b.223.5 64
7.6 odd 2 inner 560.3.v.b.447.28 yes 64
20.3 even 4 inner 560.3.v.b.223.28 yes 64
28.27 even 2 inner 560.3.v.b.447.5 yes 64
35.13 even 4 inner 560.3.v.b.223.27 yes 64
140.83 odd 4 inner 560.3.v.b.223.6 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.3.v.b.223.5 64 5.3 odd 4 inner
560.3.v.b.223.6 yes 64 140.83 odd 4 inner
560.3.v.b.223.27 yes 64 35.13 even 4 inner
560.3.v.b.223.28 yes 64 20.3 even 4 inner
560.3.v.b.447.5 yes 64 28.27 even 2 inner
560.3.v.b.447.6 yes 64 1.1 even 1 trivial
560.3.v.b.447.27 yes 64 4.3 odd 2 inner
560.3.v.b.447.28 yes 64 7.6 odd 2 inner