Properties

Label 560.3.v.b.447.22
Level $560$
Weight $3$
Character 560.447
Analytic conductor $15.259$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(223,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.223"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 447.22
Character \(\chi\) \(=\) 560.447
Dual form 560.3.v.b.223.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.09571 - 1.09571i) q^{3} +(-0.913268 + 4.91589i) q^{5} +(-0.925122 + 6.93860i) q^{7} +6.59885i q^{9} -4.54485i q^{11} +(-14.2356 - 14.2356i) q^{13} +(4.38570 + 6.38705i) q^{15} +(-13.7331 + 13.7331i) q^{17} +3.69805i q^{19} +(6.58901 + 8.61634i) q^{21} +(-25.9196 - 25.9196i) q^{23} +(-23.3319 - 8.97904i) q^{25} +(17.0918 + 17.0918i) q^{27} -42.9655i q^{29} -10.8529 q^{31} +(-4.97983 - 4.97983i) q^{33} +(-33.2645 - 10.8846i) q^{35} +(-36.7375 - 36.7375i) q^{37} -31.1960 q^{39} +30.7016i q^{41} +(47.4558 + 47.4558i) q^{43} +(-32.4392 - 6.02651i) q^{45} +(39.0656 + 39.0656i) q^{47} +(-47.2883 - 12.8381i) q^{49} +30.0949i q^{51} +(-17.0697 + 17.0697i) q^{53} +(22.3420 + 4.15067i) q^{55} +(4.05198 + 4.05198i) q^{57} +93.6633i q^{59} +51.6120i q^{61} +(-45.7868 - 6.10474i) q^{63} +(82.9812 - 56.9795i) q^{65} +(-54.9566 + 54.9566i) q^{67} -56.8005 q^{69} -50.1559i q^{71} +(1.87062 + 1.87062i) q^{73} +(-35.4033 + 15.7265i) q^{75} +(31.5349 + 4.20454i) q^{77} +103.203 q^{79} -21.9344 q^{81} +(51.9509 - 51.9509i) q^{83} +(-54.9682 - 80.0521i) q^{85} +(-47.0776 - 47.0776i) q^{87} -67.4648 q^{89} +(111.944 - 85.6052i) q^{91} +(-11.8917 + 11.8917i) q^{93} +(-18.1792 - 3.37731i) q^{95} +(-25.1837 + 25.1837i) q^{97} +29.9908 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 16 q^{21} - 72 q^{25} + 72 q^{37} + 272 q^{53} - 376 q^{57} - 88 q^{65} + 24 q^{77} - 432 q^{81} + 384 q^{85} + 840 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.09571 1.09571i 0.365236 0.365236i −0.500500 0.865736i \(-0.666851\pi\)
0.865736 + 0.500500i \(0.166851\pi\)
\(4\) 0 0
\(5\) −0.913268 + 4.91589i −0.182654 + 0.983177i
\(6\) 0 0
\(7\) −0.925122 + 6.93860i −0.132160 + 0.991228i
\(8\) 0 0
\(9\) 6.59885i 0.733205i
\(10\) 0 0
\(11\) 4.54485i 0.413169i −0.978429 0.206584i \(-0.933765\pi\)
0.978429 0.206584i \(-0.0662348\pi\)
\(12\) 0 0
\(13\) −14.2356 14.2356i −1.09504 1.09504i −0.994981 0.100061i \(-0.968096\pi\)
−0.100061 0.994981i \(-0.531904\pi\)
\(14\) 0 0
\(15\) 4.38570 + 6.38705i 0.292380 + 0.425803i
\(16\) 0 0
\(17\) −13.7331 + 13.7331i −0.807827 + 0.807827i −0.984305 0.176477i \(-0.943530\pi\)
0.176477 + 0.984305i \(0.443530\pi\)
\(18\) 0 0
\(19\) 3.69805i 0.194634i 0.995253 + 0.0973170i \(0.0310261\pi\)
−0.995253 + 0.0973170i \(0.968974\pi\)
\(20\) 0 0
\(21\) 6.58901 + 8.61634i 0.313763 + 0.410302i
\(22\) 0 0
\(23\) −25.9196 25.9196i −1.12694 1.12694i −0.990672 0.136265i \(-0.956490\pi\)
−0.136265 0.990672i \(-0.543510\pi\)
\(24\) 0 0
\(25\) −23.3319 8.97904i −0.933275 0.359162i
\(26\) 0 0
\(27\) 17.0918 + 17.0918i 0.633029 + 0.633029i
\(28\) 0 0
\(29\) 42.9655i 1.48157i −0.671743 0.740784i \(-0.734454\pi\)
0.671743 0.740784i \(-0.265546\pi\)
\(30\) 0 0
\(31\) −10.8529 −0.350095 −0.175047 0.984560i \(-0.556008\pi\)
−0.175047 + 0.984560i \(0.556008\pi\)
\(32\) 0 0
\(33\) −4.97983 4.97983i −0.150904 0.150904i
\(34\) 0 0
\(35\) −33.2645 10.8846i −0.950414 0.310988i
\(36\) 0 0
\(37\) −36.7375 36.7375i −0.992905 0.992905i 0.00707017 0.999975i \(-0.497749\pi\)
−0.999975 + 0.00707017i \(0.997749\pi\)
\(38\) 0 0
\(39\) −31.1960 −0.799898
\(40\) 0 0
\(41\) 30.7016i 0.748819i 0.927263 + 0.374410i \(0.122155\pi\)
−0.927263 + 0.374410i \(0.877845\pi\)
\(42\) 0 0
\(43\) 47.4558 + 47.4558i 1.10362 + 1.10362i 0.993970 + 0.109655i \(0.0349745\pi\)
0.109655 + 0.993970i \(0.465026\pi\)
\(44\) 0 0
\(45\) −32.4392 6.02651i −0.720871 0.133923i
\(46\) 0 0
\(47\) 39.0656 + 39.0656i 0.831183 + 0.831183i 0.987679 0.156496i \(-0.0500197\pi\)
−0.156496 + 0.987679i \(0.550020\pi\)
\(48\) 0 0
\(49\) −47.2883 12.8381i −0.965067 0.262002i
\(50\) 0 0
\(51\) 30.0949i 0.590095i
\(52\) 0 0
\(53\) −17.0697 + 17.0697i −0.322069 + 0.322069i −0.849561 0.527491i \(-0.823133\pi\)
0.527491 + 0.849561i \(0.323133\pi\)
\(54\) 0 0
\(55\) 22.3420 + 4.15067i 0.406218 + 0.0754667i
\(56\) 0 0
\(57\) 4.05198 + 4.05198i 0.0710874 + 0.0710874i
\(58\) 0 0
\(59\) 93.6633i 1.58751i 0.608235 + 0.793757i \(0.291878\pi\)
−0.608235 + 0.793757i \(0.708122\pi\)
\(60\) 0 0
\(61\) 51.6120i 0.846099i 0.906107 + 0.423049i \(0.139040\pi\)
−0.906107 + 0.423049i \(0.860960\pi\)
\(62\) 0 0
\(63\) −45.7868 6.10474i −0.726774 0.0969006i
\(64\) 0 0
\(65\) 82.9812 56.9795i 1.27663 0.876608i
\(66\) 0 0
\(67\) −54.9566 + 54.9566i −0.820247 + 0.820247i −0.986143 0.165896i \(-0.946948\pi\)
0.165896 + 0.986143i \(0.446948\pi\)
\(68\) 0 0
\(69\) −56.8005 −0.823196
\(70\) 0 0
\(71\) 50.1559i 0.706421i −0.935544 0.353211i \(-0.885090\pi\)
0.935544 0.353211i \(-0.114910\pi\)
\(72\) 0 0
\(73\) 1.87062 + 1.87062i 0.0256250 + 0.0256250i 0.719803 0.694178i \(-0.244232\pi\)
−0.694178 + 0.719803i \(0.744232\pi\)
\(74\) 0 0
\(75\) −35.4033 + 15.7265i −0.472045 + 0.209687i
\(76\) 0 0
\(77\) 31.5349 + 4.20454i 0.409544 + 0.0546045i
\(78\) 0 0
\(79\) 103.203 1.30637 0.653185 0.757198i \(-0.273432\pi\)
0.653185 + 0.757198i \(0.273432\pi\)
\(80\) 0 0
\(81\) −21.9344 −0.270795
\(82\) 0 0
\(83\) 51.9509 51.9509i 0.625915 0.625915i −0.321123 0.947038i \(-0.604060\pi\)
0.947038 + 0.321123i \(0.104060\pi\)
\(84\) 0 0
\(85\) −54.9682 80.0521i −0.646685 0.941790i
\(86\) 0 0
\(87\) −47.0776 47.0776i −0.541122 0.541122i
\(88\) 0 0
\(89\) −67.4648 −0.758031 −0.379016 0.925390i \(-0.623737\pi\)
−0.379016 + 0.925390i \(0.623737\pi\)
\(90\) 0 0
\(91\) 111.944 85.6052i 1.23016 0.940716i
\(92\) 0 0
\(93\) −11.8917 + 11.8917i −0.127867 + 0.127867i
\(94\) 0 0
\(95\) −18.1792 3.37731i −0.191360 0.0355506i
\(96\) 0 0
\(97\) −25.1837 + 25.1837i −0.259626 + 0.259626i −0.824902 0.565276i \(-0.808770\pi\)
0.565276 + 0.824902i \(0.308770\pi\)
\(98\) 0 0
\(99\) 29.9908 0.302937
\(100\) 0 0
\(101\) 49.5625i 0.490717i 0.969432 + 0.245359i \(0.0789057\pi\)
−0.969432 + 0.245359i \(0.921094\pi\)
\(102\) 0 0
\(103\) −143.158 + 143.158i −1.38988 + 1.38988i −0.564336 + 0.825545i \(0.690868\pi\)
−0.825545 + 0.564336i \(0.809132\pi\)
\(104\) 0 0
\(105\) −48.3745 + 24.5218i −0.460709 + 0.233541i
\(106\) 0 0
\(107\) −8.90840 + 8.90840i −0.0832561 + 0.0832561i −0.747508 0.664252i \(-0.768750\pi\)
0.664252 + 0.747508i \(0.268750\pi\)
\(108\) 0 0
\(109\) 157.196i 1.44217i 0.692847 + 0.721084i \(0.256356\pi\)
−0.692847 + 0.721084i \(0.743644\pi\)
\(110\) 0 0
\(111\) −80.5071 −0.725289
\(112\) 0 0
\(113\) −42.3161 + 42.3161i −0.374479 + 0.374479i −0.869105 0.494627i \(-0.835305\pi\)
0.494627 + 0.869105i \(0.335305\pi\)
\(114\) 0 0
\(115\) 151.089 103.746i 1.31382 0.902140i
\(116\) 0 0
\(117\) 93.9383 93.9383i 0.802891 0.802891i
\(118\) 0 0
\(119\) −82.5835 107.993i −0.693979 0.907504i
\(120\) 0 0
\(121\) 100.344 0.829292
\(122\) 0 0
\(123\) 33.6400 + 33.6400i 0.273496 + 0.273496i
\(124\) 0 0
\(125\) 65.4482 106.497i 0.523586 0.851973i
\(126\) 0 0
\(127\) −1.97227 + 1.97227i −0.0155297 + 0.0155297i −0.714829 0.699299i \(-0.753495\pi\)
0.699299 + 0.714829i \(0.253495\pi\)
\(128\) 0 0
\(129\) 103.996 0.806167
\(130\) 0 0
\(131\) 43.5183 0.332201 0.166101 0.986109i \(-0.446882\pi\)
0.166101 + 0.986109i \(0.446882\pi\)
\(132\) 0 0
\(133\) −25.6593 3.42114i −0.192927 0.0257229i
\(134\) 0 0
\(135\) −99.6306 + 68.4119i −0.738005 + 0.506755i
\(136\) 0 0
\(137\) −112.904 112.904i −0.824119 0.824119i 0.162577 0.986696i \(-0.448019\pi\)
−0.986696 + 0.162577i \(0.948019\pi\)
\(138\) 0 0
\(139\) 190.110i 1.36770i −0.729622 0.683851i \(-0.760304\pi\)
0.729622 0.683851i \(-0.239696\pi\)
\(140\) 0 0
\(141\) 85.6090 0.607156
\(142\) 0 0
\(143\) −64.6985 + 64.6985i −0.452437 + 0.452437i
\(144\) 0 0
\(145\) 211.213 + 39.2390i 1.45664 + 0.270614i
\(146\) 0 0
\(147\) −65.8810 + 37.7474i −0.448170 + 0.256785i
\(148\) 0 0
\(149\) 32.5745i 0.218621i 0.994008 + 0.109310i \(0.0348643\pi\)
−0.994008 + 0.109310i \(0.965136\pi\)
\(150\) 0 0
\(151\) 14.8749i 0.0985092i −0.998786 0.0492546i \(-0.984315\pi\)
0.998786 0.0492546i \(-0.0156846\pi\)
\(152\) 0 0
\(153\) −90.6224 90.6224i −0.592303 0.592303i
\(154\) 0 0
\(155\) 9.91164 53.3518i 0.0639461 0.344205i
\(156\) 0 0
\(157\) 62.4968 62.4968i 0.398069 0.398069i −0.479482 0.877551i \(-0.659176\pi\)
0.877551 + 0.479482i \(0.159176\pi\)
\(158\) 0 0
\(159\) 37.4068i 0.235263i
\(160\) 0 0
\(161\) 203.824 155.867i 1.26599 0.968116i
\(162\) 0 0
\(163\) −20.9465 20.9465i −0.128506 0.128506i 0.639928 0.768435i \(-0.278964\pi\)
−0.768435 + 0.639928i \(0.778964\pi\)
\(164\) 0 0
\(165\) 29.0282 19.9324i 0.175929 0.120802i
\(166\) 0 0
\(167\) −116.009 116.009i −0.694665 0.694665i 0.268589 0.963255i \(-0.413443\pi\)
−0.963255 + 0.268589i \(0.913443\pi\)
\(168\) 0 0
\(169\) 236.302i 1.39824i
\(170\) 0 0
\(171\) −24.4029 −0.142707
\(172\) 0 0
\(173\) 80.4110 + 80.4110i 0.464804 + 0.464804i 0.900226 0.435423i \(-0.143401\pi\)
−0.435423 + 0.900226i \(0.643401\pi\)
\(174\) 0 0
\(175\) 83.8868 153.584i 0.479353 0.877622i
\(176\) 0 0
\(177\) 102.628 + 102.628i 0.579817 + 0.579817i
\(178\) 0 0
\(179\) 278.980 1.55855 0.779275 0.626682i \(-0.215588\pi\)
0.779275 + 0.626682i \(0.215588\pi\)
\(180\) 0 0
\(181\) 184.138i 1.01734i 0.860962 + 0.508668i \(0.169862\pi\)
−0.860962 + 0.508668i \(0.830138\pi\)
\(182\) 0 0
\(183\) 56.5517 + 56.5517i 0.309026 + 0.309026i
\(184\) 0 0
\(185\) 214.148 147.046i 1.15756 0.794844i
\(186\) 0 0
\(187\) 62.4148 + 62.4148i 0.333769 + 0.333769i
\(188\) 0 0
\(189\) −134.405 + 102.781i −0.711138 + 0.543815i
\(190\) 0 0
\(191\) 344.531i 1.80383i −0.431917 0.901913i \(-0.642163\pi\)
0.431917 0.901913i \(-0.357837\pi\)
\(192\) 0 0
\(193\) −185.239 + 185.239i −0.959789 + 0.959789i −0.999222 0.0394328i \(-0.987445\pi\)
0.0394328 + 0.999222i \(0.487445\pi\)
\(194\) 0 0
\(195\) 28.4903 153.356i 0.146104 0.786442i
\(196\) 0 0
\(197\) 70.0929 + 70.0929i 0.355801 + 0.355801i 0.862263 0.506461i \(-0.169047\pi\)
−0.506461 + 0.862263i \(0.669047\pi\)
\(198\) 0 0
\(199\) 290.020i 1.45739i 0.684841 + 0.728693i \(0.259872\pi\)
−0.684841 + 0.728693i \(0.740128\pi\)
\(200\) 0 0
\(201\) 120.433i 0.599168i
\(202\) 0 0
\(203\) 298.120 + 39.7483i 1.46857 + 0.195804i
\(204\) 0 0
\(205\) −150.926 28.0388i −0.736222 0.136775i
\(206\) 0 0
\(207\) 171.039 171.039i 0.826276 0.826276i
\(208\) 0 0
\(209\) 16.8071 0.0804167
\(210\) 0 0
\(211\) 70.4202i 0.333745i 0.985978 + 0.166873i \(0.0533668\pi\)
−0.985978 + 0.166873i \(0.946633\pi\)
\(212\) 0 0
\(213\) −54.9562 54.9562i −0.258010 0.258010i
\(214\) 0 0
\(215\) −276.627 + 189.948i −1.28664 + 0.883478i
\(216\) 0 0
\(217\) 10.0403 75.3042i 0.0462686 0.347024i
\(218\) 0 0
\(219\) 4.09932 0.0187183
\(220\) 0 0
\(221\) 390.995 1.76921
\(222\) 0 0
\(223\) 107.981 107.981i 0.484219 0.484219i −0.422257 0.906476i \(-0.638762\pi\)
0.906476 + 0.422257i \(0.138762\pi\)
\(224\) 0 0
\(225\) 59.2513 153.964i 0.263339 0.684282i
\(226\) 0 0
\(227\) −132.415 132.415i −0.583326 0.583326i 0.352490 0.935816i \(-0.385335\pi\)
−0.935816 + 0.352490i \(0.885335\pi\)
\(228\) 0 0
\(229\) 394.112 1.72101 0.860507 0.509439i \(-0.170147\pi\)
0.860507 + 0.509439i \(0.170147\pi\)
\(230\) 0 0
\(231\) 39.1600 29.9461i 0.169524 0.129637i
\(232\) 0 0
\(233\) −224.060 + 224.060i −0.961629 + 0.961629i −0.999291 0.0376612i \(-0.988009\pi\)
0.0376612 + 0.999291i \(0.488009\pi\)
\(234\) 0 0
\(235\) −227.719 + 156.365i −0.969019 + 0.665382i
\(236\) 0 0
\(237\) 113.081 113.081i 0.477134 0.477134i
\(238\) 0 0
\(239\) −174.806 −0.731404 −0.365702 0.930732i \(-0.619171\pi\)
−0.365702 + 0.930732i \(0.619171\pi\)
\(240\) 0 0
\(241\) 219.930i 0.912571i 0.889833 + 0.456286i \(0.150820\pi\)
−0.889833 + 0.456286i \(0.849180\pi\)
\(242\) 0 0
\(243\) −177.860 + 177.860i −0.731933 + 0.731933i
\(244\) 0 0
\(245\) 106.298 220.739i 0.433867 0.900977i
\(246\) 0 0
\(247\) 52.6438 52.6438i 0.213133 0.213133i
\(248\) 0 0
\(249\) 113.846i 0.457213i
\(250\) 0 0
\(251\) 455.701 1.81554 0.907770 0.419468i \(-0.137784\pi\)
0.907770 + 0.419468i \(0.137784\pi\)
\(252\) 0 0
\(253\) −117.801 + 117.801i −0.465615 + 0.465615i
\(254\) 0 0
\(255\) −147.943 27.4847i −0.580168 0.107783i
\(256\) 0 0
\(257\) 108.826 108.826i 0.423449 0.423449i −0.462940 0.886389i \(-0.653206\pi\)
0.886389 + 0.462940i \(0.153206\pi\)
\(258\) 0 0
\(259\) 288.893 220.920i 1.11542 0.852973i
\(260\) 0 0
\(261\) 283.523 1.08629
\(262\) 0 0
\(263\) 76.9969 + 76.9969i 0.292764 + 0.292764i 0.838171 0.545407i \(-0.183625\pi\)
−0.545407 + 0.838171i \(0.683625\pi\)
\(264\) 0 0
\(265\) −68.3234 99.5018i −0.257824 0.375479i
\(266\) 0 0
\(267\) −73.9217 + 73.9217i −0.276860 + 0.276860i
\(268\) 0 0
\(269\) −279.111 −1.03759 −0.518795 0.854899i \(-0.673619\pi\)
−0.518795 + 0.854899i \(0.673619\pi\)
\(270\) 0 0
\(271\) −79.9263 −0.294931 −0.147466 0.989067i \(-0.547112\pi\)
−0.147466 + 0.989067i \(0.547112\pi\)
\(272\) 0 0
\(273\) 28.8601 216.457i 0.105715 0.792882i
\(274\) 0 0
\(275\) −40.8084 + 106.040i −0.148394 + 0.385600i
\(276\) 0 0
\(277\) −58.7715 58.7715i −0.212172 0.212172i 0.593018 0.805189i \(-0.297936\pi\)
−0.805189 + 0.593018i \(0.797936\pi\)
\(278\) 0 0
\(279\) 71.6169i 0.256691i
\(280\) 0 0
\(281\) 45.3999 0.161565 0.0807827 0.996732i \(-0.474258\pi\)
0.0807827 + 0.996732i \(0.474258\pi\)
\(282\) 0 0
\(283\) 59.0957 59.0957i 0.208819 0.208819i −0.594946 0.803765i \(-0.702827\pi\)
0.803765 + 0.594946i \(0.202827\pi\)
\(284\) 0 0
\(285\) −23.6196 + 16.2185i −0.0828759 + 0.0569071i
\(286\) 0 0
\(287\) −213.026 28.4027i −0.742251 0.0989641i
\(288\) 0 0
\(289\) 88.1940i 0.305170i
\(290\) 0 0
\(291\) 55.1880i 0.189650i
\(292\) 0 0
\(293\) −403.678 403.678i −1.37774 1.37774i −0.848426 0.529315i \(-0.822449\pi\)
−0.529315 0.848426i \(-0.677551\pi\)
\(294\) 0 0
\(295\) −460.438 85.5397i −1.56081 0.289965i
\(296\) 0 0
\(297\) 77.6797 77.6797i 0.261548 0.261548i
\(298\) 0 0
\(299\) 737.959i 2.46809i
\(300\) 0 0
\(301\) −373.180 + 285.375i −1.23980 + 0.948088i
\(302\) 0 0
\(303\) 54.3060 + 54.3060i 0.179228 + 0.179228i
\(304\) 0 0
\(305\) −253.719 47.1356i −0.831865 0.154543i
\(306\) 0 0
\(307\) −68.7863 68.7863i −0.224060 0.224060i 0.586146 0.810206i \(-0.300645\pi\)
−0.810206 + 0.586146i \(0.800645\pi\)
\(308\) 0 0
\(309\) 313.718i 1.01527i
\(310\) 0 0
\(311\) −24.2261 −0.0778973 −0.0389487 0.999241i \(-0.512401\pi\)
−0.0389487 + 0.999241i \(0.512401\pi\)
\(312\) 0 0
\(313\) 122.813 + 122.813i 0.392374 + 0.392374i 0.875533 0.483159i \(-0.160511\pi\)
−0.483159 + 0.875533i \(0.660511\pi\)
\(314\) 0 0
\(315\) 71.8258 219.507i 0.228018 0.696848i
\(316\) 0 0
\(317\) −192.472 192.472i −0.607166 0.607166i 0.335039 0.942204i \(-0.391251\pi\)
−0.942204 + 0.335039i \(0.891251\pi\)
\(318\) 0 0
\(319\) −195.272 −0.612137
\(320\) 0 0
\(321\) 19.5220i 0.0608163i
\(322\) 0 0
\(323\) −50.7855 50.7855i −0.157231 0.157231i
\(324\) 0 0
\(325\) 204.321 + 459.964i 0.628679 + 1.41527i
\(326\) 0 0
\(327\) 172.241 + 172.241i 0.526732 + 0.526732i
\(328\) 0 0
\(329\) −307.201 + 234.920i −0.933741 + 0.714043i
\(330\) 0 0
\(331\) 340.784i 1.02956i 0.857322 + 0.514780i \(0.172126\pi\)
−0.857322 + 0.514780i \(0.827874\pi\)
\(332\) 0 0
\(333\) 242.425 242.425i 0.728003 0.728003i
\(334\) 0 0
\(335\) −219.970 320.350i −0.656627 0.956269i
\(336\) 0 0
\(337\) −316.775 316.775i −0.939985 0.939985i 0.0583132 0.998298i \(-0.481428\pi\)
−0.998298 + 0.0583132i \(0.981428\pi\)
\(338\) 0 0
\(339\) 92.7321i 0.273546i
\(340\) 0 0
\(341\) 49.3250i 0.144648i
\(342\) 0 0
\(343\) 132.826 316.238i 0.387247 0.921976i
\(344\) 0 0
\(345\) 51.8741 279.225i 0.150360 0.809348i
\(346\) 0 0
\(347\) 140.058 140.058i 0.403624 0.403624i −0.475884 0.879508i \(-0.657872\pi\)
0.879508 + 0.475884i \(0.157872\pi\)
\(348\) 0 0
\(349\) −223.623 −0.640753 −0.320376 0.947290i \(-0.603809\pi\)
−0.320376 + 0.947290i \(0.603809\pi\)
\(350\) 0 0
\(351\) 486.622i 1.38639i
\(352\) 0 0
\(353\) −138.290 138.290i −0.391757 0.391757i 0.483556 0.875313i \(-0.339345\pi\)
−0.875313 + 0.483556i \(0.839345\pi\)
\(354\) 0 0
\(355\) 246.561 + 45.8058i 0.694537 + 0.129030i
\(356\) 0 0
\(357\) −208.816 27.8414i −0.584919 0.0779871i
\(358\) 0 0
\(359\) 15.5564 0.0433326 0.0216663 0.999765i \(-0.493103\pi\)
0.0216663 + 0.999765i \(0.493103\pi\)
\(360\) 0 0
\(361\) 347.324 0.962118
\(362\) 0 0
\(363\) 109.948 109.948i 0.302887 0.302887i
\(364\) 0 0
\(365\) −10.9042 + 7.48740i −0.0298744 + 0.0205134i
\(366\) 0 0
\(367\) 216.007 + 216.007i 0.588575 + 0.588575i 0.937245 0.348671i \(-0.113367\pi\)
−0.348671 + 0.937245i \(0.613367\pi\)
\(368\) 0 0
\(369\) −202.595 −0.549038
\(370\) 0 0
\(371\) −102.648 134.231i −0.276680 0.361809i
\(372\) 0 0
\(373\) −146.833 + 146.833i −0.393655 + 0.393655i −0.875988 0.482333i \(-0.839790\pi\)
0.482333 + 0.875988i \(0.339790\pi\)
\(374\) 0 0
\(375\) −44.9771 188.401i −0.119939 0.502404i
\(376\) 0 0
\(377\) −611.637 + 611.637i −1.62238 + 1.62238i
\(378\) 0 0
\(379\) 122.426 0.323024 0.161512 0.986871i \(-0.448363\pi\)
0.161512 + 0.986871i \(0.448363\pi\)
\(380\) 0 0
\(381\) 4.32207i 0.0113440i
\(382\) 0 0
\(383\) −456.717 + 456.717i −1.19247 + 1.19247i −0.216101 + 0.976371i \(0.569334\pi\)
−0.976371 + 0.216101i \(0.930666\pi\)
\(384\) 0 0
\(385\) −49.4689 + 151.182i −0.128491 + 0.392681i
\(386\) 0 0
\(387\) −313.154 + 313.154i −0.809183 + 0.809183i
\(388\) 0 0
\(389\) 30.6460i 0.0787815i −0.999224 0.0393907i \(-0.987458\pi\)
0.999224 0.0393907i \(-0.0125417\pi\)
\(390\) 0 0
\(391\) 711.910 1.82074
\(392\) 0 0
\(393\) 47.6834 47.6834i 0.121332 0.121332i
\(394\) 0 0
\(395\) −94.2522 + 507.336i −0.238613 + 1.28439i
\(396\) 0 0
\(397\) −304.980 + 304.980i −0.768212 + 0.768212i −0.977792 0.209580i \(-0.932790\pi\)
0.209580 + 0.977792i \(0.432790\pi\)
\(398\) 0 0
\(399\) −31.8636 + 24.3665i −0.0798588 + 0.0610689i
\(400\) 0 0
\(401\) 16.6464 0.0415123 0.0207561 0.999785i \(-0.493393\pi\)
0.0207561 + 0.999785i \(0.493393\pi\)
\(402\) 0 0
\(403\) 154.498 + 154.498i 0.383369 + 0.383369i
\(404\) 0 0
\(405\) 20.0320 107.827i 0.0494617 0.266240i
\(406\) 0 0
\(407\) −166.966 + 166.966i −0.410237 + 0.410237i
\(408\) 0 0
\(409\) −341.288 −0.834446 −0.417223 0.908804i \(-0.636997\pi\)
−0.417223 + 0.908804i \(0.636997\pi\)
\(410\) 0 0
\(411\) −247.420 −0.601996
\(412\) 0 0
\(413\) −649.892 86.6500i −1.57359 0.209806i
\(414\) 0 0
\(415\) 207.940 + 302.830i 0.501060 + 0.729711i
\(416\) 0 0
\(417\) −208.306 208.306i −0.499534 0.499534i
\(418\) 0 0
\(419\) 252.786i 0.603307i −0.953418 0.301653i \(-0.902461\pi\)
0.953418 0.301653i \(-0.0975385\pi\)
\(420\) 0 0
\(421\) 283.059 0.672349 0.336175 0.941800i \(-0.390867\pi\)
0.336175 + 0.941800i \(0.390867\pi\)
\(422\) 0 0
\(423\) −257.788 + 257.788i −0.609428 + 0.609428i
\(424\) 0 0
\(425\) 443.728 197.108i 1.04407 0.463785i
\(426\) 0 0
\(427\) −358.115 47.7474i −0.838677 0.111821i
\(428\) 0 0
\(429\) 141.781i 0.330493i
\(430\) 0 0
\(431\) 12.1303i 0.0281444i −0.999901 0.0140722i \(-0.995521\pi\)
0.999901 0.0140722i \(-0.00447948\pi\)
\(432\) 0 0
\(433\) 215.703 + 215.703i 0.498160 + 0.498160i 0.910865 0.412705i \(-0.135416\pi\)
−0.412705 + 0.910865i \(0.635416\pi\)
\(434\) 0 0
\(435\) 274.423 188.434i 0.630857 0.433181i
\(436\) 0 0
\(437\) 95.8518 95.8518i 0.219340 0.219340i
\(438\) 0 0
\(439\) 698.492i 1.59110i 0.605890 + 0.795548i \(0.292817\pi\)
−0.605890 + 0.795548i \(0.707183\pi\)
\(440\) 0 0
\(441\) 84.7166 312.048i 0.192101 0.707593i
\(442\) 0 0
\(443\) −244.732 244.732i −0.552443 0.552443i 0.374702 0.927145i \(-0.377745\pi\)
−0.927145 + 0.374702i \(0.877745\pi\)
\(444\) 0 0
\(445\) 61.6134 331.649i 0.138457 0.745279i
\(446\) 0 0
\(447\) 35.6922 + 35.6922i 0.0798482 + 0.0798482i
\(448\) 0 0
\(449\) 581.130i 1.29428i −0.762373 0.647138i \(-0.775966\pi\)
0.762373 0.647138i \(-0.224034\pi\)
\(450\) 0 0
\(451\) 139.534 0.309389
\(452\) 0 0
\(453\) −16.2985 16.2985i −0.0359791 0.0359791i
\(454\) 0 0
\(455\) 318.590 + 628.486i 0.700198 + 1.38129i
\(456\) 0 0
\(457\) 7.06448 + 7.06448i 0.0154584 + 0.0154584i 0.714794 0.699335i \(-0.246521\pi\)
−0.699335 + 0.714794i \(0.746521\pi\)
\(458\) 0 0
\(459\) −469.445 −1.02276
\(460\) 0 0
\(461\) 245.800i 0.533188i −0.963809 0.266594i \(-0.914102\pi\)
0.963809 0.266594i \(-0.0858983\pi\)
\(462\) 0 0
\(463\) 409.210 + 409.210i 0.883823 + 0.883823i 0.993921 0.110098i \(-0.0351165\pi\)
−0.110098 + 0.993921i \(0.535116\pi\)
\(464\) 0 0
\(465\) −47.5978 69.3183i −0.102361 0.149072i
\(466\) 0 0
\(467\) −150.989 150.989i −0.323316 0.323316i 0.526722 0.850038i \(-0.323421\pi\)
−0.850038 + 0.526722i \(0.823421\pi\)
\(468\) 0 0
\(469\) −330.480 432.163i −0.704648 0.921456i
\(470\) 0 0
\(471\) 136.957i 0.290778i
\(472\) 0 0
\(473\) 215.680 215.680i 0.455983 0.455983i
\(474\) 0 0
\(475\) 33.2049 86.2824i 0.0699051 0.181647i
\(476\) 0 0
\(477\) −112.640 112.640i −0.236143 0.236143i
\(478\) 0 0
\(479\) 718.590i 1.50019i −0.661332 0.750094i \(-0.730008\pi\)
0.661332 0.750094i \(-0.269992\pi\)
\(480\) 0 0
\(481\) 1045.96i 2.17455i
\(482\) 0 0
\(483\) 52.5474 394.116i 0.108794 0.815975i
\(484\) 0 0
\(485\) −100.801 146.800i −0.207837 0.302680i
\(486\) 0 0
\(487\) 24.7273 24.7273i 0.0507747 0.0507747i −0.681264 0.732038i \(-0.738569\pi\)
0.732038 + 0.681264i \(0.238569\pi\)
\(488\) 0 0
\(489\) −45.9026 −0.0938703
\(490\) 0 0
\(491\) 565.961i 1.15267i 0.817213 + 0.576336i \(0.195518\pi\)
−0.817213 + 0.576336i \(0.804482\pi\)
\(492\) 0 0
\(493\) 590.048 + 590.048i 1.19685 + 1.19685i
\(494\) 0 0
\(495\) −27.3896 + 147.431i −0.0553326 + 0.297841i
\(496\) 0 0
\(497\) 348.012 + 46.4003i 0.700225 + 0.0933608i
\(498\) 0 0
\(499\) 357.067 0.715566 0.357783 0.933805i \(-0.383533\pi\)
0.357783 + 0.933805i \(0.383533\pi\)
\(500\) 0 0
\(501\) −254.224 −0.507434
\(502\) 0 0
\(503\) −247.987 + 247.987i −0.493017 + 0.493017i −0.909255 0.416239i \(-0.863348\pi\)
0.416239 + 0.909255i \(0.363348\pi\)
\(504\) 0 0
\(505\) −243.643 45.2638i −0.482462 0.0896313i
\(506\) 0 0
\(507\) 258.918 + 258.918i 0.510686 + 0.510686i
\(508\) 0 0
\(509\) 778.236 1.52895 0.764475 0.644653i \(-0.222998\pi\)
0.764475 + 0.644653i \(0.222998\pi\)
\(510\) 0 0
\(511\) −14.7101 + 11.2490i −0.0287868 + 0.0220136i
\(512\) 0 0
\(513\) −63.2062 + 63.2062i −0.123209 + 0.123209i
\(514\) 0 0
\(515\) −573.006 834.489i −1.11263 1.62037i
\(516\) 0 0
\(517\) 177.547 177.547i 0.343419 0.343419i
\(518\) 0 0
\(519\) 176.214 0.339526
\(520\) 0 0
\(521\) 447.349i 0.858634i −0.903154 0.429317i \(-0.858754\pi\)
0.903154 0.429317i \(-0.141246\pi\)
\(522\) 0 0
\(523\) −201.809 + 201.809i −0.385868 + 0.385868i −0.873211 0.487343i \(-0.837966\pi\)
0.487343 + 0.873211i \(0.337966\pi\)
\(524\) 0 0
\(525\) −76.3677 260.199i −0.145462 0.495616i
\(526\) 0 0
\(527\) 149.044 149.044i 0.282816 0.282816i
\(528\) 0 0
\(529\) 814.647i 1.53998i
\(530\) 0 0
\(531\) −618.070 −1.16397
\(532\) 0 0
\(533\) 437.054 437.054i 0.819989 0.819989i
\(534\) 0 0
\(535\) −35.6569 51.9285i −0.0666485 0.0970625i
\(536\) 0 0
\(537\) 305.681 305.681i 0.569239 0.569239i
\(538\) 0 0
\(539\) −58.3473 + 214.918i −0.108251 + 0.398735i
\(540\) 0 0
\(541\) −903.984 −1.67095 −0.835475 0.549529i \(-0.814807\pi\)
−0.835475 + 0.549529i \(0.814807\pi\)
\(542\) 0 0
\(543\) 201.761 + 201.761i 0.371568 + 0.371568i
\(544\) 0 0
\(545\) −772.760 143.562i −1.41791 0.263417i
\(546\) 0 0
\(547\) 559.251 559.251i 1.02240 1.02240i 0.0226529 0.999743i \(-0.492789\pi\)
0.999743 0.0226529i \(-0.00721124\pi\)
\(548\) 0 0
\(549\) −340.580 −0.620364
\(550\) 0 0
\(551\) 158.888 0.288364
\(552\) 0 0
\(553\) −95.4756 + 716.086i −0.172650 + 1.29491i
\(554\) 0 0
\(555\) 73.5245 395.764i 0.132477 0.713088i
\(556\) 0 0
\(557\) 354.107 + 354.107i 0.635739 + 0.635739i 0.949502 0.313762i \(-0.101590\pi\)
−0.313762 + 0.949502i \(0.601590\pi\)
\(558\) 0 0
\(559\) 1351.12i 2.41703i
\(560\) 0 0
\(561\) 136.777 0.243809
\(562\) 0 0
\(563\) −69.7893 + 69.7893i −0.123960 + 0.123960i −0.766365 0.642405i \(-0.777937\pi\)
0.642405 + 0.766365i \(0.277937\pi\)
\(564\) 0 0
\(565\) −169.375 246.667i −0.299779 0.436579i
\(566\) 0 0
\(567\) 20.2920 152.194i 0.0357884 0.268420i
\(568\) 0 0
\(569\) 80.2029i 0.140954i −0.997513 0.0704771i \(-0.977548\pi\)
0.997513 0.0704771i \(-0.0224522\pi\)
\(570\) 0 0
\(571\) 173.604i 0.304035i 0.988378 + 0.152017i \(0.0485770\pi\)
−0.988378 + 0.152017i \(0.951423\pi\)
\(572\) 0 0
\(573\) −377.505 377.505i −0.658822 0.658822i
\(574\) 0 0
\(575\) 372.019 + 837.485i 0.646990 + 1.45650i
\(576\) 0 0
\(577\) 518.091 518.091i 0.897904 0.897904i −0.0973463 0.995251i \(-0.531035\pi\)
0.995251 + 0.0973463i \(0.0310354\pi\)
\(578\) 0 0
\(579\) 405.936i 0.701099i
\(580\) 0 0
\(581\) 312.406 + 408.528i 0.537704 + 0.703146i
\(582\) 0 0
\(583\) 77.5792 + 77.5792i 0.133069 + 0.133069i
\(584\) 0 0
\(585\) 375.999 + 547.581i 0.642733 + 0.936035i
\(586\) 0 0
\(587\) −145.339 145.339i −0.247596 0.247596i 0.572387 0.819983i \(-0.306017\pi\)
−0.819983 + 0.572387i \(0.806017\pi\)
\(588\) 0 0
\(589\) 40.1347i 0.0681404i
\(590\) 0 0
\(591\) 153.603 0.259903
\(592\) 0 0
\(593\) −58.2193 58.2193i −0.0981775 0.0981775i 0.656312 0.754490i \(-0.272115\pi\)
−0.754490 + 0.656312i \(0.772115\pi\)
\(594\) 0 0
\(595\) 606.302 307.344i 1.01899 0.516545i
\(596\) 0 0
\(597\) 317.777 + 317.777i 0.532290 + 0.532290i
\(598\) 0 0
\(599\) −625.366 −1.04402 −0.522008 0.852941i \(-0.674817\pi\)
−0.522008 + 0.852941i \(0.674817\pi\)
\(600\) 0 0
\(601\) 433.587i 0.721443i 0.932674 + 0.360721i \(0.117469\pi\)
−0.932674 + 0.360721i \(0.882531\pi\)
\(602\) 0 0
\(603\) −362.650 362.650i −0.601410 0.601410i
\(604\) 0 0
\(605\) −91.6412 + 493.281i −0.151473 + 0.815341i
\(606\) 0 0
\(607\) −138.847 138.847i −0.228744 0.228744i 0.583424 0.812168i \(-0.301713\pi\)
−0.812168 + 0.583424i \(0.801713\pi\)
\(608\) 0 0
\(609\) 370.205 283.100i 0.607890 0.464861i
\(610\) 0 0
\(611\) 1112.24i 1.82036i
\(612\) 0 0
\(613\) −185.617 + 185.617i −0.302800 + 0.302800i −0.842108 0.539308i \(-0.818686\pi\)
0.539308 + 0.842108i \(0.318686\pi\)
\(614\) 0 0
\(615\) −196.093 + 134.648i −0.318850 + 0.218940i
\(616\) 0 0
\(617\) 660.890 + 660.890i 1.07113 + 1.07113i 0.997268 + 0.0738659i \(0.0235337\pi\)
0.0738659 + 0.997268i \(0.476466\pi\)
\(618\) 0 0
\(619\) 192.450i 0.310905i 0.987843 + 0.155452i \(0.0496836\pi\)
−0.987843 + 0.155452i \(0.950316\pi\)
\(620\) 0 0
\(621\) 886.023i 1.42677i
\(622\) 0 0
\(623\) 62.4131 468.111i 0.100182 0.751382i
\(624\) 0 0
\(625\) 463.754 + 418.996i 0.742006 + 0.670393i
\(626\) 0 0
\(627\) 18.4157 18.4157i 0.0293711 0.0293711i
\(628\) 0 0
\(629\) 1009.04 1.60419
\(630\) 0 0
\(631\) 165.195i 0.261799i 0.991396 + 0.130899i \(0.0417865\pi\)
−0.991396 + 0.130899i \(0.958213\pi\)
\(632\) 0 0
\(633\) 77.1600 + 77.1600i 0.121896 + 0.121896i
\(634\) 0 0
\(635\) −7.89426 11.4967i −0.0124319 0.0181050i
\(636\) 0 0
\(637\) 490.418 + 855.933i 0.769887 + 1.34369i
\(638\) 0 0
\(639\) 330.971 0.517952
\(640\) 0 0
\(641\) 29.4047 0.0458731 0.0229366 0.999737i \(-0.492698\pi\)
0.0229366 + 0.999737i \(0.492698\pi\)
\(642\) 0 0
\(643\) 293.272 293.272i 0.456100 0.456100i −0.441273 0.897373i \(-0.645473\pi\)
0.897373 + 0.441273i \(0.145473\pi\)
\(644\) 0 0
\(645\) −94.9757 + 511.230i −0.147249 + 0.792605i
\(646\) 0 0
\(647\) 204.997 + 204.997i 0.316842 + 0.316842i 0.847553 0.530711i \(-0.178075\pi\)
−0.530711 + 0.847553i \(0.678075\pi\)
\(648\) 0 0
\(649\) 425.686 0.655911
\(650\) 0 0
\(651\) −71.5102 93.5126i −0.109847 0.143645i
\(652\) 0 0
\(653\) 381.175 381.175i 0.583728 0.583728i −0.352197 0.935926i \(-0.614565\pi\)
0.935926 + 0.352197i \(0.114565\pi\)
\(654\) 0 0
\(655\) −39.7439 + 213.931i −0.0606777 + 0.326613i
\(656\) 0 0
\(657\) −12.3440 + 12.3440i −0.0187884 + 0.0187884i
\(658\) 0 0
\(659\) 447.923 0.679700 0.339850 0.940480i \(-0.389624\pi\)
0.339850 + 0.940480i \(0.389624\pi\)
\(660\) 0 0
\(661\) 600.074i 0.907828i −0.891045 0.453914i \(-0.850027\pi\)
0.891045 0.453914i \(-0.149973\pi\)
\(662\) 0 0
\(663\) 428.417 428.417i 0.646179 0.646179i
\(664\) 0 0
\(665\) 40.2517 123.014i 0.0605289 0.184983i
\(666\) 0 0
\(667\) −1113.65 + 1113.65i −1.66963 + 1.66963i
\(668\) 0 0
\(669\) 236.631i 0.353709i
\(670\) 0 0
\(671\) 234.569 0.349581
\(672\) 0 0
\(673\) −355.777 + 355.777i −0.528643 + 0.528643i −0.920168 0.391525i \(-0.871948\pi\)
0.391525 + 0.920168i \(0.371948\pi\)
\(674\) 0 0
\(675\) −245.316 552.251i −0.363431 0.818150i
\(676\) 0 0
\(677\) 32.1048 32.1048i 0.0474221 0.0474221i −0.682998 0.730420i \(-0.739324\pi\)
0.730420 + 0.682998i \(0.239324\pi\)
\(678\) 0 0
\(679\) −151.442 198.038i −0.223037 0.291661i
\(680\) 0 0
\(681\) −290.176 −0.426103
\(682\) 0 0
\(683\) −222.741 222.741i −0.326122 0.326122i 0.524988 0.851110i \(-0.324070\pi\)
−0.851110 + 0.524988i \(0.824070\pi\)
\(684\) 0 0
\(685\) 658.136 451.913i 0.960783 0.659726i
\(686\) 0 0
\(687\) 431.832 431.832i 0.628576 0.628576i
\(688\) 0 0
\(689\) 485.993 0.705360
\(690\) 0 0
\(691\) −945.754 −1.36867 −0.684337 0.729166i \(-0.739908\pi\)
−0.684337 + 0.729166i \(0.739908\pi\)
\(692\) 0 0
\(693\) −27.7451 + 208.094i −0.0400363 + 0.300280i
\(694\) 0 0
\(695\) 934.561 + 173.622i 1.34469 + 0.249815i
\(696\) 0 0
\(697\) −421.627 421.627i −0.604917 0.604917i
\(698\) 0 0
\(699\) 491.008i 0.702443i
\(700\) 0 0
\(701\) 232.770 0.332054 0.166027 0.986121i \(-0.446906\pi\)
0.166027 + 0.986121i \(0.446906\pi\)
\(702\) 0 0
\(703\) 135.857 135.857i 0.193253 0.193253i
\(704\) 0 0
\(705\) −78.1839 + 420.844i −0.110899 + 0.596942i
\(706\) 0 0
\(707\) −343.894 45.8513i −0.486413 0.0648533i
\(708\) 0 0
\(709\) 499.525i 0.704549i 0.935897 + 0.352274i \(0.114592\pi\)
−0.935897 + 0.352274i \(0.885408\pi\)
\(710\) 0 0
\(711\) 681.023i 0.957838i
\(712\) 0 0
\(713\) 281.303 + 281.303i 0.394535 + 0.394535i
\(714\) 0 0
\(715\) −258.963 377.138i −0.362187 0.527465i
\(716\) 0 0
\(717\) −191.536 + 191.536i −0.267135 + 0.267135i
\(718\) 0 0
\(719\) 1290.46i 1.79480i −0.441222 0.897398i \(-0.645455\pi\)
0.441222 0.897398i \(-0.354545\pi\)
\(720\) 0 0
\(721\) −860.876 1125.75i −1.19400 1.56138i
\(722\) 0 0
\(723\) 240.979 + 240.979i 0.333304 + 0.333304i
\(724\) 0 0
\(725\) −385.789 + 1002.47i −0.532123 + 1.38271i
\(726\) 0 0
\(727\) 863.661 + 863.661i 1.18798 + 1.18798i 0.977625 + 0.210355i \(0.0674619\pi\)
0.210355 + 0.977625i \(0.432538\pi\)
\(728\) 0 0
\(729\) 192.355i 0.263861i
\(730\) 0 0
\(731\) −1303.43 −1.78308
\(732\) 0 0
\(733\) 526.267 + 526.267i 0.717963 + 0.717963i 0.968188 0.250225i \(-0.0805045\pi\)
−0.250225 + 0.968188i \(0.580504\pi\)
\(734\) 0 0
\(735\) −125.395 358.337i −0.170605 0.487533i
\(736\) 0 0
\(737\) 249.770 + 249.770i 0.338900 + 0.338900i
\(738\) 0 0
\(739\) 1016.79 1.37590 0.687952 0.725756i \(-0.258510\pi\)
0.687952 + 0.725756i \(0.258510\pi\)
\(740\) 0 0
\(741\) 115.364i 0.155687i
\(742\) 0 0
\(743\) −365.633 365.633i −0.492104 0.492104i 0.416865 0.908969i \(-0.363129\pi\)
−0.908969 + 0.416865i \(0.863129\pi\)
\(744\) 0 0
\(745\) −160.133 29.7493i −0.214943 0.0399319i
\(746\) 0 0
\(747\) 342.816 + 342.816i 0.458924 + 0.458924i
\(748\) 0 0
\(749\) −53.5705 70.0532i −0.0715227 0.0935290i
\(750\) 0 0
\(751\) 413.171i 0.550161i 0.961421 + 0.275081i \(0.0887046\pi\)
−0.961421 + 0.275081i \(0.911295\pi\)
\(752\) 0 0
\(753\) 499.315 499.315i 0.663101 0.663101i
\(754\) 0 0
\(755\) 73.1233 + 13.5848i 0.0968521 + 0.0179931i
\(756\) 0 0
\(757\) −979.929 979.929i −1.29449 1.29449i −0.931980 0.362511i \(-0.881920\pi\)
−0.362511 0.931980i \(-0.618080\pi\)
\(758\) 0 0
\(759\) 258.150i 0.340119i
\(760\) 0 0
\(761\) 355.292i 0.466876i −0.972372 0.233438i \(-0.925002\pi\)
0.972372 0.233438i \(-0.0749975\pi\)
\(762\) 0 0
\(763\) −1090.72 145.426i −1.42952 0.190597i
\(764\) 0 0
\(765\) 528.252 362.727i 0.690525 0.474153i
\(766\) 0 0
\(767\) 1333.35 1333.35i 1.73840 1.73840i
\(768\) 0 0
\(769\) −22.1176 −0.0287615 −0.0143807 0.999897i \(-0.504578\pi\)
−0.0143807 + 0.999897i \(0.504578\pi\)
\(770\) 0 0
\(771\) 238.484i 0.309318i
\(772\) 0 0
\(773\) 36.3262 + 36.3262i 0.0469938 + 0.0469938i 0.730213 0.683219i \(-0.239421\pi\)
−0.683219 + 0.730213i \(0.739421\pi\)
\(774\) 0 0
\(775\) 253.220 + 97.4490i 0.326735 + 0.125741i
\(776\) 0 0
\(777\) 74.4789 558.606i 0.0958544 0.718927i
\(778\) 0 0
\(779\) −113.536 −0.145746
\(780\) 0 0
\(781\) −227.951 −0.291871
\(782\) 0 0
\(783\) 734.357 734.357i 0.937876 0.937876i
\(784\) 0 0
\(785\) 250.151 + 364.304i 0.318664 + 0.464081i
\(786\) 0 0
\(787\) −534.112 534.112i −0.678668 0.678668i 0.281031 0.959699i \(-0.409324\pi\)
−0.959699 + 0.281031i \(0.909324\pi\)
\(788\) 0 0
\(789\) 168.732 0.213856
\(790\) 0 0
\(791\) −254.467 332.762i −0.321703 0.420685i
\(792\) 0 0
\(793\) 734.726 734.726i 0.926514 0.926514i
\(794\) 0 0
\(795\) −183.887 34.1624i −0.231305 0.0429716i
\(796\) 0 0
\(797\) 410.638 410.638i 0.515229 0.515229i −0.400895 0.916124i \(-0.631301\pi\)
0.916124 + 0.400895i \(0.131301\pi\)
\(798\) 0 0
\(799\) −1072.98 −1.34290
\(800\) 0 0
\(801\) 445.190i 0.555792i
\(802\) 0 0
\(803\) 8.50171 8.50171i 0.0105874 0.0105874i
\(804\) 0 0
\(805\) 580.077 + 1144.32i 0.720592 + 1.42152i
\(806\) 0 0
\(807\) −305.825 + 305.825i −0.378965 + 0.378965i
\(808\) 0 0
\(809\) 841.822i 1.04057i −0.853992 0.520286i \(-0.825825\pi\)
0.853992 0.520286i \(-0.174175\pi\)
\(810\) 0 0
\(811\) −907.084 −1.11848 −0.559238 0.829007i \(-0.688906\pi\)
−0.559238 + 0.829007i \(0.688906\pi\)
\(812\) 0 0
\(813\) −87.5759 + 87.5759i −0.107719 + 0.107719i
\(814\) 0 0
\(815\) 122.101 83.8410i 0.149817 0.102872i
\(816\) 0 0
\(817\) −175.494 + 175.494i −0.214803 + 0.214803i
\(818\) 0 0
\(819\) 564.896 + 738.704i 0.689738 + 0.901959i
\(820\) 0 0
\(821\) −241.482 −0.294131 −0.147066 0.989127i \(-0.546983\pi\)
−0.147066 + 0.989127i \(0.546983\pi\)
\(822\) 0 0
\(823\) 811.704 + 811.704i 0.986274 + 0.986274i 0.999907 0.0136330i \(-0.00433966\pi\)
−0.0136330 + 0.999907i \(0.504340\pi\)
\(824\) 0 0
\(825\) 71.4748 + 160.903i 0.0866361 + 0.195034i
\(826\) 0 0
\(827\) −383.505 + 383.505i −0.463731 + 0.463731i −0.899876 0.436145i \(-0.856343\pi\)
0.436145 + 0.899876i \(0.356343\pi\)
\(828\) 0 0
\(829\) 383.372 0.462452 0.231226 0.972900i \(-0.425726\pi\)
0.231226 + 0.972900i \(0.425726\pi\)
\(830\) 0 0
\(831\) −128.793 −0.154985
\(832\) 0 0
\(833\) 825.720 473.107i 0.991260 0.567955i
\(834\) 0 0
\(835\) 676.235 464.340i 0.809862 0.556096i
\(836\) 0 0
\(837\) −185.496 185.496i −0.221620 0.221620i
\(838\) 0 0
\(839\) 212.492i 0.253268i 0.991949 + 0.126634i \(0.0404174\pi\)
−0.991949 + 0.126634i \(0.959583\pi\)
\(840\) 0 0
\(841\) −1005.03 −1.19505
\(842\) 0 0
\(843\) 49.7450 49.7450i 0.0590095 0.0590095i
\(844\) 0 0
\(845\) −1161.63 215.807i −1.37471 0.255393i
\(846\) 0 0
\(847\) −92.8307 + 696.249i −0.109599 + 0.822018i
\(848\) 0 0
\(849\) 129.503i 0.152536i
\(850\) 0 0
\(851\) 1904.44i 2.23788i
\(852\) 0 0
\(853\) −55.2759 55.2759i −0.0648018 0.0648018i 0.673963 0.738765i \(-0.264591\pi\)
−0.738765 + 0.673963i \(0.764591\pi\)
\(854\) 0 0
\(855\) 22.2863 119.962i 0.0260659 0.140306i
\(856\) 0 0
\(857\) −145.511 + 145.511i −0.169791 + 0.169791i −0.786887 0.617097i \(-0.788309\pi\)
0.617097 + 0.786887i \(0.288309\pi\)
\(858\) 0 0
\(859\) 603.378i 0.702419i −0.936297 0.351209i \(-0.885771\pi\)
0.936297 0.351209i \(-0.114229\pi\)
\(860\) 0 0
\(861\) −264.535 + 202.293i −0.307242 + 0.234952i
\(862\) 0 0
\(863\) −418.474 418.474i −0.484906 0.484906i 0.421789 0.906694i \(-0.361402\pi\)
−0.906694 + 0.421789i \(0.861402\pi\)
\(864\) 0 0
\(865\) −468.728 + 321.855i −0.541882 + 0.372086i
\(866\) 0 0
\(867\) −96.6349 96.6349i −0.111459 0.111459i
\(868\) 0 0
\(869\) 469.044i 0.539751i
\(870\) 0 0
\(871\) 1564.67 1.79641
\(872\) 0 0
\(873\) −166.184 166.184i −0.190359 0.190359i
\(874\) 0 0
\(875\) 678.390 + 552.641i 0.775303 + 0.631590i
\(876\) 0 0
\(877\) 1090.80 + 1090.80i 1.24378 + 1.24378i 0.958419 + 0.285366i \(0.0921153\pi\)
0.285366 + 0.958419i \(0.407885\pi\)
\(878\) 0 0
\(879\) −884.626 −1.00640
\(880\) 0 0
\(881\) 418.536i 0.475069i 0.971379 + 0.237534i \(0.0763393\pi\)
−0.971379 + 0.237534i \(0.923661\pi\)
\(882\) 0 0
\(883\) −323.810 323.810i −0.366716 0.366716i 0.499562 0.866278i \(-0.333494\pi\)
−0.866278 + 0.499562i \(0.833494\pi\)
\(884\) 0 0
\(885\) −598.233 + 410.779i −0.675969 + 0.464158i
\(886\) 0 0
\(887\) 956.213 + 956.213i 1.07803 + 1.07803i 0.996686 + 0.0813440i \(0.0259212\pi\)
0.0813440 + 0.996686i \(0.474079\pi\)
\(888\) 0 0
\(889\) −11.8602 15.5094i −0.0133411 0.0174459i
\(890\) 0 0
\(891\) 99.6887i 0.111884i
\(892\) 0 0
\(893\) −144.466 + 144.466i −0.161777 + 0.161777i
\(894\) 0 0
\(895\) −254.784 + 1371.44i −0.284675 + 1.53233i
\(896\) 0 0
\(897\) 808.587 + 808.587i 0.901435 + 0.901435i
\(898\) 0 0
\(899\) 466.302i 0.518689i
\(900\) 0 0
\(901\) 468.838i 0.520353i
\(902\) 0 0
\(903\) −96.2085 + 721.583i −0.106543 + 0.799095i
\(904\) 0 0
\(905\) −905.201 168.167i −1.00022 0.185820i
\(906\) 0 0
\(907\) 1079.01 1079.01i 1.18965 1.18965i 0.212484 0.977165i \(-0.431845\pi\)
0.977165 0.212484i \(-0.0681552\pi\)
\(908\) 0 0
\(909\) −327.055 −0.359797
\(910\) 0 0
\(911\) 1165.66i 1.27954i 0.768566 + 0.639771i \(0.220971\pi\)
−0.768566 + 0.639771i \(0.779029\pi\)
\(912\) 0 0
\(913\) −236.109 236.109i −0.258608 0.258608i
\(914\) 0 0
\(915\) −329.649 + 226.355i −0.360272 + 0.247382i
\(916\) 0 0
\(917\) −40.2598 + 301.956i −0.0439038 + 0.329287i
\(918\) 0 0
\(919\) −1616.18 −1.75863 −0.879317 0.476237i \(-0.842000\pi\)
−0.879317 + 0.476237i \(0.842000\pi\)
\(920\) 0 0
\(921\) −150.739 −0.163669
\(922\) 0 0
\(923\) −713.997 + 713.997i −0.773561 + 0.773561i
\(924\) 0 0
\(925\) 527.287 + 1187.02i 0.570040 + 1.28327i
\(926\) 0 0
\(927\) −944.676 944.676i −1.01907 1.01907i
\(928\) 0 0
\(929\) −1056.13 −1.13685 −0.568425 0.822735i \(-0.692447\pi\)
−0.568425 + 0.822735i \(0.692447\pi\)
\(930\) 0 0
\(931\) 47.4759 174.874i 0.0509945 0.187835i
\(932\) 0 0
\(933\) −26.5447 + 26.5447i −0.0284509 + 0.0284509i
\(934\) 0 0
\(935\) −363.825 + 249.823i −0.389118 + 0.267190i
\(936\) 0 0
\(937\) −1214.60 + 1214.60i −1.29626 + 1.29626i −0.365420 + 0.930843i \(0.619075\pi\)
−0.930843 + 0.365420i \(0.880925\pi\)
\(938\) 0 0
\(939\) 269.134 0.286618
\(940\) 0 0
\(941\) 1456.10i 1.54740i 0.633555 + 0.773698i \(0.281595\pi\)
−0.633555 + 0.773698i \(0.718405\pi\)
\(942\) 0 0
\(943\) 795.772 795.772i 0.843873 0.843873i
\(944\) 0 0
\(945\) −382.512 754.586i −0.404775 0.798504i
\(946\) 0 0
\(947\) 95.3532 95.3532i 0.100690 0.100690i −0.654967 0.755657i \(-0.727318\pi\)
0.755657 + 0.654967i \(0.227318\pi\)
\(948\) 0 0
\(949\) 53.2587i 0.0561209i
\(950\) 0 0
\(951\) −421.785 −0.443518
\(952\) 0 0
\(953\) 257.253 257.253i 0.269940 0.269940i −0.559136 0.829076i \(-0.688867\pi\)
0.829076 + 0.559136i \(0.188867\pi\)
\(954\) 0 0
\(955\) 1693.67 + 314.649i 1.77348 + 0.329475i
\(956\) 0 0
\(957\) −213.961 + 213.961i −0.223575 + 0.223575i
\(958\) 0 0
\(959\) 887.847 678.947i 0.925805 0.707974i
\(960\) 0 0
\(961\) −843.214 −0.877434
\(962\) 0 0
\(963\) −58.7852 58.7852i −0.0610438 0.0610438i
\(964\) 0 0
\(965\) −741.443 1079.79i −0.768334 1.11895i
\(966\) 0 0
\(967\) 83.9318 83.9318i 0.0867961 0.0867961i −0.662376 0.749172i \(-0.730452\pi\)
0.749172 + 0.662376i \(0.230452\pi\)
\(968\) 0 0
\(969\) −111.292 −0.114853
\(970\) 0 0
\(971\) 1595.08 1.64272 0.821359 0.570412i \(-0.193216\pi\)
0.821359 + 0.570412i \(0.193216\pi\)
\(972\) 0 0
\(973\) 1319.10 + 175.875i 1.35570 + 0.180756i
\(974\) 0 0
\(975\) 727.862 + 280.110i 0.746525 + 0.287293i
\(976\) 0 0
\(977\) −193.036 193.036i −0.197580 0.197580i 0.601382 0.798962i \(-0.294617\pi\)
−0.798962 + 0.601382i \(0.794617\pi\)
\(978\) 0 0
\(979\) 306.617i 0.313195i
\(980\) 0 0
\(981\) −1037.32 −1.05741
\(982\) 0 0
\(983\) 319.815 319.815i 0.325346 0.325346i −0.525468 0.850814i \(-0.676110\pi\)
0.850814 + 0.525468i \(0.176110\pi\)
\(984\) 0 0
\(985\) −408.582 + 280.555i −0.414804 + 0.284828i
\(986\) 0 0
\(987\) −79.1987 + 594.006i −0.0802419 + 0.601830i
\(988\) 0 0
\(989\) 2460.07i 2.48743i
\(990\) 0 0
\(991\) 256.371i 0.258699i 0.991599 + 0.129349i \(0.0412889\pi\)
−0.991599 + 0.129349i \(0.958711\pi\)
\(992\) 0 0
\(993\) 373.400 + 373.400i 0.376032 + 0.376032i
\(994\) 0 0
\(995\) −1425.70 264.866i −1.43287 0.266197i
\(996\) 0 0
\(997\) −1015.44 + 1015.44i −1.01849 + 1.01849i −0.0186665 + 0.999826i \(0.505942\pi\)
−0.999826 + 0.0186665i \(0.994058\pi\)
\(998\) 0 0
\(999\) 1255.82i 1.25708i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.3.v.b.447.22 yes 64
4.3 odd 2 inner 560.3.v.b.447.11 yes 64
5.3 odd 4 inner 560.3.v.b.223.21 yes 64
7.6 odd 2 inner 560.3.v.b.447.12 yes 64
20.3 even 4 inner 560.3.v.b.223.12 yes 64
28.27 even 2 inner 560.3.v.b.447.21 yes 64
35.13 even 4 inner 560.3.v.b.223.11 64
140.83 odd 4 inner 560.3.v.b.223.22 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.3.v.b.223.11 64 35.13 even 4 inner
560.3.v.b.223.12 yes 64 20.3 even 4 inner
560.3.v.b.223.21 yes 64 5.3 odd 4 inner
560.3.v.b.223.22 yes 64 140.83 odd 4 inner
560.3.v.b.447.11 yes 64 4.3 odd 2 inner
560.3.v.b.447.12 yes 64 7.6 odd 2 inner
560.3.v.b.447.21 yes 64 28.27 even 2 inner
560.3.v.b.447.22 yes 64 1.1 even 1 trivial