Properties

Label 560.3.v.b.447.23
Level $560$
Weight $3$
Character 560.447
Analytic conductor $15.259$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(223,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.223"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 447.23
Character \(\chi\) \(=\) 560.447
Dual form 560.3.v.b.223.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.33745 - 2.33745i) q^{3} +(-4.70145 + 1.70187i) q^{5} +(6.43840 + 2.74719i) q^{7} -1.92736i q^{9} +11.8428i q^{11} +(-0.694125 - 0.694125i) q^{13} +(-7.01136 + 14.9675i) q^{15} +(-16.8449 + 16.8449i) q^{17} +10.7208i q^{19} +(21.4709 - 8.62802i) q^{21} +(-6.37492 - 6.37492i) q^{23} +(19.2072 - 16.0026i) q^{25} +(16.5320 + 16.5320i) q^{27} +1.46982i q^{29} -32.9829 q^{31} +(27.6819 + 27.6819i) q^{33} +(-34.9452 - 1.95843i) q^{35} +(47.6627 + 47.6627i) q^{37} -3.24497 q^{39} +33.1632i q^{41} +(43.6176 + 43.6176i) q^{43} +(3.28012 + 9.06138i) q^{45} +(-34.1921 - 34.1921i) q^{47} +(33.9059 + 35.3750i) q^{49} +78.7484i q^{51} +(56.5110 - 56.5110i) q^{53} +(-20.1549 - 55.6782i) q^{55} +(25.0593 + 25.0593i) q^{57} -22.3963i q^{59} -68.2453i q^{61} +(5.29482 - 12.4091i) q^{63} +(4.44471 + 2.08208i) q^{65} +(67.8953 - 67.8953i) q^{67} -29.8021 q^{69} +71.4041i q^{71} +(10.2149 + 10.2149i) q^{73} +(7.49082 - 82.3012i) q^{75} +(-32.5343 + 76.2485i) q^{77} -61.2432 q^{79} +94.6315 q^{81} +(-80.3770 + 80.3770i) q^{83} +(50.5276 - 107.864i) q^{85} +(3.43563 + 3.43563i) q^{87} +27.7670 q^{89} +(-2.56216 - 6.37594i) q^{91} +(-77.0960 + 77.0960i) q^{93} +(-18.2455 - 50.4033i) q^{95} +(4.28781 - 4.28781i) q^{97} +22.8253 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 16 q^{21} - 72 q^{25} + 72 q^{37} + 272 q^{53} - 376 q^{57} - 88 q^{65} + 24 q^{77} - 432 q^{81} + 384 q^{85} + 840 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.33745 2.33745i 0.779151 0.779151i −0.200536 0.979686i \(-0.564268\pi\)
0.979686 + 0.200536i \(0.0642683\pi\)
\(4\) 0 0
\(5\) −4.70145 + 1.70187i −0.940290 + 0.340375i
\(6\) 0 0
\(7\) 6.43840 + 2.74719i 0.919771 + 0.392456i
\(8\) 0 0
\(9\) 1.92736i 0.214151i
\(10\) 0 0
\(11\) 11.8428i 1.07662i 0.842748 + 0.538308i \(0.180936\pi\)
−0.842748 + 0.538308i \(0.819064\pi\)
\(12\) 0 0
\(13\) −0.694125 0.694125i −0.0533942 0.0533942i 0.679906 0.733300i \(-0.262021\pi\)
−0.733300 + 0.679906i \(0.762021\pi\)
\(14\) 0 0
\(15\) −7.01136 + 14.9675i −0.467424 + 0.997831i
\(16\) 0 0
\(17\) −16.8449 + 16.8449i −0.990878 + 0.990878i −0.999959 0.00908054i \(-0.997110\pi\)
0.00908054 + 0.999959i \(0.497110\pi\)
\(18\) 0 0
\(19\) 10.7208i 0.564253i 0.959377 + 0.282126i \(0.0910397\pi\)
−0.959377 + 0.282126i \(0.908960\pi\)
\(20\) 0 0
\(21\) 21.4709 8.62802i 1.02242 0.410858i
\(22\) 0 0
\(23\) −6.37492 6.37492i −0.277171 0.277171i 0.554808 0.831978i \(-0.312792\pi\)
−0.831978 + 0.554808i \(0.812792\pi\)
\(24\) 0 0
\(25\) 19.2072 16.0026i 0.768290 0.640102i
\(26\) 0 0
\(27\) 16.5320 + 16.5320i 0.612295 + 0.612295i
\(28\) 0 0
\(29\) 1.46982i 0.0506834i 0.999679 + 0.0253417i \(0.00806738\pi\)
−0.999679 + 0.0253417i \(0.991933\pi\)
\(30\) 0 0
\(31\) −32.9829 −1.06397 −0.531983 0.846755i \(-0.678553\pi\)
−0.531983 + 0.846755i \(0.678553\pi\)
\(32\) 0 0
\(33\) 27.6819 + 27.6819i 0.838846 + 0.838846i
\(34\) 0 0
\(35\) −34.9452 1.95843i −0.998433 0.0559550i
\(36\) 0 0
\(37\) 47.6627 + 47.6627i 1.28818 + 1.28818i 0.935891 + 0.352290i \(0.114597\pi\)
0.352290 + 0.935891i \(0.385403\pi\)
\(38\) 0 0
\(39\) −3.24497 −0.0832043
\(40\) 0 0
\(41\) 33.1632i 0.808857i 0.914570 + 0.404429i \(0.132530\pi\)
−0.914570 + 0.404429i \(0.867470\pi\)
\(42\) 0 0
\(43\) 43.6176 + 43.6176i 1.01436 + 1.01436i 0.999895 + 0.0144669i \(0.00460511\pi\)
0.0144669 + 0.999895i \(0.495395\pi\)
\(44\) 0 0
\(45\) 3.28012 + 9.06138i 0.0728917 + 0.201364i
\(46\) 0 0
\(47\) −34.1921 34.1921i −0.727492 0.727492i 0.242628 0.970119i \(-0.421991\pi\)
−0.970119 + 0.242628i \(0.921991\pi\)
\(48\) 0 0
\(49\) 33.9059 + 35.3750i 0.691957 + 0.721938i
\(50\) 0 0
\(51\) 78.7484i 1.54409i
\(52\) 0 0
\(53\) 56.5110 56.5110i 1.06625 1.06625i 0.0686018 0.997644i \(-0.478146\pi\)
0.997644 0.0686018i \(-0.0218538\pi\)
\(54\) 0 0
\(55\) −20.1549 55.6782i −0.366453 1.01233i
\(56\) 0 0
\(57\) 25.0593 + 25.0593i 0.439638 + 0.439638i
\(58\) 0 0
\(59\) 22.3963i 0.379598i −0.981823 0.189799i \(-0.939216\pi\)
0.981823 0.189799i \(-0.0607836\pi\)
\(60\) 0 0
\(61\) 68.2453i 1.11878i −0.828906 0.559388i \(-0.811036\pi\)
0.828906 0.559388i \(-0.188964\pi\)
\(62\) 0 0
\(63\) 5.29482 12.4091i 0.0840448 0.196970i
\(64\) 0 0
\(65\) 4.44471 + 2.08208i 0.0683801 + 0.0320320i
\(66\) 0 0
\(67\) 67.8953 67.8953i 1.01336 1.01336i 0.0134530 0.999910i \(-0.495718\pi\)
0.999910 0.0134530i \(-0.00428234\pi\)
\(68\) 0 0
\(69\) −29.8021 −0.431915
\(70\) 0 0
\(71\) 71.4041i 1.00569i 0.864376 + 0.502846i \(0.167714\pi\)
−0.864376 + 0.502846i \(0.832286\pi\)
\(72\) 0 0
\(73\) 10.2149 + 10.2149i 0.139930 + 0.139930i 0.773602 0.633672i \(-0.218453\pi\)
−0.633672 + 0.773602i \(0.718453\pi\)
\(74\) 0 0
\(75\) 7.49082 82.3012i 0.0998777 1.09735i
\(76\) 0 0
\(77\) −32.5343 + 76.2485i −0.422524 + 0.990240i
\(78\) 0 0
\(79\) −61.2432 −0.775231 −0.387615 0.921821i \(-0.626701\pi\)
−0.387615 + 0.921821i \(0.626701\pi\)
\(80\) 0 0
\(81\) 94.6315 1.16829
\(82\) 0 0
\(83\) −80.3770 + 80.3770i −0.968397 + 0.968397i −0.999516 0.0311186i \(-0.990093\pi\)
0.0311186 + 0.999516i \(0.490093\pi\)
\(84\) 0 0
\(85\) 50.5276 107.864i 0.594443 1.26898i
\(86\) 0 0
\(87\) 3.43563 + 3.43563i 0.0394900 + 0.0394900i
\(88\) 0 0
\(89\) 27.7670 0.311989 0.155995 0.987758i \(-0.450142\pi\)
0.155995 + 0.987758i \(0.450142\pi\)
\(90\) 0 0
\(91\) −2.56216 6.37594i −0.0281556 0.0700653i
\(92\) 0 0
\(93\) −77.0960 + 77.0960i −0.828989 + 0.828989i
\(94\) 0 0
\(95\) −18.2455 50.4033i −0.192057 0.530561i
\(96\) 0 0
\(97\) 4.28781 4.28781i 0.0442042 0.0442042i −0.684659 0.728863i \(-0.740049\pi\)
0.728863 + 0.684659i \(0.240049\pi\)
\(98\) 0 0
\(99\) 22.8253 0.230559
\(100\) 0 0
\(101\) 98.9763i 0.979963i −0.871733 0.489981i \(-0.837004\pi\)
0.871733 0.489981i \(-0.162996\pi\)
\(102\) 0 0
\(103\) −65.9655 + 65.9655i −0.640442 + 0.640442i −0.950664 0.310222i \(-0.899596\pi\)
0.310222 + 0.950664i \(0.399596\pi\)
\(104\) 0 0
\(105\) −86.2604 + 77.1049i −0.821527 + 0.734332i
\(106\) 0 0
\(107\) 25.3142 25.3142i 0.236581 0.236581i −0.578852 0.815433i \(-0.696499\pi\)
0.815433 + 0.578852i \(0.196499\pi\)
\(108\) 0 0
\(109\) 151.648i 1.39127i −0.718397 0.695633i \(-0.755124\pi\)
0.718397 0.695633i \(-0.244876\pi\)
\(110\) 0 0
\(111\) 222.818 2.00737
\(112\) 0 0
\(113\) −98.2840 + 98.2840i −0.869769 + 0.869769i −0.992447 0.122677i \(-0.960852\pi\)
0.122677 + 0.992447i \(0.460852\pi\)
\(114\) 0 0
\(115\) 40.8207 + 19.1221i 0.354963 + 0.166279i
\(116\) 0 0
\(117\) −1.33783 + 1.33783i −0.0114344 + 0.0114344i
\(118\) 0 0
\(119\) −154.731 + 62.1781i −1.30026 + 0.522505i
\(120\) 0 0
\(121\) −19.2513 −0.159102
\(122\) 0 0
\(123\) 77.5173 + 77.5173i 0.630222 + 0.630222i
\(124\) 0 0
\(125\) −63.0676 + 107.923i −0.504541 + 0.863388i
\(126\) 0 0
\(127\) −32.6662 + 32.6662i −0.257214 + 0.257214i −0.823920 0.566706i \(-0.808218\pi\)
0.566706 + 0.823920i \(0.308218\pi\)
\(128\) 0 0
\(129\) 203.908 1.58068
\(130\) 0 0
\(131\) −26.8150 −0.204695 −0.102347 0.994749i \(-0.532635\pi\)
−0.102347 + 0.994749i \(0.532635\pi\)
\(132\) 0 0
\(133\) −29.4521 + 69.0248i −0.221444 + 0.518983i
\(134\) 0 0
\(135\) −105.859 49.5888i −0.784144 0.367325i
\(136\) 0 0
\(137\) −152.219 152.219i −1.11109 1.11109i −0.993004 0.118083i \(-0.962325\pi\)
−0.118083 0.993004i \(-0.537675\pi\)
\(138\) 0 0
\(139\) 198.862i 1.43066i 0.698787 + 0.715330i \(0.253724\pi\)
−0.698787 + 0.715330i \(0.746276\pi\)
\(140\) 0 0
\(141\) −159.845 −1.13365
\(142\) 0 0
\(143\) 8.22037 8.22037i 0.0574851 0.0574851i
\(144\) 0 0
\(145\) −2.50145 6.91028i −0.0172514 0.0476571i
\(146\) 0 0
\(147\) 161.941 + 3.43389i 1.10164 + 0.0233598i
\(148\) 0 0
\(149\) 215.157i 1.44400i 0.691891 + 0.722002i \(0.256778\pi\)
−0.691891 + 0.722002i \(0.743222\pi\)
\(150\) 0 0
\(151\) 43.1892i 0.286021i 0.989721 + 0.143011i \(0.0456783\pi\)
−0.989721 + 0.143011i \(0.954322\pi\)
\(152\) 0 0
\(153\) 32.4662 + 32.4662i 0.212198 + 0.212198i
\(154\) 0 0
\(155\) 155.068 56.1328i 1.00044 0.362147i
\(156\) 0 0
\(157\) −31.6517 + 31.6517i −0.201603 + 0.201603i −0.800687 0.599084i \(-0.795532\pi\)
0.599084 + 0.800687i \(0.295532\pi\)
\(158\) 0 0
\(159\) 264.184i 1.66153i
\(160\) 0 0
\(161\) −23.5312 58.5574i −0.146156 0.363711i
\(162\) 0 0
\(163\) −11.5565 11.5565i −0.0708990 0.0708990i 0.670768 0.741667i \(-0.265965\pi\)
−0.741667 + 0.670768i \(0.765965\pi\)
\(164\) 0 0
\(165\) −177.256 83.0340i −1.07428 0.503236i
\(166\) 0 0
\(167\) 68.8404 + 68.8404i 0.412218 + 0.412218i 0.882511 0.470292i \(-0.155852\pi\)
−0.470292 + 0.882511i \(0.655852\pi\)
\(168\) 0 0
\(169\) 168.036i 0.994298i
\(170\) 0 0
\(171\) 20.6628 0.120835
\(172\) 0 0
\(173\) 46.3017 + 46.3017i 0.267640 + 0.267640i 0.828149 0.560509i \(-0.189394\pi\)
−0.560509 + 0.828149i \(0.689394\pi\)
\(174\) 0 0
\(175\) 167.626 50.2648i 0.957862 0.287228i
\(176\) 0 0
\(177\) −52.3502 52.3502i −0.295764 0.295764i
\(178\) 0 0
\(179\) 118.638 0.662780 0.331390 0.943494i \(-0.392482\pi\)
0.331390 + 0.943494i \(0.392482\pi\)
\(180\) 0 0
\(181\) 350.006i 1.93374i −0.255277 0.966868i \(-0.582167\pi\)
0.255277 0.966868i \(-0.417833\pi\)
\(182\) 0 0
\(183\) −159.520 159.520i −0.871695 0.871695i
\(184\) 0 0
\(185\) −305.200 142.968i −1.64973 0.772799i
\(186\) 0 0
\(187\) −199.491 199.491i −1.06680 1.06680i
\(188\) 0 0
\(189\) 61.0229 + 151.856i 0.322872 + 0.803469i
\(190\) 0 0
\(191\) 236.909i 1.24036i −0.784460 0.620180i \(-0.787060\pi\)
0.784460 0.620180i \(-0.212940\pi\)
\(192\) 0 0
\(193\) −24.3886 + 24.3886i −0.126366 + 0.126366i −0.767461 0.641096i \(-0.778480\pi\)
0.641096 + 0.767461i \(0.278480\pi\)
\(194\) 0 0
\(195\) 15.2560 5.52253i 0.0782361 0.0283206i
\(196\) 0 0
\(197\) 29.2737 + 29.2737i 0.148597 + 0.148597i 0.777491 0.628894i \(-0.216492\pi\)
−0.628894 + 0.777491i \(0.716492\pi\)
\(198\) 0 0
\(199\) 38.3169i 0.192547i 0.995355 + 0.0962736i \(0.0306924\pi\)
−0.995355 + 0.0962736i \(0.969308\pi\)
\(200\) 0 0
\(201\) 317.404i 1.57912i
\(202\) 0 0
\(203\) −4.03787 + 9.46328i −0.0198910 + 0.0466171i
\(204\) 0 0
\(205\) −56.4395 155.915i −0.275315 0.760560i
\(206\) 0 0
\(207\) −12.2868 + 12.2868i −0.0593564 + 0.0593564i
\(208\) 0 0
\(209\) −126.964 −0.607483
\(210\) 0 0
\(211\) 280.171i 1.32783i −0.747810 0.663913i \(-0.768894\pi\)
0.747810 0.663913i \(-0.231106\pi\)
\(212\) 0 0
\(213\) 166.904 + 166.904i 0.783586 + 0.783586i
\(214\) 0 0
\(215\) −279.297 130.834i −1.29906 0.608531i
\(216\) 0 0
\(217\) −212.357 90.6103i −0.978605 0.417559i
\(218\) 0 0
\(219\) 47.7538 0.218054
\(220\) 0 0
\(221\) 23.3850 0.105814
\(222\) 0 0
\(223\) −23.0014 + 23.0014i −0.103145 + 0.103145i −0.756796 0.653651i \(-0.773236\pi\)
0.653651 + 0.756796i \(0.273236\pi\)
\(224\) 0 0
\(225\) −30.8427 37.0193i −0.137079 0.164530i
\(226\) 0 0
\(227\) −203.741 203.741i −0.897539 0.897539i 0.0976791 0.995218i \(-0.468858\pi\)
−0.995218 + 0.0976791i \(0.968858\pi\)
\(228\) 0 0
\(229\) 385.293 1.68250 0.841252 0.540643i \(-0.181819\pi\)
0.841252 + 0.540643i \(0.181819\pi\)
\(230\) 0 0
\(231\) 102.180 + 254.275i 0.442336 + 1.10076i
\(232\) 0 0
\(233\) −117.149 + 117.149i −0.502784 + 0.502784i −0.912302 0.409518i \(-0.865697\pi\)
0.409518 + 0.912302i \(0.365697\pi\)
\(234\) 0 0
\(235\) 218.943 + 102.562i 0.931673 + 0.436433i
\(236\) 0 0
\(237\) −143.153 + 143.153i −0.604022 + 0.604022i
\(238\) 0 0
\(239\) −88.5591 −0.370540 −0.185270 0.982688i \(-0.559316\pi\)
−0.185270 + 0.982688i \(0.559316\pi\)
\(240\) 0 0
\(241\) 163.954i 0.680306i −0.940370 0.340153i \(-0.889521\pi\)
0.940370 0.340153i \(-0.110479\pi\)
\(242\) 0 0
\(243\) 72.4090 72.4090i 0.297980 0.297980i
\(244\) 0 0
\(245\) −219.611 108.610i −0.896370 0.443306i
\(246\) 0 0
\(247\) 7.44157 7.44157i 0.0301278 0.0301278i
\(248\) 0 0
\(249\) 375.755i 1.50905i
\(250\) 0 0
\(251\) 299.670 1.19390 0.596952 0.802277i \(-0.296378\pi\)
0.596952 + 0.802277i \(0.296378\pi\)
\(252\) 0 0
\(253\) 75.4968 75.4968i 0.298406 0.298406i
\(254\) 0 0
\(255\) −134.020 370.232i −0.525568 1.45189i
\(256\) 0 0
\(257\) 264.763 264.763i 1.03021 1.03021i 0.0306786 0.999529i \(-0.490233\pi\)
0.999529 0.0306786i \(-0.00976682\pi\)
\(258\) 0 0
\(259\) 175.933 + 437.810i 0.679278 + 1.69039i
\(260\) 0 0
\(261\) 2.83287 0.0108539
\(262\) 0 0
\(263\) −242.402 242.402i −0.921680 0.921680i 0.0754684 0.997148i \(-0.475955\pi\)
−0.997148 + 0.0754684i \(0.975955\pi\)
\(264\) 0 0
\(265\) −169.509 + 361.858i −0.639657 + 1.36550i
\(266\) 0 0
\(267\) 64.9041 64.9041i 0.243087 0.243087i
\(268\) 0 0
\(269\) 219.938 0.817614 0.408807 0.912621i \(-0.365945\pi\)
0.408807 + 0.912621i \(0.365945\pi\)
\(270\) 0 0
\(271\) 19.9310 0.0735460 0.0367730 0.999324i \(-0.488292\pi\)
0.0367730 + 0.999324i \(0.488292\pi\)
\(272\) 0 0
\(273\) −20.8924 8.91454i −0.0765289 0.0326540i
\(274\) 0 0
\(275\) 189.515 + 227.467i 0.689144 + 0.827153i
\(276\) 0 0
\(277\) −200.462 200.462i −0.723688 0.723688i 0.245666 0.969355i \(-0.420993\pi\)
−0.969355 + 0.245666i \(0.920993\pi\)
\(278\) 0 0
\(279\) 63.5700i 0.227849i
\(280\) 0 0
\(281\) 456.950 1.62616 0.813078 0.582154i \(-0.197790\pi\)
0.813078 + 0.582154i \(0.197790\pi\)
\(282\) 0 0
\(283\) −99.2594 + 99.2594i −0.350740 + 0.350740i −0.860385 0.509645i \(-0.829777\pi\)
0.509645 + 0.860385i \(0.329777\pi\)
\(284\) 0 0
\(285\) −160.463 75.1674i −0.563028 0.263745i
\(286\) 0 0
\(287\) −91.1054 + 213.518i −0.317441 + 0.743964i
\(288\) 0 0
\(289\) 278.503i 0.963679i
\(290\) 0 0
\(291\) 20.0451i 0.0688835i
\(292\) 0 0
\(293\) 329.073 + 329.073i 1.12312 + 1.12312i 0.991270 + 0.131847i \(0.0420908\pi\)
0.131847 + 0.991270i \(0.457909\pi\)
\(294\) 0 0
\(295\) 38.1156 + 105.295i 0.129206 + 0.356932i
\(296\) 0 0
\(297\) −195.784 + 195.784i −0.659206 + 0.659206i
\(298\) 0 0
\(299\) 8.84998i 0.0295986i
\(300\) 0 0
\(301\) 161.002 + 400.653i 0.534889 + 1.33107i
\(302\) 0 0
\(303\) −231.352 231.352i −0.763539 0.763539i
\(304\) 0 0
\(305\) 116.145 + 320.852i 0.380803 + 1.05197i
\(306\) 0 0
\(307\) 322.086 + 322.086i 1.04914 + 1.04914i 0.998729 + 0.0504101i \(0.0160528\pi\)
0.0504101 + 0.998729i \(0.483947\pi\)
\(308\) 0 0
\(309\) 308.382i 0.998001i
\(310\) 0 0
\(311\) 221.719 0.712924 0.356462 0.934310i \(-0.383983\pi\)
0.356462 + 0.934310i \(0.383983\pi\)
\(312\) 0 0
\(313\) 204.070 + 204.070i 0.651980 + 0.651980i 0.953470 0.301489i \(-0.0974838\pi\)
−0.301489 + 0.953470i \(0.597484\pi\)
\(314\) 0 0
\(315\) −3.77459 + 67.3519i −0.0119828 + 0.213816i
\(316\) 0 0
\(317\) 131.794 + 131.794i 0.415753 + 0.415753i 0.883737 0.467984i \(-0.155019\pi\)
−0.467984 + 0.883737i \(0.655019\pi\)
\(318\) 0 0
\(319\) −17.4067 −0.0545666
\(320\) 0 0
\(321\) 118.341i 0.368665i
\(322\) 0 0
\(323\) −180.591 180.591i −0.559106 0.559106i
\(324\) 0 0
\(325\) −24.4400 2.22446i −0.0752000 0.00684449i
\(326\) 0 0
\(327\) −354.470 354.470i −1.08401 1.08401i
\(328\) 0 0
\(329\) −126.210 314.075i −0.383618 0.954634i
\(330\) 0 0
\(331\) 541.530i 1.63604i 0.575187 + 0.818022i \(0.304929\pi\)
−0.575187 + 0.818022i \(0.695071\pi\)
\(332\) 0 0
\(333\) 91.8632 91.8632i 0.275865 0.275865i
\(334\) 0 0
\(335\) −203.657 + 434.755i −0.607931 + 1.29778i
\(336\) 0 0
\(337\) −63.8693 63.8693i −0.189523 0.189523i 0.605967 0.795490i \(-0.292786\pi\)
−0.795490 + 0.605967i \(0.792786\pi\)
\(338\) 0 0
\(339\) 459.468i 1.35536i
\(340\) 0 0
\(341\) 390.609i 1.14548i
\(342\) 0 0
\(343\) 121.118 + 320.904i 0.353114 + 0.935580i
\(344\) 0 0
\(345\) 140.113 50.7195i 0.406125 0.147013i
\(346\) 0 0
\(347\) −481.326 + 481.326i −1.38711 + 1.38711i −0.555774 + 0.831333i \(0.687578\pi\)
−0.831333 + 0.555774i \(0.812422\pi\)
\(348\) 0 0
\(349\) −585.475 −1.67758 −0.838790 0.544456i \(-0.816736\pi\)
−0.838790 + 0.544456i \(0.816736\pi\)
\(350\) 0 0
\(351\) 22.9505i 0.0653860i
\(352\) 0 0
\(353\) −202.309 202.309i −0.573114 0.573114i 0.359883 0.932997i \(-0.382816\pi\)
−0.932997 + 0.359883i \(0.882816\pi\)
\(354\) 0 0
\(355\) −121.521 335.703i −0.342312 0.945642i
\(356\) 0 0
\(357\) −216.337 + 507.014i −0.605985 + 1.42021i
\(358\) 0 0
\(359\) 6.77828 0.0188810 0.00944051 0.999955i \(-0.496995\pi\)
0.00944051 + 0.999955i \(0.496995\pi\)
\(360\) 0 0
\(361\) 246.064 0.681619
\(362\) 0 0
\(363\) −44.9991 + 44.9991i −0.123964 + 0.123964i
\(364\) 0 0
\(365\) −65.4095 30.6404i −0.179204 0.0839464i
\(366\) 0 0
\(367\) −200.068 200.068i −0.545145 0.545145i 0.379887 0.925033i \(-0.375963\pi\)
−0.925033 + 0.379887i \(0.875963\pi\)
\(368\) 0 0
\(369\) 63.9173 0.173218
\(370\) 0 0
\(371\) 519.087 208.594i 1.39916 0.562248i
\(372\) 0 0
\(373\) 485.180 485.180i 1.30075 1.30075i 0.372864 0.927886i \(-0.378376\pi\)
0.927886 0.372864i \(-0.121624\pi\)
\(374\) 0 0
\(375\) 104.849 + 399.683i 0.279596 + 1.06582i
\(376\) 0 0
\(377\) 1.02024 1.02024i 0.00270620 0.00270620i
\(378\) 0 0
\(379\) 115.940 0.305909 0.152955 0.988233i \(-0.451121\pi\)
0.152955 + 0.988233i \(0.451121\pi\)
\(380\) 0 0
\(381\) 152.711i 0.400817i
\(382\) 0 0
\(383\) 51.3188 51.3188i 0.133992 0.133992i −0.636930 0.770922i \(-0.719796\pi\)
0.770922 + 0.636930i \(0.219796\pi\)
\(384\) 0 0
\(385\) 23.1932 413.848i 0.0602421 1.07493i
\(386\) 0 0
\(387\) 84.0668 84.0668i 0.217227 0.217227i
\(388\) 0 0
\(389\) 529.574i 1.36137i 0.732575 + 0.680686i \(0.238318\pi\)
−0.732575 + 0.680686i \(0.761682\pi\)
\(390\) 0 0
\(391\) 214.770 0.549284
\(392\) 0 0
\(393\) −62.6788 + 62.6788i −0.159488 + 0.159488i
\(394\) 0 0
\(395\) 287.932 104.228i 0.728942 0.263869i
\(396\) 0 0
\(397\) 82.3039 82.3039i 0.207314 0.207314i −0.595811 0.803125i \(-0.703169\pi\)
0.803125 + 0.595811i \(0.203169\pi\)
\(398\) 0 0
\(399\) 92.4993 + 230.185i 0.231828 + 0.576904i
\(400\) 0 0
\(401\) 407.733 1.01679 0.508396 0.861124i \(-0.330239\pi\)
0.508396 + 0.861124i \(0.330239\pi\)
\(402\) 0 0
\(403\) 22.8943 + 22.8943i 0.0568096 + 0.0568096i
\(404\) 0 0
\(405\) −444.905 + 161.051i −1.09853 + 0.397657i
\(406\) 0 0
\(407\) −564.459 + 564.459i −1.38688 + 1.38688i
\(408\) 0 0
\(409\) 663.869 1.62315 0.811576 0.584246i \(-0.198610\pi\)
0.811576 + 0.584246i \(0.198610\pi\)
\(410\) 0 0
\(411\) −711.608 −1.73141
\(412\) 0 0
\(413\) 61.5268 144.196i 0.148975 0.349143i
\(414\) 0 0
\(415\) 241.097 514.680i 0.580956 1.24019i
\(416\) 0 0
\(417\) 464.830 + 464.830i 1.11470 + 1.11470i
\(418\) 0 0
\(419\) 424.414i 1.01292i −0.862263 0.506460i \(-0.830954\pi\)
0.862263 0.506460i \(-0.169046\pi\)
\(420\) 0 0
\(421\) 358.075 0.850534 0.425267 0.905068i \(-0.360180\pi\)
0.425267 + 0.905068i \(0.360180\pi\)
\(422\) 0 0
\(423\) −65.9005 + 65.9005i −0.155793 + 0.155793i
\(424\) 0 0
\(425\) −53.9829 + 593.107i −0.127019 + 1.39554i
\(426\) 0 0
\(427\) 187.483 439.390i 0.439070 1.02902i
\(428\) 0 0
\(429\) 38.4294i 0.0895790i
\(430\) 0 0
\(431\) 265.535i 0.616091i −0.951372 0.308046i \(-0.900325\pi\)
0.951372 0.308046i \(-0.0996749\pi\)
\(432\) 0 0
\(433\) 450.253 + 450.253i 1.03984 + 1.03984i 0.999173 + 0.0406719i \(0.0129498\pi\)
0.0406719 + 0.999173i \(0.487050\pi\)
\(434\) 0 0
\(435\) −21.9994 10.3054i −0.0505734 0.0236906i
\(436\) 0 0
\(437\) 68.3443 68.3443i 0.156394 0.156394i
\(438\) 0 0
\(439\) 856.030i 1.94995i −0.222307 0.974977i \(-0.571359\pi\)
0.222307 0.974977i \(-0.428641\pi\)
\(440\) 0 0
\(441\) 68.1803 65.3489i 0.154604 0.148183i
\(442\) 0 0
\(443\) 469.402 + 469.402i 1.05960 + 1.05960i 0.998108 + 0.0614901i \(0.0195853\pi\)
0.0614901 + 0.998108i \(0.480415\pi\)
\(444\) 0 0
\(445\) −130.545 + 47.2560i −0.293360 + 0.106193i
\(446\) 0 0
\(447\) 502.918 + 502.918i 1.12510 + 1.12510i
\(448\) 0 0
\(449\) 327.406i 0.729190i 0.931166 + 0.364595i \(0.118793\pi\)
−0.931166 + 0.364595i \(0.881207\pi\)
\(450\) 0 0
\(451\) −392.744 −0.870829
\(452\) 0 0
\(453\) 100.953 + 100.953i 0.222854 + 0.222854i
\(454\) 0 0
\(455\) 22.8969 + 25.6157i 0.0503229 + 0.0562982i
\(456\) 0 0
\(457\) −326.389 326.389i −0.714200 0.714200i 0.253211 0.967411i \(-0.418513\pi\)
−0.967411 + 0.253211i \(0.918513\pi\)
\(458\) 0 0
\(459\) −556.959 −1.21342
\(460\) 0 0
\(461\) 509.128i 1.10440i −0.833712 0.552200i \(-0.813789\pi\)
0.833712 0.552200i \(-0.186211\pi\)
\(462\) 0 0
\(463\) 491.163 + 491.163i 1.06083 + 1.06083i 0.998026 + 0.0628005i \(0.0200032\pi\)
0.0628005 + 0.998026i \(0.479997\pi\)
\(464\) 0 0
\(465\) 231.255 493.671i 0.497323 1.06166i
\(466\) 0 0
\(467\) −531.454 531.454i −1.13802 1.13802i −0.988805 0.149212i \(-0.952326\pi\)
−0.149212 0.988805i \(-0.547674\pi\)
\(468\) 0 0
\(469\) 623.658 250.616i 1.32976 0.534362i
\(470\) 0 0
\(471\) 147.969i 0.314158i
\(472\) 0 0
\(473\) −516.553 + 516.553i −1.09208 + 1.09208i
\(474\) 0 0
\(475\) 171.560 + 205.917i 0.361179 + 0.433510i
\(476\) 0 0
\(477\) −108.917 108.917i −0.228338 0.228338i
\(478\) 0 0
\(479\) 116.226i 0.242643i −0.992613 0.121321i \(-0.961287\pi\)
0.992613 0.121321i \(-0.0387132\pi\)
\(480\) 0 0
\(481\) 66.1677i 0.137563i
\(482\) 0 0
\(483\) −191.878 81.8721i −0.397263 0.169507i
\(484\) 0 0
\(485\) −12.8616 + 27.4562i −0.0265188 + 0.0566108i
\(486\) 0 0
\(487\) −140.913 + 140.913i −0.289349 + 0.289349i −0.836823 0.547474i \(-0.815590\pi\)
0.547474 + 0.836823i \(0.315590\pi\)
\(488\) 0 0
\(489\) −54.0257 −0.110482
\(490\) 0 0
\(491\) 365.973i 0.745363i 0.927959 + 0.372682i \(0.121562\pi\)
−0.927959 + 0.372682i \(0.878438\pi\)
\(492\) 0 0
\(493\) −24.7590 24.7590i −0.0502211 0.0502211i
\(494\) 0 0
\(495\) −107.312 + 38.8458i −0.216792 + 0.0784763i
\(496\) 0 0
\(497\) −196.161 + 459.728i −0.394689 + 0.925006i
\(498\) 0 0
\(499\) −208.048 −0.416930 −0.208465 0.978030i \(-0.566847\pi\)
−0.208465 + 0.978030i \(0.566847\pi\)
\(500\) 0 0
\(501\) 321.822 0.642360
\(502\) 0 0
\(503\) −325.306 + 325.306i −0.646732 + 0.646732i −0.952202 0.305470i \(-0.901186\pi\)
0.305470 + 0.952202i \(0.401186\pi\)
\(504\) 0 0
\(505\) 168.445 + 465.332i 0.333555 + 0.921449i
\(506\) 0 0
\(507\) −392.777 392.777i −0.774708 0.774708i
\(508\) 0 0
\(509\) −58.0745 −0.114095 −0.0570476 0.998371i \(-0.518169\pi\)
−0.0570476 + 0.998371i \(0.518169\pi\)
\(510\) 0 0
\(511\) 37.7054 + 93.8300i 0.0737875 + 0.183620i
\(512\) 0 0
\(513\) −177.236 + 177.236i −0.345489 + 0.345489i
\(514\) 0 0
\(515\) 197.868 422.398i 0.384211 0.820191i
\(516\) 0 0
\(517\) 404.930 404.930i 0.783229 0.783229i
\(518\) 0 0
\(519\) 216.456 0.417064
\(520\) 0 0
\(521\) 479.844i 0.921006i 0.887658 + 0.460503i \(0.152331\pi\)
−0.887658 + 0.460503i \(0.847669\pi\)
\(522\) 0 0
\(523\) −159.477 + 159.477i −0.304927 + 0.304927i −0.842938 0.538011i \(-0.819176\pi\)
0.538011 + 0.842938i \(0.319176\pi\)
\(524\) 0 0
\(525\) 274.326 509.309i 0.522525 0.970113i
\(526\) 0 0
\(527\) 555.595 555.595i 1.05426 1.05426i
\(528\) 0 0
\(529\) 447.721i 0.846353i
\(530\) 0 0
\(531\) −43.1657 −0.0812913
\(532\) 0 0
\(533\) 23.0194 23.0194i 0.0431883 0.0431883i
\(534\) 0 0
\(535\) −75.9318 + 162.095i −0.141929 + 0.302981i
\(536\) 0 0
\(537\) 277.310 277.310i 0.516406 0.516406i
\(538\) 0 0
\(539\) −418.938 + 401.540i −0.777250 + 0.744972i
\(540\) 0 0
\(541\) −370.078 −0.684063 −0.342032 0.939688i \(-0.611115\pi\)
−0.342032 + 0.939688i \(0.611115\pi\)
\(542\) 0 0
\(543\) −818.123 818.123i −1.50667 1.50667i
\(544\) 0 0
\(545\) 258.086 + 712.965i 0.473552 + 1.30819i
\(546\) 0 0
\(547\) 514.878 514.878i 0.941276 0.941276i −0.0570931 0.998369i \(-0.518183\pi\)
0.998369 + 0.0570931i \(0.0181832\pi\)
\(548\) 0 0
\(549\) −131.533 −0.239587
\(550\) 0 0
\(551\) −15.7576 −0.0285982
\(552\) 0 0
\(553\) −394.308 168.247i −0.713035 0.304244i
\(554\) 0 0
\(555\) −1047.57 + 379.209i −1.88751 + 0.683260i
\(556\) 0 0
\(557\) 141.065 + 141.065i 0.253259 + 0.253259i 0.822305 0.569047i \(-0.192688\pi\)
−0.569047 + 0.822305i \(0.692688\pi\)
\(558\) 0 0
\(559\) 60.5521i 0.108322i
\(560\) 0 0
\(561\) −932.600 −1.66239
\(562\) 0 0
\(563\) 576.803 576.803i 1.02452 1.02452i 0.0248245 0.999692i \(-0.492097\pi\)
0.999692 0.0248245i \(-0.00790271\pi\)
\(564\) 0 0
\(565\) 294.810 629.344i 0.521788 1.11388i
\(566\) 0 0
\(567\) 609.275 + 259.971i 1.07456 + 0.458502i
\(568\) 0 0
\(569\) 371.899i 0.653601i −0.945093 0.326801i \(-0.894029\pi\)
0.945093 0.326801i \(-0.105971\pi\)
\(570\) 0 0
\(571\) 933.276i 1.63446i −0.576313 0.817229i \(-0.695509\pi\)
0.576313 0.817229i \(-0.304491\pi\)
\(572\) 0 0
\(573\) −553.763 553.763i −0.966427 0.966427i
\(574\) 0 0
\(575\) −224.460 20.4297i −0.390365 0.0355299i
\(576\) 0 0
\(577\) −249.709 + 249.709i −0.432772 + 0.432772i −0.889570 0.456798i \(-0.848996\pi\)
0.456798 + 0.889570i \(0.348996\pi\)
\(578\) 0 0
\(579\) 114.014i 0.196916i
\(580\) 0 0
\(581\) −738.309 + 296.688i −1.27076 + 0.510651i
\(582\) 0 0
\(583\) 669.248 + 669.248i 1.14794 + 1.14794i
\(584\) 0 0
\(585\) 4.01292 8.56655i 0.00685969 0.0146437i
\(586\) 0 0
\(587\) 281.508 + 281.508i 0.479571 + 0.479571i 0.904994 0.425423i \(-0.139875\pi\)
−0.425423 + 0.904994i \(0.639875\pi\)
\(588\) 0 0
\(589\) 353.603i 0.600345i
\(590\) 0 0
\(591\) 136.852 0.231559
\(592\) 0 0
\(593\) −164.513 164.513i −0.277425 0.277425i 0.554655 0.832080i \(-0.312850\pi\)
−0.832080 + 0.554655i \(0.812850\pi\)
\(594\) 0 0
\(595\) 621.638 555.659i 1.04477 0.933881i
\(596\) 0 0
\(597\) 89.5639 + 89.5639i 0.150023 + 0.150023i
\(598\) 0 0
\(599\) 1036.54 1.73045 0.865225 0.501384i \(-0.167176\pi\)
0.865225 + 0.501384i \(0.167176\pi\)
\(600\) 0 0
\(601\) 255.180i 0.424593i 0.977205 + 0.212296i \(0.0680942\pi\)
−0.977205 + 0.212296i \(0.931906\pi\)
\(602\) 0 0
\(603\) −130.859 130.859i −0.217013 0.217013i
\(604\) 0 0
\(605\) 90.5092 32.7634i 0.149602 0.0541543i
\(606\) 0 0
\(607\) 624.120 + 624.120i 1.02820 + 1.02820i 0.999591 + 0.0286133i \(0.00910915\pi\)
0.0286133 + 0.999591i \(0.490891\pi\)
\(608\) 0 0
\(609\) 12.6816 + 31.5583i 0.0208237 + 0.0518198i
\(610\) 0 0
\(611\) 47.4672i 0.0776877i
\(612\) 0 0
\(613\) 139.250 139.250i 0.227161 0.227161i −0.584345 0.811506i \(-0.698648\pi\)
0.811506 + 0.584345i \(0.198648\pi\)
\(614\) 0 0
\(615\) −496.368 232.519i −0.807103 0.378079i
\(616\) 0 0
\(617\) −404.370 404.370i −0.655381 0.655381i 0.298903 0.954284i \(-0.403379\pi\)
−0.954284 + 0.298903i \(0.903379\pi\)
\(618\) 0 0
\(619\) 107.575i 0.173789i 0.996218 + 0.0868943i \(0.0276942\pi\)
−0.996218 + 0.0868943i \(0.972306\pi\)
\(620\) 0 0
\(621\) 210.780i 0.339420i
\(622\) 0 0
\(623\) 178.775 + 76.2813i 0.286959 + 0.122442i
\(624\) 0 0
\(625\) 112.837 614.730i 0.180539 0.983568i
\(626\) 0 0
\(627\) −296.772 + 296.772i −0.473321 + 0.473321i
\(628\) 0 0
\(629\) −1605.75 −2.55286
\(630\) 0 0
\(631\) 952.010i 1.50873i 0.656454 + 0.754366i \(0.272056\pi\)
−0.656454 + 0.754366i \(0.727944\pi\)
\(632\) 0 0
\(633\) −654.887 654.887i −1.03458 1.03458i
\(634\) 0 0
\(635\) 97.9847 209.172i 0.154307 0.329405i
\(636\) 0 0
\(637\) 1.01972 48.0896i 0.00160082 0.0754939i
\(638\) 0 0
\(639\) 137.621 0.215370
\(640\) 0 0
\(641\) −650.367 −1.01461 −0.507307 0.861766i \(-0.669359\pi\)
−0.507307 + 0.861766i \(0.669359\pi\)
\(642\) 0 0
\(643\) 208.966 208.966i 0.324986 0.324986i −0.525690 0.850676i \(-0.676193\pi\)
0.850676 + 0.525690i \(0.176193\pi\)
\(644\) 0 0
\(645\) −958.663 + 347.026i −1.48630 + 0.538024i
\(646\) 0 0
\(647\) 367.425 + 367.425i 0.567891 + 0.567891i 0.931537 0.363646i \(-0.118468\pi\)
−0.363646 + 0.931537i \(0.618468\pi\)
\(648\) 0 0
\(649\) 265.234 0.408681
\(650\) 0 0
\(651\) −708.172 + 284.577i −1.08782 + 0.437139i
\(652\) 0 0
\(653\) −780.417 + 780.417i −1.19513 + 1.19513i −0.219517 + 0.975609i \(0.570448\pi\)
−0.975609 + 0.219517i \(0.929552\pi\)
\(654\) 0 0
\(655\) 126.069 45.6358i 0.192472 0.0696729i
\(656\) 0 0
\(657\) 19.6878 19.6878i 0.0299663 0.0299663i
\(658\) 0 0
\(659\) −1175.20 −1.78331 −0.891657 0.452711i \(-0.850457\pi\)
−0.891657 + 0.452711i \(0.850457\pi\)
\(660\) 0 0
\(661\) 371.534i 0.562079i 0.959696 + 0.281039i \(0.0906791\pi\)
−0.959696 + 0.281039i \(0.909321\pi\)
\(662\) 0 0
\(663\) 54.6612 54.6612i 0.0824453 0.0824453i
\(664\) 0 0
\(665\) 20.9959 374.640i 0.0315728 0.563369i
\(666\) 0 0
\(667\) 9.36998 9.36998i 0.0140479 0.0140479i
\(668\) 0 0
\(669\) 107.529i 0.160731i
\(670\) 0 0
\(671\) 808.214 1.20449
\(672\) 0 0
\(673\) 250.852 250.852i 0.372737 0.372737i −0.495736 0.868473i \(-0.665102\pi\)
0.868473 + 0.495736i \(0.165102\pi\)
\(674\) 0 0
\(675\) 582.087 + 52.9799i 0.862351 + 0.0784887i
\(676\) 0 0
\(677\) 190.191 190.191i 0.280931 0.280931i −0.552549 0.833480i \(-0.686345\pi\)
0.833480 + 0.552549i \(0.186345\pi\)
\(678\) 0 0
\(679\) 39.3861 15.8272i 0.0580060 0.0233096i
\(680\) 0 0
\(681\) −952.471 −1.39864
\(682\) 0 0
\(683\) 104.495 + 104.495i 0.152994 + 0.152994i 0.779454 0.626460i \(-0.215497\pi\)
−0.626460 + 0.779454i \(0.715497\pi\)
\(684\) 0 0
\(685\) 974.706 + 456.592i 1.42293 + 0.666557i
\(686\) 0 0
\(687\) 900.605 900.605i 1.31092 1.31092i
\(688\) 0 0
\(689\) −78.4514 −0.113863
\(690\) 0 0
\(691\) 892.593 1.29174 0.645871 0.763447i \(-0.276495\pi\)
0.645871 + 0.763447i \(0.276495\pi\)
\(692\) 0 0
\(693\) 146.958 + 62.7054i 0.212061 + 0.0904840i
\(694\) 0 0
\(695\) −338.438 934.938i −0.486961 1.34523i
\(696\) 0 0
\(697\) −558.631 558.631i −0.801479 0.801479i
\(698\) 0 0
\(699\) 547.659i 0.783489i
\(700\) 0 0
\(701\) 108.789 0.155191 0.0775954 0.996985i \(-0.475276\pi\)
0.0775954 + 0.996985i \(0.475276\pi\)
\(702\) 0 0
\(703\) −510.982 + 510.982i −0.726859 + 0.726859i
\(704\) 0 0
\(705\) 751.502 272.036i 1.06596 0.385866i
\(706\) 0 0
\(707\) 271.906 637.248i 0.384592 0.901341i
\(708\) 0 0
\(709\) 122.262i 0.172443i −0.996276 0.0862215i \(-0.972521\pi\)
0.996276 0.0862215i \(-0.0274793\pi\)
\(710\) 0 0
\(711\) 118.038i 0.166017i
\(712\) 0 0
\(713\) 210.264 + 210.264i 0.294900 + 0.294900i
\(714\) 0 0
\(715\) −24.6576 + 52.6377i −0.0344862 + 0.0736191i
\(716\) 0 0
\(717\) −207.003 + 207.003i −0.288707 + 0.288707i
\(718\) 0 0
\(719\) 416.163i 0.578808i −0.957207 0.289404i \(-0.906543\pi\)
0.957207 0.289404i \(-0.0934570\pi\)
\(720\) 0 0
\(721\) −605.932 + 243.492i −0.840404 + 0.337715i
\(722\) 0 0
\(723\) −383.234 383.234i −0.530060 0.530060i
\(724\) 0 0
\(725\) 23.5208 + 28.2312i 0.0324425 + 0.0389395i
\(726\) 0 0
\(727\) −63.6571 63.6571i −0.0875614 0.0875614i 0.661969 0.749531i \(-0.269721\pi\)
−0.749531 + 0.661969i \(0.769721\pi\)
\(728\) 0 0
\(729\) 513.179i 0.703949i
\(730\) 0 0
\(731\) −1469.47 −2.01022
\(732\) 0 0
\(733\) −152.595 152.595i −0.208179 0.208179i 0.595314 0.803493i \(-0.297028\pi\)
−0.803493 + 0.595314i \(0.797028\pi\)
\(734\) 0 0
\(735\) −767.200 + 259.459i −1.04381 + 0.353005i
\(736\) 0 0
\(737\) 804.069 + 804.069i 1.09100 + 1.09100i
\(738\) 0 0
\(739\) −109.841 −0.148634 −0.0743171 0.997235i \(-0.523678\pi\)
−0.0743171 + 0.997235i \(0.523678\pi\)
\(740\) 0 0
\(741\) 34.7886i 0.0469482i
\(742\) 0 0
\(743\) 46.8932 + 46.8932i 0.0631133 + 0.0631133i 0.737959 0.674846i \(-0.235790\pi\)
−0.674846 + 0.737959i \(0.735790\pi\)
\(744\) 0 0
\(745\) −366.170 1011.55i −0.491503 1.35778i
\(746\) 0 0
\(747\) 154.915 + 154.915i 0.207383 + 0.207383i
\(748\) 0 0
\(749\) 232.526 93.4400i 0.310448 0.124753i
\(750\) 0 0
\(751\) 280.895i 0.374028i −0.982357 0.187014i \(-0.940119\pi\)
0.982357 0.187014i \(-0.0598810\pi\)
\(752\) 0 0
\(753\) 700.464 700.464i 0.930232 0.930232i
\(754\) 0 0
\(755\) −73.5026 203.052i −0.0973545 0.268943i
\(756\) 0 0
\(757\) −131.961 131.961i −0.174321 0.174321i 0.614554 0.788875i \(-0.289336\pi\)
−0.788875 + 0.614554i \(0.789336\pi\)
\(758\) 0 0
\(759\) 352.940i 0.465007i
\(760\) 0 0
\(761\) 7.26565i 0.00954750i −0.999989 0.00477375i \(-0.998480\pi\)
0.999989 0.00477375i \(-0.00151954\pi\)
\(762\) 0 0
\(763\) 416.606 976.370i 0.546010 1.27965i
\(764\) 0 0
\(765\) −207.892 97.3849i −0.271754 0.127301i
\(766\) 0 0
\(767\) −15.5458 + 15.5458i −0.0202683 + 0.0202683i
\(768\) 0 0
\(769\) −234.551 −0.305008 −0.152504 0.988303i \(-0.548734\pi\)
−0.152504 + 0.988303i \(0.548734\pi\)
\(770\) 0 0
\(771\) 1237.74i 1.60537i
\(772\) 0 0
\(773\) 712.003 + 712.003i 0.921090 + 0.921090i 0.997107 0.0760161i \(-0.0242201\pi\)
−0.0760161 + 0.997107i \(0.524220\pi\)
\(774\) 0 0
\(775\) −633.511 + 527.811i −0.817434 + 0.681046i
\(776\) 0 0
\(777\) 1434.59 + 612.124i 1.84632 + 0.787805i
\(778\) 0 0
\(779\) −355.535 −0.456400
\(780\) 0 0
\(781\) −845.623 −1.08274
\(782\) 0 0
\(783\) −24.2990 + 24.2990i −0.0310332 + 0.0310332i
\(784\) 0 0
\(785\) 94.9416 202.676i 0.120945 0.258186i
\(786\) 0 0
\(787\) 325.898 + 325.898i 0.414101 + 0.414101i 0.883164 0.469063i \(-0.155408\pi\)
−0.469063 + 0.883164i \(0.655408\pi\)
\(788\) 0 0
\(789\) −1133.20 −1.43625
\(790\) 0 0
\(791\) −902.796 + 362.787i −1.14133 + 0.458643i
\(792\) 0 0
\(793\) −47.3708 + 47.3708i −0.0597362 + 0.0597362i
\(794\) 0 0
\(795\) 449.607 + 1242.05i 0.565544 + 1.56232i
\(796\) 0 0
\(797\) 892.503 892.503i 1.11983 1.11983i 0.128062 0.991766i \(-0.459124\pi\)
0.991766 0.128062i \(-0.0408756\pi\)
\(798\) 0 0
\(799\) 1151.93 1.44171
\(800\) 0 0
\(801\) 53.5171i 0.0668128i
\(802\) 0 0
\(803\) −120.973 + 120.973i −0.150651 + 0.150651i
\(804\) 0 0
\(805\) 210.288 + 235.258i 0.261227 + 0.292245i
\(806\) 0 0
\(807\) 514.095 514.095i 0.637045 0.637045i
\(808\) 0 0
\(809\) 742.458i 0.917747i −0.888502 0.458874i \(-0.848253\pi\)
0.888502 0.458874i \(-0.151747\pi\)
\(810\) 0 0
\(811\) −650.381 −0.801949 −0.400975 0.916089i \(-0.631328\pi\)
−0.400975 + 0.916089i \(0.631328\pi\)
\(812\) 0 0
\(813\) 46.5876 46.5876i 0.0573034 0.0573034i
\(814\) 0 0
\(815\) 74.0002 + 34.6647i 0.0907978 + 0.0425334i
\(816\) 0 0
\(817\) −467.615 + 467.615i −0.572356 + 0.572356i
\(818\) 0 0
\(819\) −12.2887 + 4.93820i −0.0150046 + 0.00602955i
\(820\) 0 0
\(821\) 103.472 0.126031 0.0630156 0.998013i \(-0.479928\pi\)
0.0630156 + 0.998013i \(0.479928\pi\)
\(822\) 0 0
\(823\) 493.880 + 493.880i 0.600097 + 0.600097i 0.940338 0.340241i \(-0.110509\pi\)
−0.340241 + 0.940338i \(0.610509\pi\)
\(824\) 0 0
\(825\) 974.675 + 88.7122i 1.18142 + 0.107530i
\(826\) 0 0
\(827\) −718.843 + 718.843i −0.869218 + 0.869218i −0.992386 0.123168i \(-0.960695\pi\)
0.123168 + 0.992386i \(0.460695\pi\)
\(828\) 0 0
\(829\) 1281.53 1.54588 0.772940 0.634479i \(-0.218785\pi\)
0.772940 + 0.634479i \(0.218785\pi\)
\(830\) 0 0
\(831\) −937.139 −1.12772
\(832\) 0 0
\(833\) −1167.03 24.7464i −1.40100 0.0297076i
\(834\) 0 0
\(835\) −440.808 206.492i −0.527913 0.247296i
\(836\) 0 0
\(837\) −545.272 545.272i −0.651460 0.651460i
\(838\) 0 0
\(839\) 1534.32i 1.82875i −0.404869 0.914375i \(-0.632683\pi\)
0.404869 0.914375i \(-0.367317\pi\)
\(840\) 0 0
\(841\) 838.840 0.997431
\(842\) 0 0
\(843\) 1068.10 1068.10i 1.26702 1.26702i
\(844\) 0 0
\(845\) 285.977 + 790.014i 0.338434 + 0.934928i
\(846\) 0 0
\(847\) −123.948 52.8871i −0.146337 0.0624405i
\(848\) 0 0
\(849\) 464.028i 0.546558i
\(850\) 0 0
\(851\) 607.692i 0.714092i
\(852\) 0 0
\(853\) −1079.81 1079.81i −1.26590 1.26590i −0.948188 0.317711i \(-0.897086\pi\)
−0.317711 0.948188i \(-0.602914\pi\)
\(854\) 0 0
\(855\) −97.1453 + 35.1656i −0.113620 + 0.0411293i
\(856\) 0 0
\(857\) 270.781 270.781i 0.315964 0.315964i −0.531251 0.847215i \(-0.678278\pi\)
0.847215 + 0.531251i \(0.178278\pi\)
\(858\) 0 0
\(859\) 419.003i 0.487781i −0.969803 0.243890i \(-0.921576\pi\)
0.969803 0.243890i \(-0.0784237\pi\)
\(860\) 0 0
\(861\) 286.132 + 712.041i 0.332326 + 0.826994i
\(862\) 0 0
\(863\) 155.617 + 155.617i 0.180321 + 0.180321i 0.791496 0.611175i \(-0.209303\pi\)
−0.611175 + 0.791496i \(0.709303\pi\)
\(864\) 0 0
\(865\) −296.485 138.885i −0.342757 0.160561i
\(866\) 0 0
\(867\) −650.988 650.988i −0.750851 0.750851i
\(868\) 0 0
\(869\) 725.290i 0.834626i
\(870\) 0 0
\(871\) −94.2556 −0.108215
\(872\) 0 0
\(873\) −8.26416 8.26416i −0.00946639 0.00946639i
\(874\) 0 0
\(875\) −702.540 + 521.596i −0.802903 + 0.596109i
\(876\) 0 0
\(877\) 466.187 + 466.187i 0.531570 + 0.531570i 0.921039 0.389470i \(-0.127342\pi\)
−0.389470 + 0.921039i \(0.627342\pi\)
\(878\) 0 0
\(879\) 1538.39 1.75015
\(880\) 0 0
\(881\) 351.663i 0.399163i 0.979881 + 0.199582i \(0.0639583\pi\)
−0.979881 + 0.199582i \(0.936042\pi\)
\(882\) 0 0
\(883\) −260.868 260.868i −0.295434 0.295434i 0.543788 0.839222i \(-0.316989\pi\)
−0.839222 + 0.543788i \(0.816989\pi\)
\(884\) 0 0
\(885\) 335.215 + 157.028i 0.378774 + 0.177433i
\(886\) 0 0
\(887\) 393.767 + 393.767i 0.443931 + 0.443931i 0.893331 0.449400i \(-0.148362\pi\)
−0.449400 + 0.893331i \(0.648362\pi\)
\(888\) 0 0
\(889\) −300.058 + 120.578i −0.337523 + 0.135633i
\(890\) 0 0
\(891\) 1120.70i 1.25780i
\(892\) 0 0
\(893\) 366.567 366.567i 0.410489 0.410489i
\(894\) 0 0
\(895\) −557.769 + 201.906i −0.623206 + 0.225594i
\(896\) 0 0
\(897\) 20.6864 + 20.6864i 0.0230618 + 0.0230618i
\(898\) 0 0
\(899\) 48.4789i 0.0539254i
\(900\) 0 0
\(901\) 1903.85i 2.11304i
\(902\) 0 0
\(903\) 1312.84 + 560.174i 1.45387 + 0.620347i
\(904\) 0 0
\(905\) 595.667 + 1645.54i 0.658195 + 1.81827i
\(906\) 0 0
\(907\) −877.122 + 877.122i −0.967059 + 0.967059i −0.999474 0.0324157i \(-0.989680\pi\)
0.0324157 + 0.999474i \(0.489680\pi\)
\(908\) 0 0
\(909\) −190.763 −0.209860
\(910\) 0 0
\(911\) 843.406i 0.925802i −0.886410 0.462901i \(-0.846809\pi\)
0.886410 0.462901i \(-0.153191\pi\)
\(912\) 0 0
\(913\) −951.886 951.886i −1.04259 1.04259i
\(914\) 0 0
\(915\) 1021.46 + 478.493i 1.11635 + 0.522943i
\(916\) 0 0
\(917\) −172.646 73.6659i −0.188272 0.0803336i
\(918\) 0 0
\(919\) −1279.77 −1.39257 −0.696285 0.717765i \(-0.745165\pi\)
−0.696285 + 0.717765i \(0.745165\pi\)
\(920\) 0 0
\(921\) 1505.72 1.63487
\(922\) 0 0
\(923\) 49.5634 49.5634i 0.0536981 0.0536981i
\(924\) 0 0
\(925\) 1678.19 + 152.744i 1.81426 + 0.165129i
\(926\) 0 0
\(927\) 127.139 + 127.139i 0.137151 + 0.137151i
\(928\) 0 0
\(929\) −1646.37 −1.77220 −0.886098 0.463498i \(-0.846594\pi\)
−0.886098 + 0.463498i \(0.846594\pi\)
\(930\) 0 0
\(931\) −379.248 + 363.498i −0.407356 + 0.390439i
\(932\) 0 0
\(933\) 518.258 518.258i 0.555475 0.555475i
\(934\) 0 0
\(935\) 1277.40 + 598.387i 1.36621 + 0.639986i
\(936\) 0 0
\(937\) 530.267 530.267i 0.565920 0.565920i −0.365063 0.930983i \(-0.618952\pi\)
0.930983 + 0.365063i \(0.118952\pi\)
\(938\) 0 0
\(939\) 954.007 1.01598
\(940\) 0 0
\(941\) 804.879i 0.855345i 0.903934 + 0.427672i \(0.140666\pi\)
−0.903934 + 0.427672i \(0.859334\pi\)
\(942\) 0 0
\(943\) 211.413 211.413i 0.224191 0.224191i
\(944\) 0 0
\(945\) −545.335 610.088i −0.577074 0.645596i
\(946\) 0 0
\(947\) 270.028 270.028i 0.285140 0.285140i −0.550015 0.835155i \(-0.685378\pi\)
0.835155 + 0.550015i \(0.185378\pi\)
\(948\) 0 0
\(949\) 14.1809i 0.0149430i
\(950\) 0 0
\(951\) 616.123 0.647869
\(952\) 0 0
\(953\) 1260.17 1260.17i 1.32232 1.32232i 0.410432 0.911891i \(-0.365378\pi\)
0.911891 0.410432i \(-0.134622\pi\)
\(954\) 0 0
\(955\) 403.189 + 1113.81i 0.422187 + 1.16630i
\(956\) 0 0
\(957\) −40.6874 + 40.6874i −0.0425156 + 0.0425156i
\(958\) 0 0
\(959\) −561.871 1398.22i −0.585893 1.45800i
\(960\) 0 0
\(961\) 126.874 0.132023
\(962\) 0 0
\(963\) −48.7896 48.7896i −0.0506641 0.0506641i
\(964\) 0 0
\(965\) 73.1553 156.168i 0.0758086 0.161832i
\(966\) 0 0
\(967\) −1164.77 + 1164.77i −1.20452 + 1.20452i −0.231739 + 0.972778i \(0.574441\pi\)
−0.972778 + 0.231739i \(0.925559\pi\)
\(968\) 0 0
\(969\) −844.246 −0.871255
\(970\) 0 0
\(971\) 120.566 0.124166 0.0620832 0.998071i \(-0.480226\pi\)
0.0620832 + 0.998071i \(0.480226\pi\)
\(972\) 0 0
\(973\) −546.311 + 1280.35i −0.561470 + 1.31588i
\(974\) 0 0
\(975\) −62.3269 + 51.9277i −0.0639250 + 0.0532592i
\(976\) 0 0
\(977\) −877.804 877.804i −0.898468 0.898468i 0.0968323 0.995301i \(-0.469129\pi\)
−0.995301 + 0.0968323i \(0.969129\pi\)
\(978\) 0 0
\(979\) 328.839i 0.335893i
\(980\) 0 0
\(981\) −292.280 −0.297941
\(982\) 0 0
\(983\) −551.042 + 551.042i −0.560572 + 0.560572i −0.929470 0.368898i \(-0.879735\pi\)
0.368898 + 0.929470i \(0.379735\pi\)
\(984\) 0 0
\(985\) −187.449 87.8086i −0.190303 0.0891457i
\(986\) 0 0
\(987\) −1029.14 439.124i −1.04270 0.444908i
\(988\) 0 0
\(989\) 556.117i 0.562303i
\(990\) 0 0
\(991\) 834.871i 0.842453i −0.906955 0.421227i \(-0.861600\pi\)
0.906955 0.421227i \(-0.138400\pi\)
\(992\) 0 0
\(993\) 1265.80 + 1265.80i 1.27472 + 1.27472i
\(994\) 0 0
\(995\) −65.2105 180.145i −0.0655382 0.181050i
\(996\) 0 0
\(997\) −554.709 + 554.709i −0.556378 + 0.556378i −0.928274 0.371896i \(-0.878708\pi\)
0.371896 + 0.928274i \(0.378708\pi\)
\(998\) 0 0
\(999\) 1575.91i 1.57749i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.3.v.b.447.23 yes 64
4.3 odd 2 inner 560.3.v.b.447.10 yes 64
5.3 odd 4 inner 560.3.v.b.223.24 yes 64
7.6 odd 2 inner 560.3.v.b.447.9 yes 64
20.3 even 4 inner 560.3.v.b.223.9 64
28.27 even 2 inner 560.3.v.b.447.24 yes 64
35.13 even 4 inner 560.3.v.b.223.10 yes 64
140.83 odd 4 inner 560.3.v.b.223.23 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.3.v.b.223.9 64 20.3 even 4 inner
560.3.v.b.223.10 yes 64 35.13 even 4 inner
560.3.v.b.223.23 yes 64 140.83 odd 4 inner
560.3.v.b.223.24 yes 64 5.3 odd 4 inner
560.3.v.b.447.9 yes 64 7.6 odd 2 inner
560.3.v.b.447.10 yes 64 4.3 odd 2 inner
560.3.v.b.447.23 yes 64 1.1 even 1 trivial
560.3.v.b.447.24 yes 64 28.27 even 2 inner