Properties

Label 560.3.v.b.447.17
Level $560$
Weight $3$
Character 560.447
Analytic conductor $15.259$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(223,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.223"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 447.17
Character \(\chi\) \(=\) 560.447
Dual form 560.3.v.b.223.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.491144 - 0.491144i) q^{3} +(-4.95801 + 0.646617i) q^{5} +(-3.29426 + 6.17640i) q^{7} +8.51755i q^{9} -15.9605i q^{11} +(-9.60885 - 9.60885i) q^{13} +(-2.11752 + 2.75268i) q^{15} +(21.9577 - 21.9577i) q^{17} -2.96061i q^{19} +(1.41554 + 4.65146i) q^{21} +(22.9485 + 22.9485i) q^{23} +(24.1638 - 6.41187i) q^{25} +(8.60365 + 8.60365i) q^{27} -2.31686i q^{29} +49.4445 q^{31} +(-7.83892 - 7.83892i) q^{33} +(12.3392 - 32.7528i) q^{35} +(-9.99566 - 9.99566i) q^{37} -9.43866 q^{39} -58.8211i q^{41} +(29.2176 + 29.2176i) q^{43} +(-5.50760 - 42.2301i) q^{45} +(-19.1831 - 19.1831i) q^{47} +(-27.2957 - 40.6933i) q^{49} -21.5688i q^{51} +(22.0868 - 22.0868i) q^{53} +(10.3203 + 79.1324i) q^{55} +(-1.45409 - 1.45409i) q^{57} -19.1059i q^{59} -88.8424i q^{61} +(-52.6078 - 28.0590i) q^{63} +(53.8540 + 41.4275i) q^{65} +(-20.9339 + 20.9339i) q^{67} +22.5420 q^{69} +80.0716i q^{71} +(-28.2084 - 28.2084i) q^{73} +(8.71874 - 15.0171i) q^{75} +(98.5784 + 52.5781i) q^{77} -57.9404 q^{79} -68.2067 q^{81} +(70.9391 - 70.9391i) q^{83} +(-94.6683 + 123.065i) q^{85} +(-1.13791 - 1.13791i) q^{87} +44.5086 q^{89} +(91.0021 - 27.6940i) q^{91} +(24.2844 - 24.2844i) q^{93} +(1.91438 + 14.6788i) q^{95} +(-72.3085 + 72.3085i) q^{97} +135.945 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 16 q^{21} - 72 q^{25} + 72 q^{37} + 272 q^{53} - 376 q^{57} - 88 q^{65} + 24 q^{77} - 432 q^{81} + 384 q^{85} + 840 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.491144 0.491144i 0.163715 0.163715i −0.620495 0.784210i \(-0.713068\pi\)
0.784210 + 0.620495i \(0.213068\pi\)
\(4\) 0 0
\(5\) −4.95801 + 0.646617i −0.991602 + 0.129323i
\(6\) 0 0
\(7\) −3.29426 + 6.17640i −0.470608 + 0.882342i
\(8\) 0 0
\(9\) 8.51755i 0.946395i
\(10\) 0 0
\(11\) 15.9605i 1.45096i −0.688246 0.725478i \(-0.741619\pi\)
0.688246 0.725478i \(-0.258381\pi\)
\(12\) 0 0
\(13\) −9.60885 9.60885i −0.739142 0.739142i 0.233270 0.972412i \(-0.425057\pi\)
−0.972412 + 0.233270i \(0.925057\pi\)
\(14\) 0 0
\(15\) −2.11752 + 2.75268i −0.141168 + 0.183512i
\(16\) 0 0
\(17\) 21.9577 21.9577i 1.29163 1.29163i 0.357849 0.933779i \(-0.383510\pi\)
0.933779 0.357849i \(-0.116490\pi\)
\(18\) 0 0
\(19\) 2.96061i 0.155822i −0.996960 0.0779109i \(-0.975175\pi\)
0.996960 0.0779109i \(-0.0248250\pi\)
\(20\) 0 0
\(21\) 1.41554 + 4.65146i 0.0674069 + 0.221498i
\(22\) 0 0
\(23\) 22.9485 + 22.9485i 0.997761 + 0.997761i 0.999997 0.00223684i \(-0.000712008\pi\)
−0.00223684 + 0.999997i \(0.500712\pi\)
\(24\) 0 0
\(25\) 24.1638 6.41187i 0.966551 0.256475i
\(26\) 0 0
\(27\) 8.60365 + 8.60365i 0.318654 + 0.318654i
\(28\) 0 0
\(29\) 2.31686i 0.0798919i −0.999202 0.0399459i \(-0.987281\pi\)
0.999202 0.0399459i \(-0.0127186\pi\)
\(30\) 0 0
\(31\) 49.4445 1.59498 0.797492 0.603330i \(-0.206160\pi\)
0.797492 + 0.603330i \(0.206160\pi\)
\(32\) 0 0
\(33\) −7.83892 7.83892i −0.237543 0.237543i
\(34\) 0 0
\(35\) 12.3392 32.7528i 0.352549 0.935793i
\(36\) 0 0
\(37\) −9.99566 9.99566i −0.270153 0.270153i 0.559009 0.829162i \(-0.311182\pi\)
−0.829162 + 0.559009i \(0.811182\pi\)
\(38\) 0 0
\(39\) −9.43866 −0.242017
\(40\) 0 0
\(41\) 58.8211i 1.43466i −0.696733 0.717331i \(-0.745364\pi\)
0.696733 0.717331i \(-0.254636\pi\)
\(42\) 0 0
\(43\) 29.2176 + 29.2176i 0.679478 + 0.679478i 0.959882 0.280404i \(-0.0904684\pi\)
−0.280404 + 0.959882i \(0.590468\pi\)
\(44\) 0 0
\(45\) −5.50760 42.2301i −0.122391 0.938448i
\(46\) 0 0
\(47\) −19.1831 19.1831i −0.408150 0.408150i 0.472943 0.881093i \(-0.343192\pi\)
−0.881093 + 0.472943i \(0.843192\pi\)
\(48\) 0 0
\(49\) −27.2957 40.6933i −0.557055 0.830475i
\(50\) 0 0
\(51\) 21.5688i 0.422917i
\(52\) 0 0
\(53\) 22.0868 22.0868i 0.416732 0.416732i −0.467344 0.884076i \(-0.654789\pi\)
0.884076 + 0.467344i \(0.154789\pi\)
\(54\) 0 0
\(55\) 10.3203 + 79.1324i 0.187643 + 1.43877i
\(56\) 0 0
\(57\) −1.45409 1.45409i −0.0255103 0.0255103i
\(58\) 0 0
\(59\) 19.1059i 0.323829i −0.986805 0.161914i \(-0.948233\pi\)
0.986805 0.161914i \(-0.0517669\pi\)
\(60\) 0 0
\(61\) 88.8424i 1.45643i −0.685347 0.728217i \(-0.740349\pi\)
0.685347 0.728217i \(-0.259651\pi\)
\(62\) 0 0
\(63\) −52.6078 28.0590i −0.835044 0.445381i
\(64\) 0 0
\(65\) 53.8540 + 41.4275i 0.828524 + 0.637347i
\(66\) 0 0
\(67\) −20.9339 + 20.9339i −0.312447 + 0.312447i −0.845857 0.533410i \(-0.820910\pi\)
0.533410 + 0.845857i \(0.320910\pi\)
\(68\) 0 0
\(69\) 22.5420 0.326696
\(70\) 0 0
\(71\) 80.0716i 1.12777i 0.825854 + 0.563885i \(0.190694\pi\)
−0.825854 + 0.563885i \(0.809306\pi\)
\(72\) 0 0
\(73\) −28.2084 28.2084i −0.386416 0.386416i 0.486991 0.873407i \(-0.338095\pi\)
−0.873407 + 0.486991i \(0.838095\pi\)
\(74\) 0 0
\(75\) 8.71874 15.0171i 0.116250 0.200227i
\(76\) 0 0
\(77\) 98.5784 + 52.5781i 1.28024 + 0.682832i
\(78\) 0 0
\(79\) −57.9404 −0.733423 −0.366711 0.930335i \(-0.619516\pi\)
−0.366711 + 0.930335i \(0.619516\pi\)
\(80\) 0 0
\(81\) −68.2067 −0.842058
\(82\) 0 0
\(83\) 70.9391 70.9391i 0.854688 0.854688i −0.136018 0.990706i \(-0.543430\pi\)
0.990706 + 0.136018i \(0.0434305\pi\)
\(84\) 0 0
\(85\) −94.6683 + 123.065i −1.11374 + 1.44782i
\(86\) 0 0
\(87\) −1.13791 1.13791i −0.0130795 0.0130795i
\(88\) 0 0
\(89\) 44.5086 0.500097 0.250049 0.968233i \(-0.419553\pi\)
0.250049 + 0.968233i \(0.419553\pi\)
\(90\) 0 0
\(91\) 91.0021 27.6940i 1.00002 0.304330i
\(92\) 0 0
\(93\) 24.2844 24.2844i 0.261122 0.261122i
\(94\) 0 0
\(95\) 1.91438 + 14.6788i 0.0201514 + 0.154513i
\(96\) 0 0
\(97\) −72.3085 + 72.3085i −0.745448 + 0.745448i −0.973621 0.228172i \(-0.926725\pi\)
0.228172 + 0.973621i \(0.426725\pi\)
\(98\) 0 0
\(99\) 135.945 1.37318
\(100\) 0 0
\(101\) 90.8683i 0.899686i 0.893108 + 0.449843i \(0.148520\pi\)
−0.893108 + 0.449843i \(0.851480\pi\)
\(102\) 0 0
\(103\) 37.6299 37.6299i 0.365339 0.365339i −0.500435 0.865774i \(-0.666827\pi\)
0.865774 + 0.500435i \(0.166827\pi\)
\(104\) 0 0
\(105\) −10.0260 22.1467i −0.0954857 0.210921i
\(106\) 0 0
\(107\) −21.6954 + 21.6954i −0.202760 + 0.202760i −0.801182 0.598421i \(-0.795795\pi\)
0.598421 + 0.801182i \(0.295795\pi\)
\(108\) 0 0
\(109\) 151.360i 1.38862i −0.719676 0.694310i \(-0.755709\pi\)
0.719676 0.694310i \(-0.244291\pi\)
\(110\) 0 0
\(111\) −9.81862 −0.0884561
\(112\) 0 0
\(113\) 101.308 101.308i 0.896530 0.896530i −0.0985979 0.995127i \(-0.531436\pi\)
0.995127 + 0.0985979i \(0.0314357\pi\)
\(114\) 0 0
\(115\) −128.618 98.9400i −1.11842 0.860348i
\(116\) 0 0
\(117\) 81.8439 81.8439i 0.699520 0.699520i
\(118\) 0 0
\(119\) 63.2850 + 207.954i 0.531807 + 1.74751i
\(120\) 0 0
\(121\) −133.738 −1.10527
\(122\) 0 0
\(123\) −28.8897 28.8897i −0.234875 0.234875i
\(124\) 0 0
\(125\) −115.658 + 47.4149i −0.925266 + 0.379319i
\(126\) 0 0
\(127\) 77.4910 77.4910i 0.610165 0.610165i −0.332824 0.942989i \(-0.608001\pi\)
0.942989 + 0.332824i \(0.108001\pi\)
\(128\) 0 0
\(129\) 28.7001 0.222481
\(130\) 0 0
\(131\) −195.400 −1.49160 −0.745802 0.666168i \(-0.767933\pi\)
−0.745802 + 0.666168i \(0.767933\pi\)
\(132\) 0 0
\(133\) 18.2859 + 9.75302i 0.137488 + 0.0733310i
\(134\) 0 0
\(135\) −48.2203 37.0937i −0.357187 0.274768i
\(136\) 0 0
\(137\) 110.223 + 110.223i 0.804546 + 0.804546i 0.983802 0.179256i \(-0.0573691\pi\)
−0.179256 + 0.983802i \(0.557369\pi\)
\(138\) 0 0
\(139\) 75.6153i 0.543995i −0.962298 0.271997i \(-0.912316\pi\)
0.962298 0.271997i \(-0.0876842\pi\)
\(140\) 0 0
\(141\) −18.8433 −0.133640
\(142\) 0 0
\(143\) −153.362 + 153.362i −1.07246 + 1.07246i
\(144\) 0 0
\(145\) 1.49812 + 11.4870i 0.0103319 + 0.0792210i
\(146\) 0 0
\(147\) −33.3924 6.58015i −0.227159 0.0447629i
\(148\) 0 0
\(149\) 33.0747i 0.221978i −0.993822 0.110989i \(-0.964598\pi\)
0.993822 0.110989i \(-0.0354018\pi\)
\(150\) 0 0
\(151\) 229.412i 1.51928i −0.650342 0.759641i \(-0.725374\pi\)
0.650342 0.759641i \(-0.274626\pi\)
\(152\) 0 0
\(153\) 187.026 + 187.026i 1.22239 + 1.22239i
\(154\) 0 0
\(155\) −245.146 + 31.9717i −1.58159 + 0.206269i
\(156\) 0 0
\(157\) −131.004 + 131.004i −0.834423 + 0.834423i −0.988118 0.153695i \(-0.950883\pi\)
0.153695 + 0.988118i \(0.450883\pi\)
\(158\) 0 0
\(159\) 21.6956i 0.136450i
\(160\) 0 0
\(161\) −217.337 + 66.1407i −1.34992 + 0.410812i
\(162\) 0 0
\(163\) 169.398 + 169.398i 1.03925 + 1.03925i 0.999197 + 0.0400566i \(0.0127538\pi\)
0.0400566 + 0.999197i \(0.487246\pi\)
\(164\) 0 0
\(165\) 43.9342 + 33.7967i 0.266268 + 0.204828i
\(166\) 0 0
\(167\) 210.450 + 210.450i 1.26018 + 1.26018i 0.951005 + 0.309176i \(0.100053\pi\)
0.309176 + 0.951005i \(0.399947\pi\)
\(168\) 0 0
\(169\) 15.6600i 0.0926625i
\(170\) 0 0
\(171\) 25.2172 0.147469
\(172\) 0 0
\(173\) 133.546 + 133.546i 0.771943 + 0.771943i 0.978446 0.206503i \(-0.0662083\pi\)
−0.206503 + 0.978446i \(0.566208\pi\)
\(174\) 0 0
\(175\) −39.9995 + 170.367i −0.228568 + 0.973528i
\(176\) 0 0
\(177\) −9.38376 9.38376i −0.0530156 0.0530156i
\(178\) 0 0
\(179\) 212.267 1.18585 0.592925 0.805258i \(-0.297973\pi\)
0.592925 + 0.805258i \(0.297973\pi\)
\(180\) 0 0
\(181\) 160.360i 0.885969i 0.896529 + 0.442985i \(0.146080\pi\)
−0.896529 + 0.442985i \(0.853920\pi\)
\(182\) 0 0
\(183\) −43.6345 43.6345i −0.238440 0.238440i
\(184\) 0 0
\(185\) 56.0220 + 43.0952i 0.302822 + 0.232947i
\(186\) 0 0
\(187\) −350.456 350.456i −1.87410 1.87410i
\(188\) 0 0
\(189\) −81.4822 + 24.7969i −0.431123 + 0.131200i
\(190\) 0 0
\(191\) 156.241i 0.818017i −0.912531 0.409008i \(-0.865875\pi\)
0.912531 0.409008i \(-0.134125\pi\)
\(192\) 0 0
\(193\) −4.24330 + 4.24330i −0.0219860 + 0.0219860i −0.718014 0.696028i \(-0.754949\pi\)
0.696028 + 0.718014i \(0.254949\pi\)
\(194\) 0 0
\(195\) 46.7970 6.10320i 0.239985 0.0312985i
\(196\) 0 0
\(197\) −150.320 150.320i −0.763046 0.763046i 0.213826 0.976872i \(-0.431407\pi\)
−0.976872 + 0.213826i \(0.931407\pi\)
\(198\) 0 0
\(199\) 56.1024i 0.281922i −0.990015 0.140961i \(-0.954981\pi\)
0.990015 0.140961i \(-0.0450191\pi\)
\(200\) 0 0
\(201\) 20.5632i 0.102304i
\(202\) 0 0
\(203\) 14.3099 + 7.63235i 0.0704920 + 0.0375978i
\(204\) 0 0
\(205\) 38.0348 + 291.636i 0.185535 + 1.42261i
\(206\) 0 0
\(207\) −195.465 + 195.465i −0.944276 + 0.944276i
\(208\) 0 0
\(209\) −47.2529 −0.226090
\(210\) 0 0
\(211\) 235.285i 1.11509i −0.830146 0.557546i \(-0.811743\pi\)
0.830146 0.557546i \(-0.188257\pi\)
\(212\) 0 0
\(213\) 39.3267 + 39.3267i 0.184632 + 0.184632i
\(214\) 0 0
\(215\) −163.754 125.968i −0.761645 0.585900i
\(216\) 0 0
\(217\) −162.883 + 305.389i −0.750613 + 1.40732i
\(218\) 0 0
\(219\) −27.7088 −0.126524
\(220\) 0 0
\(221\) −421.976 −1.90939
\(222\) 0 0
\(223\) −177.683 + 177.683i −0.796786 + 0.796786i −0.982587 0.185801i \(-0.940512\pi\)
0.185801 + 0.982587i \(0.440512\pi\)
\(224\) 0 0
\(225\) 54.6135 + 205.816i 0.242727 + 0.914739i
\(226\) 0 0
\(227\) −83.7643 83.7643i −0.369006 0.369006i 0.498109 0.867114i \(-0.334028\pi\)
−0.867114 + 0.498109i \(0.834028\pi\)
\(228\) 0 0
\(229\) 13.9777 0.0610378 0.0305189 0.999534i \(-0.490284\pi\)
0.0305189 + 0.999534i \(0.490284\pi\)
\(230\) 0 0
\(231\) 74.2397 22.5928i 0.321384 0.0978044i
\(232\) 0 0
\(233\) −4.40471 + 4.40471i −0.0189043 + 0.0189043i −0.716496 0.697591i \(-0.754255\pi\)
0.697591 + 0.716496i \(0.254255\pi\)
\(234\) 0 0
\(235\) 107.514 + 82.7057i 0.457506 + 0.351939i
\(236\) 0 0
\(237\) −28.4571 + 28.4571i −0.120072 + 0.120072i
\(238\) 0 0
\(239\) −261.035 −1.09220 −0.546099 0.837721i \(-0.683888\pi\)
−0.546099 + 0.837721i \(0.683888\pi\)
\(240\) 0 0
\(241\) 309.944i 1.28607i −0.765835 0.643037i \(-0.777674\pi\)
0.765835 0.643037i \(-0.222326\pi\)
\(242\) 0 0
\(243\) −110.932 + 110.932i −0.456511 + 0.456511i
\(244\) 0 0
\(245\) 161.645 + 184.108i 0.659777 + 0.751461i
\(246\) 0 0
\(247\) −28.4481 + 28.4481i −0.115174 + 0.115174i
\(248\) 0 0
\(249\) 69.6827i 0.279850i
\(250\) 0 0
\(251\) 278.611 1.11000 0.555002 0.831849i \(-0.312718\pi\)
0.555002 + 0.831849i \(0.312718\pi\)
\(252\) 0 0
\(253\) 366.270 366.270i 1.44771 1.44771i
\(254\) 0 0
\(255\) 13.9468 + 106.938i 0.0546932 + 0.419366i
\(256\) 0 0
\(257\) 93.5178 93.5178i 0.363882 0.363882i −0.501358 0.865240i \(-0.667166\pi\)
0.865240 + 0.501358i \(0.167166\pi\)
\(258\) 0 0
\(259\) 94.6655 28.8089i 0.365504 0.111231i
\(260\) 0 0
\(261\) 19.7340 0.0756093
\(262\) 0 0
\(263\) 270.976 + 270.976i 1.03033 + 1.03033i 0.999525 + 0.0308028i \(0.00980638\pi\)
0.0308028 + 0.999525i \(0.490194\pi\)
\(264\) 0 0
\(265\) −95.2248 + 123.788i −0.359339 + 0.467125i
\(266\) 0 0
\(267\) 21.8602 21.8602i 0.0818733 0.0818733i
\(268\) 0 0
\(269\) 520.489 1.93490 0.967451 0.253057i \(-0.0814360\pi\)
0.967451 + 0.253057i \(0.0814360\pi\)
\(270\) 0 0
\(271\) −333.962 −1.23233 −0.616165 0.787617i \(-0.711315\pi\)
−0.616165 + 0.787617i \(0.711315\pi\)
\(272\) 0 0
\(273\) 31.0934 58.2969i 0.113895 0.213542i
\(274\) 0 0
\(275\) −102.337 385.666i −0.372134 1.40242i
\(276\) 0 0
\(277\) −28.0153 28.0153i −0.101138 0.101138i 0.654727 0.755865i \(-0.272784\pi\)
−0.755865 + 0.654727i \(0.772784\pi\)
\(278\) 0 0
\(279\) 421.146i 1.50948i
\(280\) 0 0
\(281\) −251.416 −0.894720 −0.447360 0.894354i \(-0.647636\pi\)
−0.447360 + 0.894354i \(0.647636\pi\)
\(282\) 0 0
\(283\) 216.495 216.495i 0.765001 0.765001i −0.212221 0.977222i \(-0.568070\pi\)
0.977222 + 0.212221i \(0.0680696\pi\)
\(284\) 0 0
\(285\) 8.14962 + 6.26915i 0.0285952 + 0.0219970i
\(286\) 0 0
\(287\) 363.302 + 193.772i 1.26586 + 0.675164i
\(288\) 0 0
\(289\) 675.280i 2.33661i
\(290\) 0 0
\(291\) 71.0278i 0.244082i
\(292\) 0 0
\(293\) −243.677 243.677i −0.831664 0.831664i 0.156081 0.987744i \(-0.450114\pi\)
−0.987744 + 0.156081i \(0.950114\pi\)
\(294\) 0 0
\(295\) 12.3542 + 94.7273i 0.0418787 + 0.321110i
\(296\) 0 0
\(297\) 137.319 137.319i 0.462352 0.462352i
\(298\) 0 0
\(299\) 441.017i 1.47497i
\(300\) 0 0
\(301\) −276.709 + 84.2090i −0.919300 + 0.279764i
\(302\) 0 0
\(303\) 44.6295 + 44.6295i 0.147292 + 0.147292i
\(304\) 0 0
\(305\) 57.4471 + 440.482i 0.188351 + 1.44420i
\(306\) 0 0
\(307\) 117.282 + 117.282i 0.382025 + 0.382025i 0.871831 0.489806i \(-0.162932\pi\)
−0.489806 + 0.871831i \(0.662932\pi\)
\(308\) 0 0
\(309\) 36.9634i 0.119623i
\(310\) 0 0
\(311\) −54.6370 −0.175682 −0.0878408 0.996135i \(-0.527997\pi\)
−0.0878408 + 0.996135i \(0.527997\pi\)
\(312\) 0 0
\(313\) −196.335 196.335i −0.627268 0.627268i 0.320112 0.947380i \(-0.396279\pi\)
−0.947380 + 0.320112i \(0.896279\pi\)
\(314\) 0 0
\(315\) 278.973 + 105.100i 0.885630 + 0.333651i
\(316\) 0 0
\(317\) 269.963 + 269.963i 0.851620 + 0.851620i 0.990333 0.138713i \(-0.0442966\pi\)
−0.138713 + 0.990333i \(0.544297\pi\)
\(318\) 0 0
\(319\) −36.9783 −0.115920
\(320\) 0 0
\(321\) 21.3111i 0.0663897i
\(322\) 0 0
\(323\) −65.0082 65.0082i −0.201264 0.201264i
\(324\) 0 0
\(325\) −293.797 170.575i −0.903990 0.524847i
\(326\) 0 0
\(327\) −74.3395 74.3395i −0.227338 0.227338i
\(328\) 0 0
\(329\) 181.676 55.2882i 0.552207 0.168049i
\(330\) 0 0
\(331\) 39.6844i 0.119892i 0.998202 + 0.0599462i \(0.0190929\pi\)
−0.998202 + 0.0599462i \(0.980907\pi\)
\(332\) 0 0
\(333\) 85.1386 85.1386i 0.255671 0.255671i
\(334\) 0 0
\(335\) 90.2544 117.327i 0.269416 0.350230i
\(336\) 0 0
\(337\) 225.495 + 225.495i 0.669125 + 0.669125i 0.957513 0.288389i \(-0.0931195\pi\)
−0.288389 + 0.957513i \(0.593120\pi\)
\(338\) 0 0
\(339\) 99.5135i 0.293550i
\(340\) 0 0
\(341\) 789.159i 2.31425i
\(342\) 0 0
\(343\) 341.257 34.5349i 0.994918 0.100685i
\(344\) 0 0
\(345\) −111.764 + 14.5761i −0.323953 + 0.0422495i
\(346\) 0 0
\(347\) −117.686 + 117.686i −0.339152 + 0.339152i −0.856048 0.516896i \(-0.827087\pi\)
0.516896 + 0.856048i \(0.327087\pi\)
\(348\) 0 0
\(349\) −510.239 −1.46200 −0.731001 0.682376i \(-0.760947\pi\)
−0.731001 + 0.682376i \(0.760947\pi\)
\(350\) 0 0
\(351\) 165.342i 0.471061i
\(352\) 0 0
\(353\) 99.7353 + 99.7353i 0.282536 + 0.282536i 0.834120 0.551583i \(-0.185976\pi\)
−0.551583 + 0.834120i \(0.685976\pi\)
\(354\) 0 0
\(355\) −51.7757 396.996i −0.145847 1.11830i
\(356\) 0 0
\(357\) 133.217 + 71.0532i 0.373158 + 0.199028i
\(358\) 0 0
\(359\) 63.6900 0.177409 0.0887047 0.996058i \(-0.471727\pi\)
0.0887047 + 0.996058i \(0.471727\pi\)
\(360\) 0 0
\(361\) 352.235 0.975720
\(362\) 0 0
\(363\) −65.6846 + 65.6846i −0.180949 + 0.180949i
\(364\) 0 0
\(365\) 158.098 + 121.618i 0.433144 + 0.333199i
\(366\) 0 0
\(367\) −108.480 108.480i −0.295585 0.295585i 0.543697 0.839282i \(-0.317024\pi\)
−0.839282 + 0.543697i \(0.817024\pi\)
\(368\) 0 0
\(369\) 501.012 1.35776
\(370\) 0 0
\(371\) 63.6571 + 209.176i 0.171582 + 0.563817i
\(372\) 0 0
\(373\) 62.1492 62.1492i 0.166620 0.166620i −0.618872 0.785492i \(-0.712410\pi\)
0.785492 + 0.618872i \(0.212410\pi\)
\(374\) 0 0
\(375\) −33.5173 + 80.0924i −0.0893796 + 0.213580i
\(376\) 0 0
\(377\) −22.2624 + 22.2624i −0.0590515 + 0.0590515i
\(378\) 0 0
\(379\) 465.783 1.22898 0.614490 0.788925i \(-0.289362\pi\)
0.614490 + 0.788925i \(0.289362\pi\)
\(380\) 0 0
\(381\) 76.1185i 0.199786i
\(382\) 0 0
\(383\) −237.812 + 237.812i −0.620920 + 0.620920i −0.945767 0.324847i \(-0.894687\pi\)
0.324847 + 0.945767i \(0.394687\pi\)
\(384\) 0 0
\(385\) −522.751 196.940i −1.35779 0.511533i
\(386\) 0 0
\(387\) −248.862 + 248.862i −0.643055 + 0.643055i
\(388\) 0 0
\(389\) 12.4104i 0.0319033i 0.999873 + 0.0159517i \(0.00507779\pi\)
−0.999873 + 0.0159517i \(0.994922\pi\)
\(390\) 0 0
\(391\) 1007.79 2.57747
\(392\) 0 0
\(393\) −95.9696 + 95.9696i −0.244197 + 0.244197i
\(394\) 0 0
\(395\) 287.269 37.4653i 0.727264 0.0948488i
\(396\) 0 0
\(397\) 249.742 249.742i 0.629073 0.629073i −0.318762 0.947835i \(-0.603267\pi\)
0.947835 + 0.318762i \(0.103267\pi\)
\(398\) 0 0
\(399\) 13.7712 4.19088i 0.0345142 0.0105035i
\(400\) 0 0
\(401\) −236.331 −0.589353 −0.294677 0.955597i \(-0.595212\pi\)
−0.294677 + 0.955597i \(0.595212\pi\)
\(402\) 0 0
\(403\) −475.104 475.104i −1.17892 1.17892i
\(404\) 0 0
\(405\) 338.170 44.1037i 0.834987 0.108898i
\(406\) 0 0
\(407\) −159.536 + 159.536i −0.391980 + 0.391980i
\(408\) 0 0
\(409\) −814.143 −1.99057 −0.995285 0.0969984i \(-0.969076\pi\)
−0.995285 + 0.0969984i \(0.969076\pi\)
\(410\) 0 0
\(411\) 108.271 0.263432
\(412\) 0 0
\(413\) 118.006 + 62.9398i 0.285728 + 0.152397i
\(414\) 0 0
\(415\) −305.847 + 397.588i −0.736980 + 0.958042i
\(416\) 0 0
\(417\) −37.1380 37.1380i −0.0890600 0.0890600i
\(418\) 0 0
\(419\) 604.798i 1.44343i 0.692190 + 0.721716i \(0.256646\pi\)
−0.692190 + 0.721716i \(0.743354\pi\)
\(420\) 0 0
\(421\) −111.199 −0.264131 −0.132066 0.991241i \(-0.542161\pi\)
−0.132066 + 0.991241i \(0.542161\pi\)
\(422\) 0 0
\(423\) 163.393 163.393i 0.386271 0.386271i
\(424\) 0 0
\(425\) 389.791 671.370i 0.917154 1.57970i
\(426\) 0 0
\(427\) 548.726 + 292.670i 1.28507 + 0.685410i
\(428\) 0 0
\(429\) 150.646i 0.351156i
\(430\) 0 0
\(431\) 719.477i 1.66932i −0.550766 0.834660i \(-0.685664\pi\)
0.550766 0.834660i \(-0.314336\pi\)
\(432\) 0 0
\(433\) 42.0857 + 42.0857i 0.0971956 + 0.0971956i 0.754033 0.656837i \(-0.228106\pi\)
−0.656837 + 0.754033i \(0.728106\pi\)
\(434\) 0 0
\(435\) 6.37759 + 4.90600i 0.0146611 + 0.0112782i
\(436\) 0 0
\(437\) 67.9416 67.9416i 0.155473 0.155473i
\(438\) 0 0
\(439\) 383.392i 0.873331i −0.899624 0.436666i \(-0.856159\pi\)
0.899624 0.436666i \(-0.143841\pi\)
\(440\) 0 0
\(441\) 346.607 232.493i 0.785958 0.527194i
\(442\) 0 0
\(443\) 270.350 + 270.350i 0.610270 + 0.610270i 0.943016 0.332746i \(-0.107975\pi\)
−0.332746 + 0.943016i \(0.607975\pi\)
\(444\) 0 0
\(445\) −220.674 + 28.7801i −0.495898 + 0.0646743i
\(446\) 0 0
\(447\) −16.2445 16.2445i −0.0363411 0.0363411i
\(448\) 0 0
\(449\) 169.459i 0.377413i −0.982033 0.188707i \(-0.939570\pi\)
0.982033 0.188707i \(-0.0604296\pi\)
\(450\) 0 0
\(451\) −938.815 −2.08163
\(452\) 0 0
\(453\) −112.674 112.674i −0.248729 0.248729i
\(454\) 0 0
\(455\) −433.282 + 196.151i −0.952268 + 0.431101i
\(456\) 0 0
\(457\) −13.5160 13.5160i −0.0295755 0.0295755i 0.692164 0.721740i \(-0.256657\pi\)
−0.721740 + 0.692164i \(0.756657\pi\)
\(458\) 0 0
\(459\) 377.832 0.823164
\(460\) 0 0
\(461\) 201.869i 0.437894i −0.975737 0.218947i \(-0.929738\pi\)
0.975737 0.218947i \(-0.0702622\pi\)
\(462\) 0 0
\(463\) 186.508 + 186.508i 0.402824 + 0.402824i 0.879227 0.476403i \(-0.158060\pi\)
−0.476403 + 0.879227i \(0.658060\pi\)
\(464\) 0 0
\(465\) −104.700 + 136.105i −0.225160 + 0.292699i
\(466\) 0 0
\(467\) −199.008 199.008i −0.426142 0.426142i 0.461170 0.887312i \(-0.347430\pi\)
−0.887312 + 0.461170i \(0.847430\pi\)
\(468\) 0 0
\(469\) −60.3344 198.258i −0.128645 0.422725i
\(470\) 0 0
\(471\) 128.684i 0.273215i
\(472\) 0 0
\(473\) 466.327 466.327i 0.985893 0.985893i
\(474\) 0 0
\(475\) −18.9831 71.5396i −0.0399644 0.150610i
\(476\) 0 0
\(477\) 188.125 + 188.125i 0.394393 + 0.394393i
\(478\) 0 0
\(479\) 72.0428i 0.150403i 0.997168 + 0.0752013i \(0.0239599\pi\)
−0.997168 + 0.0752013i \(0.976040\pi\)
\(480\) 0 0
\(481\) 192.094i 0.399363i
\(482\) 0 0
\(483\) −74.2593 + 139.229i −0.153746 + 0.288258i
\(484\) 0 0
\(485\) 311.750 405.262i 0.642784 0.835592i
\(486\) 0 0
\(487\) −158.323 + 158.323i −0.325099 + 0.325099i −0.850719 0.525620i \(-0.823833\pi\)
0.525620 + 0.850719i \(0.323833\pi\)
\(488\) 0 0
\(489\) 166.398 0.340282
\(490\) 0 0
\(491\) 224.397i 0.457019i 0.973542 + 0.228510i \(0.0733853\pi\)
−0.973542 + 0.228510i \(0.926615\pi\)
\(492\) 0 0
\(493\) −50.8730 50.8730i −0.103191 0.103191i
\(494\) 0 0
\(495\) −674.015 + 87.9041i −1.36165 + 0.177584i
\(496\) 0 0
\(497\) −494.554 263.777i −0.995078 0.530738i
\(498\) 0 0
\(499\) 248.404 0.497804 0.248902 0.968529i \(-0.419930\pi\)
0.248902 + 0.968529i \(0.419930\pi\)
\(500\) 0 0
\(501\) 206.723 0.412620
\(502\) 0 0
\(503\) 329.152 329.152i 0.654377 0.654377i −0.299667 0.954044i \(-0.596876\pi\)
0.954044 + 0.299667i \(0.0968755\pi\)
\(504\) 0 0
\(505\) −58.7570 450.526i −0.116351 0.892131i
\(506\) 0 0
\(507\) 7.69130 + 7.69130i 0.0151702 + 0.0151702i
\(508\) 0 0
\(509\) 27.0955 0.0532328 0.0266164 0.999646i \(-0.491527\pi\)
0.0266164 + 0.999646i \(0.491527\pi\)
\(510\) 0 0
\(511\) 267.152 81.3004i 0.522802 0.159101i
\(512\) 0 0
\(513\) 25.4721 25.4721i 0.0496531 0.0496531i
\(514\) 0 0
\(515\) −162.237 + 210.902i −0.315024 + 0.409518i
\(516\) 0 0
\(517\) −306.171 + 306.171i −0.592208 + 0.592208i
\(518\) 0 0
\(519\) 131.181 0.252757
\(520\) 0 0
\(521\) 191.193i 0.366972i −0.983022 0.183486i \(-0.941262\pi\)
0.983022 0.183486i \(-0.0587383\pi\)
\(522\) 0 0
\(523\) 343.867 343.867i 0.657490 0.657490i −0.297295 0.954786i \(-0.596085\pi\)
0.954786 + 0.297295i \(0.0960846\pi\)
\(524\) 0 0
\(525\) 64.0295 + 103.320i 0.121961 + 0.196801i
\(526\) 0 0
\(527\) 1085.69 1085.69i 2.06013 2.06013i
\(528\) 0 0
\(529\) 524.267i 0.991053i
\(530\) 0 0
\(531\) 162.736 0.306470
\(532\) 0 0
\(533\) −565.203 + 565.203i −1.06042 + 1.06042i
\(534\) 0 0
\(535\) 93.5372 121.594i 0.174836 0.227279i
\(536\) 0 0
\(537\) 104.254 104.254i 0.194141 0.194141i
\(538\) 0 0
\(539\) −649.486 + 435.654i −1.20498 + 0.808263i
\(540\) 0 0
\(541\) −606.156 −1.12044 −0.560218 0.828345i \(-0.689283\pi\)
−0.560218 + 0.828345i \(0.689283\pi\)
\(542\) 0 0
\(543\) 78.7601 + 78.7601i 0.145046 + 0.145046i
\(544\) 0 0
\(545\) 97.8718 + 750.443i 0.179581 + 1.37696i
\(546\) 0 0
\(547\) −570.421 + 570.421i −1.04282 + 1.04282i −0.0437767 + 0.999041i \(0.513939\pi\)
−0.999041 + 0.0437767i \(0.986061\pi\)
\(548\) 0 0
\(549\) 756.720 1.37836
\(550\) 0 0
\(551\) −6.85934 −0.0124489
\(552\) 0 0
\(553\) 190.871 357.863i 0.345155 0.647130i
\(554\) 0 0
\(555\) 48.6809 6.34889i 0.0877133 0.0114394i
\(556\) 0 0
\(557\) −310.163 310.163i −0.556845 0.556845i 0.371563 0.928408i \(-0.378822\pi\)
−0.928408 + 0.371563i \(0.878822\pi\)
\(558\) 0 0
\(559\) 561.494i 1.00446i
\(560\) 0 0
\(561\) −344.249 −0.613634
\(562\) 0 0
\(563\) −190.159 + 190.159i −0.337759 + 0.337759i −0.855523 0.517764i \(-0.826765\pi\)
0.517764 + 0.855523i \(0.326765\pi\)
\(564\) 0 0
\(565\) −436.778 + 567.793i −0.773059 + 1.00494i
\(566\) 0 0
\(567\) 224.691 421.272i 0.396280 0.742984i
\(568\) 0 0
\(569\) 1011.32i 1.77737i 0.458523 + 0.888683i \(0.348379\pi\)
−0.458523 + 0.888683i \(0.651621\pi\)
\(570\) 0 0
\(571\) 518.496i 0.908049i 0.890989 + 0.454025i \(0.150012\pi\)
−0.890989 + 0.454025i \(0.849988\pi\)
\(572\) 0 0
\(573\) −76.7370 76.7370i −0.133921 0.133921i
\(574\) 0 0
\(575\) 701.665 + 407.379i 1.22029 + 0.708486i
\(576\) 0 0
\(577\) 68.4024 68.4024i 0.118548 0.118548i −0.645344 0.763892i \(-0.723286\pi\)
0.763892 + 0.645344i \(0.223286\pi\)
\(578\) 0 0
\(579\) 4.16814i 0.00719887i
\(580\) 0 0
\(581\) 204.456 + 671.840i 0.351904 + 1.15635i
\(582\) 0 0
\(583\) −352.516 352.516i −0.604659 0.604659i
\(584\) 0 0
\(585\) −352.861 + 458.705i −0.603182 + 0.784111i
\(586\) 0 0
\(587\) 344.226 + 344.226i 0.586416 + 0.586416i 0.936659 0.350243i \(-0.113901\pi\)
−0.350243 + 0.936659i \(0.613901\pi\)
\(588\) 0 0
\(589\) 146.386i 0.248533i
\(590\) 0 0
\(591\) −147.658 −0.249844
\(592\) 0 0
\(593\) 367.831 + 367.831i 0.620289 + 0.620289i 0.945605 0.325317i \(-0.105471\pi\)
−0.325317 + 0.945605i \(0.605471\pi\)
\(594\) 0 0
\(595\) −448.234 990.116i −0.753335 1.66406i
\(596\) 0 0
\(597\) −27.5544 27.5544i −0.0461547 0.0461547i
\(598\) 0 0
\(599\) −794.866 −1.32699 −0.663494 0.748181i \(-0.730927\pi\)
−0.663494 + 0.748181i \(0.730927\pi\)
\(600\) 0 0
\(601\) 543.276i 0.903954i 0.892030 + 0.451977i \(0.149281\pi\)
−0.892030 + 0.451977i \(0.850719\pi\)
\(602\) 0 0
\(603\) −178.306 178.306i −0.295698 0.295698i
\(604\) 0 0
\(605\) 663.074 86.4773i 1.09599 0.142938i
\(606\) 0 0
\(607\) −653.078 653.078i −1.07591 1.07591i −0.996872 0.0790389i \(-0.974815\pi\)
−0.0790389 0.996872i \(-0.525185\pi\)
\(608\) 0 0
\(609\) 10.7768 3.27962i 0.0176959 0.00538526i
\(610\) 0 0
\(611\) 368.654i 0.603362i
\(612\) 0 0
\(613\) −65.3839 + 65.3839i −0.106662 + 0.106662i −0.758424 0.651762i \(-0.774030\pi\)
0.651762 + 0.758424i \(0.274030\pi\)
\(614\) 0 0
\(615\) 161.916 + 124.555i 0.263278 + 0.202528i
\(616\) 0 0
\(617\) 256.584 + 256.584i 0.415857 + 0.415857i 0.883773 0.467916i \(-0.154995\pi\)
−0.467916 + 0.883773i \(0.654995\pi\)
\(618\) 0 0
\(619\) 779.719i 1.25964i 0.776740 + 0.629822i \(0.216872\pi\)
−0.776740 + 0.629822i \(0.783128\pi\)
\(620\) 0 0
\(621\) 394.882i 0.635880i
\(622\) 0 0
\(623\) −146.623 + 274.903i −0.235350 + 0.441257i
\(624\) 0 0
\(625\) 542.776 309.870i 0.868441 0.495792i
\(626\) 0 0
\(627\) −23.2080 + 23.2080i −0.0370143 + 0.0370143i
\(628\) 0 0
\(629\) −438.963 −0.697875
\(630\) 0 0
\(631\) 328.081i 0.519938i −0.965617 0.259969i \(-0.916288\pi\)
0.965617 0.259969i \(-0.0837123\pi\)
\(632\) 0 0
\(633\) −115.559 115.559i −0.182557 0.182557i
\(634\) 0 0
\(635\) −334.094 + 434.308i −0.526133 + 0.683950i
\(636\) 0 0
\(637\) −128.735 + 653.296i −0.202096 + 1.02558i
\(638\) 0 0
\(639\) −682.014 −1.06731
\(640\) 0 0
\(641\) 539.896 0.842272 0.421136 0.906998i \(-0.361632\pi\)
0.421136 + 0.906998i \(0.361632\pi\)
\(642\) 0 0
\(643\) −303.322 + 303.322i −0.471730 + 0.471730i −0.902474 0.430744i \(-0.858251\pi\)
0.430744 + 0.902474i \(0.358251\pi\)
\(644\) 0 0
\(645\) −142.295 + 18.5580i −0.220613 + 0.0287720i
\(646\) 0 0
\(647\) −251.201 251.201i −0.388255 0.388255i 0.485810 0.874065i \(-0.338525\pi\)
−0.874065 + 0.485810i \(0.838525\pi\)
\(648\) 0 0
\(649\) −304.940 −0.469861
\(650\) 0 0
\(651\) 69.9909 + 229.989i 0.107513 + 0.353286i
\(652\) 0 0
\(653\) 10.6691 10.6691i 0.0163386 0.0163386i −0.698890 0.715229i \(-0.746322\pi\)
0.715229 + 0.698890i \(0.246322\pi\)
\(654\) 0 0
\(655\) 968.796 126.349i 1.47908 0.192899i
\(656\) 0 0
\(657\) 240.267 240.267i 0.365703 0.365703i
\(658\) 0 0
\(659\) 80.4525 0.122083 0.0610413 0.998135i \(-0.480558\pi\)
0.0610413 + 0.998135i \(0.480558\pi\)
\(660\) 0 0
\(661\) 636.247i 0.962552i 0.876569 + 0.481276i \(0.159827\pi\)
−0.876569 + 0.481276i \(0.840173\pi\)
\(662\) 0 0
\(663\) −207.251 + 207.251i −0.312596 + 0.312596i
\(664\) 0 0
\(665\) −96.9682 36.5316i −0.145817 0.0549348i
\(666\) 0 0
\(667\) 53.1685 53.1685i 0.0797130 0.0797130i
\(668\) 0 0
\(669\) 174.536i 0.260891i
\(670\) 0 0
\(671\) −1417.97 −2.11322
\(672\) 0 0
\(673\) −603.639 + 603.639i −0.896938 + 0.896938i −0.995164 0.0982261i \(-0.968683\pi\)
0.0982261 + 0.995164i \(0.468683\pi\)
\(674\) 0 0
\(675\) 263.062 + 152.731i 0.389722 + 0.226268i
\(676\) 0 0
\(677\) −225.360 + 225.360i −0.332881 + 0.332881i −0.853679 0.520799i \(-0.825634\pi\)
0.520799 + 0.853679i \(0.325634\pi\)
\(678\) 0 0
\(679\) −208.403 684.809i −0.306926 1.00855i
\(680\) 0 0
\(681\) −82.2807 −0.120823
\(682\) 0 0
\(683\) −820.220 820.220i −1.20091 1.20091i −0.973891 0.227016i \(-0.927103\pi\)
−0.227016 0.973891i \(-0.572897\pi\)
\(684\) 0 0
\(685\) −617.758 475.214i −0.901837 0.693743i
\(686\) 0 0
\(687\) 6.86505 6.86505i 0.00999279 0.00999279i
\(688\) 0 0
\(689\) −424.457 −0.616048
\(690\) 0 0
\(691\) −767.462 −1.11065 −0.555327 0.831632i \(-0.687407\pi\)
−0.555327 + 0.831632i \(0.687407\pi\)
\(692\) 0 0
\(693\) −447.837 + 839.647i −0.646229 + 1.21161i
\(694\) 0 0
\(695\) 48.8942 + 374.902i 0.0703513 + 0.539427i
\(696\) 0 0
\(697\) −1291.58 1291.58i −1.85305 1.85305i
\(698\) 0 0
\(699\) 4.32669i 0.00618983i
\(700\) 0 0
\(701\) 557.104 0.794727 0.397364 0.917661i \(-0.369925\pi\)
0.397364 + 0.917661i \(0.369925\pi\)
\(702\) 0 0
\(703\) −29.5933 + 29.5933i −0.0420957 + 0.0420957i
\(704\) 0 0
\(705\) 93.4253 12.1844i 0.132518 0.0172828i
\(706\) 0 0
\(707\) −561.239 299.344i −0.793831 0.423400i
\(708\) 0 0
\(709\) 467.586i 0.659501i −0.944068 0.329751i \(-0.893035\pi\)
0.944068 0.329751i \(-0.106965\pi\)
\(710\) 0 0
\(711\) 493.510i 0.694107i
\(712\) 0 0
\(713\) 1134.68 + 1134.68i 1.59141 + 1.59141i
\(714\) 0 0
\(715\) 661.205 859.538i 0.924762 1.20215i
\(716\) 0 0
\(717\) −128.206 + 128.206i −0.178809 + 0.178809i
\(718\) 0 0
\(719\) 711.632i 0.989752i −0.868963 0.494876i \(-0.835213\pi\)
0.868963 0.494876i \(-0.164787\pi\)
\(720\) 0 0
\(721\) 108.454 + 356.380i 0.150422 + 0.494285i
\(722\) 0 0
\(723\) −152.227 152.227i −0.210549 0.210549i
\(724\) 0 0
\(725\) −14.8554 55.9842i −0.0204903 0.0772196i
\(726\) 0 0
\(727\) 197.113 + 197.113i 0.271132 + 0.271132i 0.829556 0.558424i \(-0.188594\pi\)
−0.558424 + 0.829556i \(0.688594\pi\)
\(728\) 0 0
\(729\) 504.893i 0.692583i
\(730\) 0 0
\(731\) 1283.10 1.75527
\(732\) 0 0
\(733\) 77.4789 + 77.4789i 0.105701 + 0.105701i 0.757979 0.652278i \(-0.226187\pi\)
−0.652278 + 0.757979i \(0.726187\pi\)
\(734\) 0 0
\(735\) 169.815 + 11.0323i 0.231041 + 0.0150100i
\(736\) 0 0
\(737\) 334.116 + 334.116i 0.453346 + 0.453346i
\(738\) 0 0
\(739\) 1005.55 1.36070 0.680348 0.732889i \(-0.261829\pi\)
0.680348 + 0.732889i \(0.261829\pi\)
\(740\) 0 0
\(741\) 27.9442i 0.0377115i
\(742\) 0 0
\(743\) 335.017 + 335.017i 0.450898 + 0.450898i 0.895653 0.444754i \(-0.146709\pi\)
−0.444754 + 0.895653i \(0.646709\pi\)
\(744\) 0 0
\(745\) 21.3867 + 163.985i 0.0287070 + 0.220114i
\(746\) 0 0
\(747\) 604.228 + 604.228i 0.808873 + 0.808873i
\(748\) 0 0
\(749\) −62.5290 205.469i −0.0834833 0.274325i
\(750\) 0 0
\(751\) 872.535i 1.16183i 0.813964 + 0.580916i \(0.197305\pi\)
−0.813964 + 0.580916i \(0.802695\pi\)
\(752\) 0 0
\(753\) 136.838 136.838i 0.181724 0.181724i
\(754\) 0 0
\(755\) 148.342 + 1137.43i 0.196479 + 1.50652i
\(756\) 0 0
\(757\) −307.075 307.075i −0.405647 0.405647i 0.474570 0.880218i \(-0.342603\pi\)
−0.880218 + 0.474570i \(0.842603\pi\)
\(758\) 0 0
\(759\) 359.783i 0.474022i
\(760\) 0 0
\(761\) 590.401i 0.775823i 0.921697 + 0.387911i \(0.126803\pi\)
−0.921697 + 0.387911i \(0.873197\pi\)
\(762\) 0 0
\(763\) 934.857 + 498.618i 1.22524 + 0.653497i
\(764\) 0 0
\(765\) −1048.21 806.342i −1.37021 1.05404i
\(766\) 0 0
\(767\) −183.586 + 183.586i −0.239356 + 0.239356i
\(768\) 0 0
\(769\) 250.547 0.325808 0.162904 0.986642i \(-0.447914\pi\)
0.162904 + 0.986642i \(0.447914\pi\)
\(770\) 0 0
\(771\) 91.8615i 0.119146i
\(772\) 0 0
\(773\) 245.390 + 245.390i 0.317451 + 0.317451i 0.847787 0.530336i \(-0.177934\pi\)
−0.530336 + 0.847787i \(0.677934\pi\)
\(774\) 0 0
\(775\) 1194.76 317.032i 1.54163 0.409073i
\(776\) 0 0
\(777\) 32.3451 60.6437i 0.0416282 0.0780485i
\(778\) 0 0
\(779\) −174.146 −0.223551
\(780\) 0 0
\(781\) 1277.98 1.63634
\(782\) 0 0
\(783\) 19.9335 19.9335i 0.0254578 0.0254578i
\(784\) 0 0
\(785\) 564.812 734.232i 0.719506 0.935327i
\(786\) 0 0
\(787\) −506.460 506.460i −0.643532 0.643532i 0.307890 0.951422i \(-0.400377\pi\)
−0.951422 + 0.307890i \(0.900377\pi\)
\(788\) 0 0
\(789\) 266.177 0.337360
\(790\) 0 0
\(791\) 291.983 + 959.451i 0.369131 + 1.21296i
\(792\) 0 0
\(793\) −853.674 + 853.674i −1.07651 + 1.07651i
\(794\) 0 0
\(795\) 14.0287 + 107.567i 0.0176462 + 0.135304i
\(796\) 0 0
\(797\) 538.516 538.516i 0.675679 0.675679i −0.283340 0.959019i \(-0.591443\pi\)
0.959019 + 0.283340i \(0.0914425\pi\)
\(798\) 0 0
\(799\) −842.431 −1.05436
\(800\) 0 0
\(801\) 379.105i 0.473289i
\(802\) 0 0
\(803\) −450.221 + 450.221i −0.560673 + 0.560673i
\(804\) 0 0
\(805\) 1034.79 468.460i 1.28546 0.581938i
\(806\) 0 0
\(807\) 255.635 255.635i 0.316772 0.316772i
\(808\) 0 0
\(809\) 827.755i 1.02318i 0.859229 + 0.511591i \(0.170944\pi\)
−0.859229 + 0.511591i \(0.829056\pi\)
\(810\) 0 0
\(811\) −691.728 −0.852933 −0.426466 0.904503i \(-0.640242\pi\)
−0.426466 + 0.904503i \(0.640242\pi\)
\(812\) 0 0
\(813\) −164.023 + 164.023i −0.201751 + 0.201751i
\(814\) 0 0
\(815\) −949.415 730.343i −1.16493 0.896127i
\(816\) 0 0
\(817\) 86.5019 86.5019i 0.105877 0.105877i
\(818\) 0 0
\(819\) 235.885 + 775.115i 0.288016 + 0.946417i
\(820\) 0 0
\(821\) 616.342 0.750721 0.375361 0.926879i \(-0.377519\pi\)
0.375361 + 0.926879i \(0.377519\pi\)
\(822\) 0 0
\(823\) 89.0330 + 89.0330i 0.108181 + 0.108181i 0.759125 0.650944i \(-0.225627\pi\)
−0.650944 + 0.759125i \(0.725627\pi\)
\(824\) 0 0
\(825\) −239.680 139.156i −0.290521 0.168673i
\(826\) 0 0
\(827\) −278.878 + 278.878i −0.337217 + 0.337217i −0.855319 0.518102i \(-0.826639\pi\)
0.518102 + 0.855319i \(0.326639\pi\)
\(828\) 0 0
\(829\) 246.319 0.297128 0.148564 0.988903i \(-0.452535\pi\)
0.148564 + 0.988903i \(0.452535\pi\)
\(830\) 0 0
\(831\) −27.5191 −0.0331156
\(832\) 0 0
\(833\) −1492.88 294.180i −1.79217 0.353157i
\(834\) 0 0
\(835\) −1179.50 907.334i −1.41257 1.08663i
\(836\) 0 0
\(837\) 425.403 + 425.403i 0.508247 + 0.508247i
\(838\) 0 0
\(839\) 1027.98i 1.22524i −0.790377 0.612621i \(-0.790115\pi\)
0.790377 0.612621i \(-0.209885\pi\)
\(840\) 0 0
\(841\) 835.632 0.993617
\(842\) 0 0
\(843\) −123.482 + 123.482i −0.146479 + 0.146479i
\(844\) 0 0
\(845\) −10.1260 77.6423i −0.0119834 0.0918843i
\(846\) 0 0
\(847\) 440.568 826.019i 0.520151 0.975228i
\(848\) 0 0
\(849\) 212.661i 0.250484i
\(850\) 0 0
\(851\) 458.771i 0.539096i
\(852\) 0 0
\(853\) −931.832 931.832i −1.09242 1.09242i −0.995270 0.0971475i \(-0.969028\pi\)
−0.0971475 0.995270i \(-0.530972\pi\)
\(854\) 0 0
\(855\) −125.027 + 16.3059i −0.146230 + 0.0190712i
\(856\) 0 0
\(857\) −283.056 + 283.056i −0.330287 + 0.330287i −0.852695 0.522408i \(-0.825034\pi\)
0.522408 + 0.852695i \(0.325034\pi\)
\(858\) 0 0
\(859\) 1638.61i 1.90758i 0.300474 + 0.953790i \(0.402855\pi\)
−0.300474 + 0.953790i \(0.597145\pi\)
\(860\) 0 0
\(861\) 273.604 83.2639i 0.317775 0.0967060i
\(862\) 0 0
\(863\) −1.73448 1.73448i −0.00200982 0.00200982i 0.706101 0.708111i \(-0.250452\pi\)
−0.708111 + 0.706101i \(0.750452\pi\)
\(864\) 0 0
\(865\) −748.477 575.770i −0.865291 0.665630i
\(866\) 0 0
\(867\) −331.660 331.660i −0.382537 0.382537i
\(868\) 0 0
\(869\) 924.758i 1.06416i
\(870\) 0 0
\(871\) 402.302 0.461885
\(872\) 0 0
\(873\) −615.891 615.891i −0.705489 0.705489i
\(874\) 0 0
\(875\) 88.1553 870.548i 0.100749 0.994912i
\(876\) 0 0
\(877\) 189.068 + 189.068i 0.215585 + 0.215585i 0.806635 0.591050i \(-0.201287\pi\)
−0.591050 + 0.806635i \(0.701287\pi\)
\(878\) 0 0
\(879\) −239.362 −0.272311
\(880\) 0 0
\(881\) 457.338i 0.519113i −0.965728 0.259556i \(-0.916424\pi\)
0.965728 0.259556i \(-0.0835763\pi\)
\(882\) 0 0
\(883\) −882.255 882.255i −0.999157 0.999157i 0.000843057 1.00000i \(-0.499732\pi\)
−1.00000 0.000843057i \(0.999732\pi\)
\(884\) 0 0
\(885\) 52.5925 + 40.4571i 0.0594265 + 0.0457142i
\(886\) 0 0
\(887\) 1029.89 + 1029.89i 1.16110 + 1.16110i 0.984236 + 0.176860i \(0.0565941\pi\)
0.176860 + 0.984236i \(0.443406\pi\)
\(888\) 0 0
\(889\) 223.340 + 733.890i 0.251226 + 0.825523i
\(890\) 0 0
\(891\) 1088.61i 1.22179i
\(892\) 0 0
\(893\) −56.7936 + 56.7936i −0.0635987 + 0.0635987i
\(894\) 0 0
\(895\) −1052.42 + 137.256i −1.17589 + 0.153358i
\(896\) 0 0
\(897\) −216.603 216.603i −0.241475 0.241475i
\(898\) 0 0
\(899\) 114.556i 0.127426i
\(900\) 0 0
\(901\) 969.949i 1.07652i
\(902\) 0 0
\(903\) −94.5455 + 177.263i −0.104702 + 0.196305i
\(904\) 0 0
\(905\) −103.692 795.069i −0.114577 0.878529i
\(906\) 0 0
\(907\) −1049.05 + 1049.05i −1.15661 + 1.15661i −0.171412 + 0.985199i \(0.554833\pi\)
−0.985199 + 0.171412i \(0.945167\pi\)
\(908\) 0 0
\(909\) −773.976 −0.851459
\(910\) 0 0
\(911\) 822.503i 0.902857i −0.892307 0.451428i \(-0.850915\pi\)
0.892307 0.451428i \(-0.149085\pi\)
\(912\) 0 0
\(913\) −1132.23 1132.23i −1.24012 1.24012i
\(914\) 0 0
\(915\) 244.555 + 188.125i 0.267273 + 0.205602i
\(916\) 0 0
\(917\) 643.698 1206.87i 0.701961 1.31610i
\(918\) 0 0
\(919\) 408.042 0.444006 0.222003 0.975046i \(-0.428740\pi\)
0.222003 + 0.975046i \(0.428740\pi\)
\(920\) 0 0
\(921\) 115.205 0.125086
\(922\) 0 0
\(923\) 769.396 769.396i 0.833582 0.833582i
\(924\) 0 0
\(925\) −305.624 177.442i −0.330404 0.191829i
\(926\) 0 0
\(927\) 320.515 + 320.515i 0.345755 + 0.345755i
\(928\) 0 0
\(929\) −584.172 −0.628818 −0.314409 0.949288i \(-0.601806\pi\)
−0.314409 + 0.949288i \(0.601806\pi\)
\(930\) 0 0
\(931\) −120.477 + 80.8120i −0.129406 + 0.0868013i
\(932\) 0 0
\(933\) −26.8346 + 26.8346i −0.0287617 + 0.0287617i
\(934\) 0 0
\(935\) 1964.18 + 1510.95i 2.10072 + 1.61599i
\(936\) 0 0
\(937\) −119.120 + 119.120i −0.127129 + 0.127129i −0.767808 0.640680i \(-0.778653\pi\)
0.640680 + 0.767808i \(0.278653\pi\)
\(938\) 0 0
\(939\) −192.857 −0.205386
\(940\) 0 0
\(941\) 764.546i 0.812483i 0.913766 + 0.406241i \(0.133161\pi\)
−0.913766 + 0.406241i \(0.866839\pi\)
\(942\) 0 0
\(943\) 1349.86 1349.86i 1.43145 1.43145i
\(944\) 0 0
\(945\) 387.956 175.631i 0.410535 0.185853i
\(946\) 0 0
\(947\) 553.104 553.104i 0.584059 0.584059i −0.351957 0.936016i \(-0.614484\pi\)
0.936016 + 0.351957i \(0.114484\pi\)
\(948\) 0 0
\(949\) 542.101i 0.571233i
\(950\) 0 0
\(951\) 265.182 0.278845
\(952\) 0 0
\(953\) 778.903 778.903i 0.817317 0.817317i −0.168402 0.985718i \(-0.553861\pi\)
0.985718 + 0.168402i \(0.0538606\pi\)
\(954\) 0 0
\(955\) 101.028 + 774.646i 0.105789 + 0.811148i
\(956\) 0 0
\(957\) −18.1617 + 18.1617i −0.0189777 + 0.0189777i
\(958\) 0 0
\(959\) −1043.88 + 317.677i −1.08851 + 0.331259i
\(960\) 0 0
\(961\) 1483.76 1.54397
\(962\) 0 0
\(963\) −184.791 184.791i −0.191891 0.191891i
\(964\) 0 0
\(965\) 18.2945 23.7821i 0.0189581 0.0246447i
\(966\) 0 0
\(967\) 303.813 303.813i 0.314181 0.314181i −0.532346 0.846527i \(-0.678690\pi\)
0.846527 + 0.532346i \(0.178690\pi\)
\(968\) 0 0
\(969\) −63.8568 −0.0658997
\(970\) 0 0
\(971\) 871.227 0.897247 0.448624 0.893721i \(-0.351914\pi\)
0.448624 + 0.893721i \(0.351914\pi\)
\(972\) 0 0
\(973\) 467.030 + 249.096i 0.479990 + 0.256009i
\(974\) 0 0
\(975\) −228.074 + 60.5195i −0.233922 + 0.0620713i
\(976\) 0 0
\(977\) −849.373 849.373i −0.869369 0.869369i 0.123034 0.992402i \(-0.460738\pi\)
−0.992402 + 0.123034i \(0.960738\pi\)
\(978\) 0 0
\(979\) 710.381i 0.725619i
\(980\) 0 0
\(981\) 1289.21 1.31418
\(982\) 0 0
\(983\) 524.628 524.628i 0.533700 0.533700i −0.387971 0.921672i \(-0.626824\pi\)
0.921672 + 0.387971i \(0.126824\pi\)
\(984\) 0 0
\(985\) 842.488 + 648.089i 0.855318 + 0.657958i
\(986\) 0 0
\(987\) 62.0747 116.384i 0.0628923 0.117917i
\(988\) 0 0
\(989\) 1341.00i 1.35591i
\(990\) 0 0
\(991\) 417.414i 0.421205i 0.977572 + 0.210603i \(0.0675426\pi\)
−0.977572 + 0.210603i \(0.932457\pi\)
\(992\) 0 0
\(993\) 19.4908 + 19.4908i 0.0196282 + 0.0196282i
\(994\) 0 0
\(995\) 36.2768 + 278.156i 0.0364591 + 0.279554i
\(996\) 0 0
\(997\) 19.9946 19.9946i 0.0200547 0.0200547i −0.697008 0.717063i \(-0.745486\pi\)
0.717063 + 0.697008i \(0.245486\pi\)
\(998\) 0 0
\(999\) 171.998i 0.172170i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.3.v.b.447.17 yes 64
4.3 odd 2 inner 560.3.v.b.447.16 yes 64
5.3 odd 4 inner 560.3.v.b.223.18 yes 64
7.6 odd 2 inner 560.3.v.b.447.15 yes 64
20.3 even 4 inner 560.3.v.b.223.15 64
28.27 even 2 inner 560.3.v.b.447.18 yes 64
35.13 even 4 inner 560.3.v.b.223.16 yes 64
140.83 odd 4 inner 560.3.v.b.223.17 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.3.v.b.223.15 64 20.3 even 4 inner
560.3.v.b.223.16 yes 64 35.13 even 4 inner
560.3.v.b.223.17 yes 64 140.83 odd 4 inner
560.3.v.b.223.18 yes 64 5.3 odd 4 inner
560.3.v.b.447.15 yes 64 7.6 odd 2 inner
560.3.v.b.447.16 yes 64 4.3 odd 2 inner
560.3.v.b.447.17 yes 64 1.1 even 1 trivial
560.3.v.b.447.18 yes 64 28.27 even 2 inner