Properties

Label 560.3.v.b.223.20
Level $560$
Weight $3$
Character 560.223
Analytic conductor $15.259$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(223,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.223"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 223.20
Character \(\chi\) \(=\) 560.223
Dual form 560.3.v.b.447.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.904360 + 0.904360i) q^{3} +(-2.12642 + 4.52530i) q^{5} +(-5.39452 + 4.46084i) q^{7} -7.36427i q^{9} -1.26996i q^{11} +(-5.68460 + 5.68460i) q^{13} +(-6.01555 + 2.16945i) q^{15} +(-3.36775 - 3.36775i) q^{17} -10.5554i q^{19} +(-8.91279 - 0.844384i) q^{21} +(-17.3860 + 17.3860i) q^{23} +(-15.9567 - 19.2454i) q^{25} +(14.7992 - 14.7992i) q^{27} -33.6429i q^{29} -19.7373 q^{31} +(1.14850 - 1.14850i) q^{33} +(-8.71560 - 33.8975i) q^{35} +(23.2693 - 23.2693i) q^{37} -10.2819 q^{39} -44.1112i q^{41} +(-34.3775 + 34.3775i) q^{43} +(33.3255 + 15.6595i) q^{45} +(-15.2233 + 15.2233i) q^{47} +(9.20178 - 48.1282i) q^{49} -6.09132i q^{51} +(-44.2336 - 44.2336i) q^{53} +(5.74694 + 2.70047i) q^{55} +(9.54592 - 9.54592i) q^{57} +46.7572i q^{59} +12.0294i q^{61} +(32.8508 + 39.7267i) q^{63} +(-13.6367 - 37.8124i) q^{65} +(-49.0186 - 49.0186i) q^{67} -31.4464 q^{69} +98.6344i q^{71} +(-48.8054 + 48.8054i) q^{73} +(2.97421 - 31.8353i) q^{75} +(5.66508 + 6.85082i) q^{77} -13.3286 q^{79} -39.5108 q^{81} +(41.6147 + 41.6147i) q^{83} +(22.4014 - 8.07882i) q^{85} +(30.4253 - 30.4253i) q^{87} -110.162 q^{89} +(5.30761 - 56.0238i) q^{91} +(-17.8496 - 17.8496i) q^{93} +(47.7666 + 22.4453i) q^{95} +(54.3644 + 54.3644i) q^{97} -9.35231 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 16 q^{21} - 72 q^{25} + 72 q^{37} + 272 q^{53} - 376 q^{57} - 88 q^{65} + 24 q^{77} - 432 q^{81} + 384 q^{85} + 840 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.904360 + 0.904360i 0.301453 + 0.301453i 0.841582 0.540129i \(-0.181625\pi\)
−0.540129 + 0.841582i \(0.681625\pi\)
\(4\) 0 0
\(5\) −2.12642 + 4.52530i −0.425285 + 0.905060i
\(6\) 0 0
\(7\) −5.39452 + 4.46084i −0.770646 + 0.637263i
\(8\) 0 0
\(9\) 7.36427i 0.818252i
\(10\) 0 0
\(11\) 1.26996i 0.115451i −0.998333 0.0577254i \(-0.981615\pi\)
0.998333 0.0577254i \(-0.0183848\pi\)
\(12\) 0 0
\(13\) −5.68460 + 5.68460i −0.437277 + 0.437277i −0.891095 0.453817i \(-0.850062\pi\)
0.453817 + 0.891095i \(0.350062\pi\)
\(14\) 0 0
\(15\) −6.01555 + 2.16945i −0.401037 + 0.144630i
\(16\) 0 0
\(17\) −3.36775 3.36775i −0.198103 0.198103i 0.601083 0.799186i \(-0.294736\pi\)
−0.799186 + 0.601083i \(0.794736\pi\)
\(18\) 0 0
\(19\) 10.5554i 0.555550i −0.960646 0.277775i \(-0.910403\pi\)
0.960646 0.277775i \(-0.0895970\pi\)
\(20\) 0 0
\(21\) −8.91279 0.844384i −0.424419 0.0402088i
\(22\) 0 0
\(23\) −17.3860 + 17.3860i −0.755913 + 0.755913i −0.975576 0.219663i \(-0.929504\pi\)
0.219663 + 0.975576i \(0.429504\pi\)
\(24\) 0 0
\(25\) −15.9567 19.2454i −0.638266 0.769816i
\(26\) 0 0
\(27\) 14.7992 14.7992i 0.548118 0.548118i
\(28\) 0 0
\(29\) 33.6429i 1.16010i −0.814581 0.580050i \(-0.803033\pi\)
0.814581 0.580050i \(-0.196967\pi\)
\(30\) 0 0
\(31\) −19.7373 −0.636687 −0.318343 0.947975i \(-0.603126\pi\)
−0.318343 + 0.947975i \(0.603126\pi\)
\(32\) 0 0
\(33\) 1.14850 1.14850i 0.0348030 0.0348030i
\(34\) 0 0
\(35\) −8.71560 33.8975i −0.249017 0.968499i
\(36\) 0 0
\(37\) 23.2693 23.2693i 0.628900 0.628900i −0.318891 0.947791i \(-0.603310\pi\)
0.947791 + 0.318891i \(0.103310\pi\)
\(38\) 0 0
\(39\) −10.2819 −0.263637
\(40\) 0 0
\(41\) 44.1112i 1.07588i −0.842982 0.537941i \(-0.819202\pi\)
0.842982 0.537941i \(-0.180798\pi\)
\(42\) 0 0
\(43\) −34.3775 + 34.3775i −0.799476 + 0.799476i −0.983013 0.183537i \(-0.941245\pi\)
0.183537 + 0.983013i \(0.441245\pi\)
\(44\) 0 0
\(45\) 33.3255 + 15.6595i 0.740567 + 0.347990i
\(46\) 0 0
\(47\) −15.2233 + 15.2233i −0.323900 + 0.323900i −0.850261 0.526361i \(-0.823556\pi\)
0.526361 + 0.850261i \(0.323556\pi\)
\(48\) 0 0
\(49\) 9.20178 48.1282i 0.187791 0.982209i
\(50\) 0 0
\(51\) 6.09132i 0.119438i
\(52\) 0 0
\(53\) −44.2336 44.2336i −0.834597 0.834597i 0.153545 0.988142i \(-0.450931\pi\)
−0.988142 + 0.153545i \(0.950931\pi\)
\(54\) 0 0
\(55\) 5.74694 + 2.70047i 0.104490 + 0.0490994i
\(56\) 0 0
\(57\) 9.54592 9.54592i 0.167472 0.167472i
\(58\) 0 0
\(59\) 46.7572i 0.792495i 0.918144 + 0.396247i \(0.129688\pi\)
−0.918144 + 0.396247i \(0.870312\pi\)
\(60\) 0 0
\(61\) 12.0294i 0.197204i 0.995127 + 0.0986020i \(0.0314371\pi\)
−0.995127 + 0.0986020i \(0.968563\pi\)
\(62\) 0 0
\(63\) 32.8508 + 39.7267i 0.521442 + 0.630583i
\(64\) 0 0
\(65\) −13.6367 37.8124i −0.209795 0.581729i
\(66\) 0 0
\(67\) −49.0186 49.0186i −0.731620 0.731620i 0.239320 0.970941i \(-0.423075\pi\)
−0.970941 + 0.239320i \(0.923075\pi\)
\(68\) 0 0
\(69\) −31.4464 −0.455745
\(70\) 0 0
\(71\) 98.6344i 1.38922i 0.719388 + 0.694608i \(0.244422\pi\)
−0.719388 + 0.694608i \(0.755578\pi\)
\(72\) 0 0
\(73\) −48.8054 + 48.8054i −0.668568 + 0.668568i −0.957384 0.288817i \(-0.906738\pi\)
0.288817 + 0.957384i \(0.406738\pi\)
\(74\) 0 0
\(75\) 2.97421 31.8353i 0.0396561 0.424471i
\(76\) 0 0
\(77\) 5.66508 + 6.85082i 0.0735725 + 0.0889717i
\(78\) 0 0
\(79\) −13.3286 −0.168716 −0.0843580 0.996436i \(-0.526884\pi\)
−0.0843580 + 0.996436i \(0.526884\pi\)
\(80\) 0 0
\(81\) −39.5108 −0.487788
\(82\) 0 0
\(83\) 41.6147 + 41.6147i 0.501382 + 0.501382i 0.911867 0.410485i \(-0.134641\pi\)
−0.410485 + 0.911867i \(0.634641\pi\)
\(84\) 0 0
\(85\) 22.4014 8.07882i 0.263545 0.0950449i
\(86\) 0 0
\(87\) 30.4253 30.4253i 0.349716 0.349716i
\(88\) 0 0
\(89\) −110.162 −1.23777 −0.618887 0.785480i \(-0.712416\pi\)
−0.618887 + 0.785480i \(0.712416\pi\)
\(90\) 0 0
\(91\) 5.30761 56.0238i 0.0583254 0.615647i
\(92\) 0 0
\(93\) −17.8496 17.8496i −0.191931 0.191931i
\(94\) 0 0
\(95\) 47.7666 + 22.4453i 0.502806 + 0.236267i
\(96\) 0 0
\(97\) 54.3644 + 54.3644i 0.560458 + 0.560458i 0.929437 0.368980i \(-0.120293\pi\)
−0.368980 + 0.929437i \(0.620293\pi\)
\(98\) 0 0
\(99\) −9.35231 −0.0944678
\(100\) 0 0
\(101\) 105.100i 1.04060i −0.853985 0.520298i \(-0.825821\pi\)
0.853985 0.520298i \(-0.174179\pi\)
\(102\) 0 0
\(103\) −63.6401 63.6401i −0.617865 0.617865i 0.327118 0.944983i \(-0.393922\pi\)
−0.944983 + 0.327118i \(0.893922\pi\)
\(104\) 0 0
\(105\) 22.7735 38.5375i 0.216890 0.367024i
\(106\) 0 0
\(107\) −67.9200 67.9200i −0.634767 0.634767i 0.314493 0.949260i \(-0.398165\pi\)
−0.949260 + 0.314493i \(0.898165\pi\)
\(108\) 0 0
\(109\) 10.1797i 0.0933919i 0.998909 + 0.0466960i \(0.0148692\pi\)
−0.998909 + 0.0466960i \(0.985131\pi\)
\(110\) 0 0
\(111\) 42.0876 0.379168
\(112\) 0 0
\(113\) 47.2055 + 47.2055i 0.417748 + 0.417748i 0.884427 0.466679i \(-0.154550\pi\)
−0.466679 + 0.884427i \(0.654550\pi\)
\(114\) 0 0
\(115\) −41.7069 115.647i −0.362668 1.00562i
\(116\) 0 0
\(117\) 41.8629 + 41.8629i 0.357803 + 0.357803i
\(118\) 0 0
\(119\) 33.1904 + 3.14441i 0.278911 + 0.0264236i
\(120\) 0 0
\(121\) 119.387 0.986671
\(122\) 0 0
\(123\) 39.8924 39.8924i 0.324328 0.324328i
\(124\) 0 0
\(125\) 121.022 31.2848i 0.968174 0.250278i
\(126\) 0 0
\(127\) 47.8009 + 47.8009i 0.376385 + 0.376385i 0.869796 0.493411i \(-0.164250\pi\)
−0.493411 + 0.869796i \(0.664250\pi\)
\(128\) 0 0
\(129\) −62.1792 −0.482009
\(130\) 0 0
\(131\) −242.199 −1.84885 −0.924424 0.381366i \(-0.875454\pi\)
−0.924424 + 0.381366i \(0.875454\pi\)
\(132\) 0 0
\(133\) 47.0862 + 56.9416i 0.354032 + 0.428133i
\(134\) 0 0
\(135\) 35.5014 + 98.4400i 0.262973 + 0.729185i
\(136\) 0 0
\(137\) −129.504 + 129.504i −0.945287 + 0.945287i −0.998579 0.0532920i \(-0.983029\pi\)
0.0532920 + 0.998579i \(0.483029\pi\)
\(138\) 0 0
\(139\) 177.868i 1.27962i 0.768532 + 0.639812i \(0.220988\pi\)
−0.768532 + 0.639812i \(0.779012\pi\)
\(140\) 0 0
\(141\) −27.5346 −0.195281
\(142\) 0 0
\(143\) 7.21921 + 7.21921i 0.0504840 + 0.0504840i
\(144\) 0 0
\(145\) 152.244 + 71.5391i 1.04996 + 0.493373i
\(146\) 0 0
\(147\) 51.8470 35.2035i 0.352700 0.239480i
\(148\) 0 0
\(149\) 188.233i 1.26331i 0.775250 + 0.631655i \(0.217624\pi\)
−0.775250 + 0.631655i \(0.782376\pi\)
\(150\) 0 0
\(151\) 104.514i 0.692146i 0.938208 + 0.346073i \(0.112485\pi\)
−0.938208 + 0.346073i \(0.887515\pi\)
\(152\) 0 0
\(153\) −24.8010 + 24.8010i −0.162098 + 0.162098i
\(154\) 0 0
\(155\) 41.9698 89.3171i 0.270773 0.576239i
\(156\) 0 0
\(157\) 40.8950 + 40.8950i 0.260478 + 0.260478i 0.825248 0.564770i \(-0.191035\pi\)
−0.564770 + 0.825248i \(0.691035\pi\)
\(158\) 0 0
\(159\) 80.0062i 0.503184i
\(160\) 0 0
\(161\) 16.2330 171.345i 0.100826 1.06426i
\(162\) 0 0
\(163\) 208.247 208.247i 1.27759 1.27759i 0.335578 0.942012i \(-0.391068\pi\)
0.942012 0.335578i \(-0.108932\pi\)
\(164\) 0 0
\(165\) 2.75511 + 7.63949i 0.0166976 + 0.0463000i
\(166\) 0 0
\(167\) 13.7013 13.7013i 0.0820435 0.0820435i −0.664894 0.746938i \(-0.731523\pi\)
0.746938 + 0.664894i \(0.231523\pi\)
\(168\) 0 0
\(169\) 104.371i 0.617577i
\(170\) 0 0
\(171\) −77.7332 −0.454580
\(172\) 0 0
\(173\) −211.305 + 211.305i −1.22142 + 1.22142i −0.254286 + 0.967129i \(0.581841\pi\)
−0.967129 + 0.254286i \(0.918159\pi\)
\(174\) 0 0
\(175\) 171.929 + 32.6396i 0.982453 + 0.186512i
\(176\) 0 0
\(177\) −42.2853 + 42.2853i −0.238900 + 0.238900i
\(178\) 0 0
\(179\) 94.8760 0.530034 0.265017 0.964244i \(-0.414622\pi\)
0.265017 + 0.964244i \(0.414622\pi\)
\(180\) 0 0
\(181\) 264.208i 1.45971i −0.683602 0.729855i \(-0.739588\pi\)
0.683602 0.729855i \(-0.260412\pi\)
\(182\) 0 0
\(183\) −10.8789 + 10.8789i −0.0594478 + 0.0594478i
\(184\) 0 0
\(185\) 55.8202 + 154.781i 0.301731 + 0.836653i
\(186\) 0 0
\(187\) −4.27690 + 4.27690i −0.0228711 + 0.0228711i
\(188\) 0 0
\(189\) −13.8177 + 145.851i −0.0731097 + 0.771700i
\(190\) 0 0
\(191\) 113.662i 0.595090i 0.954708 + 0.297545i \(0.0961678\pi\)
−0.954708 + 0.297545i \(0.903832\pi\)
\(192\) 0 0
\(193\) 191.262 + 191.262i 0.990995 + 0.990995i 0.999960 0.00896468i \(-0.00285358\pi\)
−0.00896468 + 0.999960i \(0.502854\pi\)
\(194\) 0 0
\(195\) 21.8636 46.5284i 0.112121 0.238607i
\(196\) 0 0
\(197\) −61.9383 + 61.9383i −0.314407 + 0.314407i −0.846614 0.532207i \(-0.821363\pi\)
0.532207 + 0.846614i \(0.321363\pi\)
\(198\) 0 0
\(199\) 20.4522i 0.102775i −0.998679 0.0513875i \(-0.983636\pi\)
0.998679 0.0513875i \(-0.0163644\pi\)
\(200\) 0 0
\(201\) 88.6608i 0.441099i
\(202\) 0 0
\(203\) 150.076 + 181.487i 0.739289 + 0.894027i
\(204\) 0 0
\(205\) 199.616 + 93.7990i 0.973737 + 0.457556i
\(206\) 0 0
\(207\) 128.035 + 128.035i 0.618527 + 0.618527i
\(208\) 0 0
\(209\) −13.4050 −0.0641386
\(210\) 0 0
\(211\) 368.795i 1.74784i −0.486067 0.873922i \(-0.661569\pi\)
0.486067 0.873922i \(-0.338431\pi\)
\(212\) 0 0
\(213\) −89.2009 + 89.2009i −0.418784 + 0.418784i
\(214\) 0 0
\(215\) −82.4673 228.669i −0.383569 1.06358i
\(216\) 0 0
\(217\) 106.473 88.0449i 0.490660 0.405737i
\(218\) 0 0
\(219\) −88.2753 −0.403084
\(220\) 0 0
\(221\) 38.2887 0.173252
\(222\) 0 0
\(223\) 274.050 + 274.050i 1.22892 + 1.22892i 0.964372 + 0.264551i \(0.0852238\pi\)
0.264551 + 0.964372i \(0.414776\pi\)
\(224\) 0 0
\(225\) −141.728 + 117.509i −0.629903 + 0.522262i
\(226\) 0 0
\(227\) 11.3851 11.3851i 0.0501547 0.0501547i −0.681585 0.731739i \(-0.738709\pi\)
0.731739 + 0.681585i \(0.238709\pi\)
\(228\) 0 0
\(229\) −249.659 −1.09022 −0.545108 0.838366i \(-0.683511\pi\)
−0.545108 + 0.838366i \(0.683511\pi\)
\(230\) 0 0
\(231\) −1.07233 + 11.3189i −0.00464213 + 0.0489995i
\(232\) 0 0
\(233\) −21.4722 21.4722i −0.0921554 0.0921554i 0.659526 0.751682i \(-0.270757\pi\)
−0.751682 + 0.659526i \(0.770757\pi\)
\(234\) 0 0
\(235\) −36.5188 101.261i −0.155399 0.430898i
\(236\) 0 0
\(237\) −12.0538 12.0538i −0.0508600 0.0508600i
\(238\) 0 0
\(239\) 349.200 1.46109 0.730544 0.682865i \(-0.239266\pi\)
0.730544 + 0.682865i \(0.239266\pi\)
\(240\) 0 0
\(241\) 219.615i 0.911267i −0.890167 0.455634i \(-0.849413\pi\)
0.890167 0.455634i \(-0.150587\pi\)
\(242\) 0 0
\(243\) −168.925 168.925i −0.695163 0.695163i
\(244\) 0 0
\(245\) 198.228 + 143.982i 0.809093 + 0.587681i
\(246\) 0 0
\(247\) 60.0035 + 60.0035i 0.242929 + 0.242929i
\(248\) 0 0
\(249\) 75.2694i 0.302287i
\(250\) 0 0
\(251\) 166.747 0.664330 0.332165 0.943221i \(-0.392221\pi\)
0.332165 + 0.943221i \(0.392221\pi\)
\(252\) 0 0
\(253\) 22.0795 + 22.0795i 0.0872707 + 0.0872707i
\(254\) 0 0
\(255\) 27.5650 + 12.9527i 0.108098 + 0.0507950i
\(256\) 0 0
\(257\) 172.983 + 172.983i 0.673085 + 0.673085i 0.958426 0.285341i \(-0.0921069\pi\)
−0.285341 + 0.958426i \(0.592107\pi\)
\(258\) 0 0
\(259\) −21.7261 + 229.327i −0.0838847 + 0.885434i
\(260\) 0 0
\(261\) −247.755 −0.949254
\(262\) 0 0
\(263\) −232.175 + 232.175i −0.882795 + 0.882795i −0.993818 0.111023i \(-0.964587\pi\)
0.111023 + 0.993818i \(0.464587\pi\)
\(264\) 0 0
\(265\) 294.230 106.111i 1.11030 0.400419i
\(266\) 0 0
\(267\) −99.6260 99.6260i −0.373131 0.373131i
\(268\) 0 0
\(269\) 37.2174 0.138355 0.0691774 0.997604i \(-0.477963\pi\)
0.0691774 + 0.997604i \(0.477963\pi\)
\(270\) 0 0
\(271\) −539.312 −1.99008 −0.995040 0.0994763i \(-0.968283\pi\)
−0.995040 + 0.0994763i \(0.968283\pi\)
\(272\) 0 0
\(273\) 55.4657 45.8657i 0.203171 0.168006i
\(274\) 0 0
\(275\) −24.4408 + 20.2643i −0.0888758 + 0.0736883i
\(276\) 0 0
\(277\) 223.341 223.341i 0.806287 0.806287i −0.177783 0.984070i \(-0.556892\pi\)
0.984070 + 0.177783i \(0.0568925\pi\)
\(278\) 0 0
\(279\) 145.351i 0.520970i
\(280\) 0 0
\(281\) −218.422 −0.777304 −0.388652 0.921385i \(-0.627059\pi\)
−0.388652 + 0.921385i \(0.627059\pi\)
\(282\) 0 0
\(283\) −71.5781 71.5781i −0.252926 0.252926i 0.569243 0.822169i \(-0.307236\pi\)
−0.822169 + 0.569243i \(0.807236\pi\)
\(284\) 0 0
\(285\) 22.8995 + 63.4968i 0.0803491 + 0.222796i
\(286\) 0 0
\(287\) 196.773 + 237.959i 0.685620 + 0.829124i
\(288\) 0 0
\(289\) 266.316i 0.921510i
\(290\) 0 0
\(291\) 98.3299i 0.337904i
\(292\) 0 0
\(293\) 70.6039 70.6039i 0.240969 0.240969i −0.576282 0.817251i \(-0.695497\pi\)
0.817251 + 0.576282i \(0.195497\pi\)
\(294\) 0 0
\(295\) −211.590 99.4256i −0.717255 0.337036i
\(296\) 0 0
\(297\) −18.7943 18.7943i −0.0632806 0.0632806i
\(298\) 0 0
\(299\) 197.665i 0.661087i
\(300\) 0 0
\(301\) 32.0976 338.803i 0.106637 1.12559i
\(302\) 0 0
\(303\) 95.0484 95.0484i 0.313691 0.313691i
\(304\) 0 0
\(305\) −54.4368 25.5797i −0.178481 0.0838678i
\(306\) 0 0
\(307\) 306.962 306.962i 0.999877 0.999877i −0.000122802 1.00000i \(-0.500039\pi\)
1.00000 0.000122802i \(3.90891e-5\pi\)
\(308\) 0 0
\(309\) 115.107i 0.372515i
\(310\) 0 0
\(311\) −416.307 −1.33861 −0.669304 0.742989i \(-0.733408\pi\)
−0.669304 + 0.742989i \(0.733408\pi\)
\(312\) 0 0
\(313\) −355.123 + 355.123i −1.13458 + 1.13458i −0.145172 + 0.989406i \(0.546374\pi\)
−0.989406 + 0.145172i \(0.953626\pi\)
\(314\) 0 0
\(315\) −249.630 + 64.1840i −0.792476 + 0.203759i
\(316\) 0 0
\(317\) −89.1819 + 89.1819i −0.281331 + 0.281331i −0.833640 0.552309i \(-0.813747\pi\)
0.552309 + 0.833640i \(0.313747\pi\)
\(318\) 0 0
\(319\) −42.7251 −0.133934
\(320\) 0 0
\(321\) 122.848i 0.382705i
\(322\) 0 0
\(323\) −35.5481 + 35.5481i −0.110056 + 0.110056i
\(324\) 0 0
\(325\) 200.110 + 18.6952i 0.615722 + 0.0575237i
\(326\) 0 0
\(327\) −9.20613 + 9.20613i −0.0281533 + 0.0281533i
\(328\) 0 0
\(329\) 14.2137 150.031i 0.0432027 0.456021i
\(330\) 0 0
\(331\) 286.057i 0.864220i −0.901821 0.432110i \(-0.857769\pi\)
0.901821 0.432110i \(-0.142231\pi\)
\(332\) 0 0
\(333\) −171.361 171.361i −0.514599 0.514599i
\(334\) 0 0
\(335\) 326.058 117.589i 0.973307 0.351013i
\(336\) 0 0
\(337\) 315.339 315.339i 0.935723 0.935723i −0.0623320 0.998055i \(-0.519854\pi\)
0.998055 + 0.0623320i \(0.0198538\pi\)
\(338\) 0 0
\(339\) 85.3815i 0.251863i
\(340\) 0 0
\(341\) 25.0655i 0.0735059i
\(342\) 0 0
\(343\) 165.053 + 300.677i 0.481205 + 0.876608i
\(344\) 0 0
\(345\) 66.8683 142.304i 0.193821 0.412476i
\(346\) 0 0
\(347\) −256.959 256.959i −0.740515 0.740515i 0.232162 0.972677i \(-0.425420\pi\)
−0.972677 + 0.232162i \(0.925420\pi\)
\(348\) 0 0
\(349\) −551.816 −1.58113 −0.790567 0.612375i \(-0.790214\pi\)
−0.790567 + 0.612375i \(0.790214\pi\)
\(350\) 0 0
\(351\) 168.255i 0.479359i
\(352\) 0 0
\(353\) −289.440 + 289.440i −0.819944 + 0.819944i −0.986100 0.166156i \(-0.946865\pi\)
0.166156 + 0.986100i \(0.446865\pi\)
\(354\) 0 0
\(355\) −446.350 209.738i −1.25732 0.590812i
\(356\) 0 0
\(357\) 27.1724 + 32.8598i 0.0761132 + 0.0920442i
\(358\) 0 0
\(359\) −489.143 −1.36251 −0.681257 0.732044i \(-0.738567\pi\)
−0.681257 + 0.732044i \(0.738567\pi\)
\(360\) 0 0
\(361\) 249.582 0.691364
\(362\) 0 0
\(363\) 107.969 + 107.969i 0.297435 + 0.297435i
\(364\) 0 0
\(365\) −117.078 324.640i −0.320762 0.889425i
\(366\) 0 0
\(367\) −49.8445 + 49.8445i −0.135816 + 0.135816i −0.771746 0.635930i \(-0.780617\pi\)
0.635930 + 0.771746i \(0.280617\pi\)
\(368\) 0 0
\(369\) −324.846 −0.880343
\(370\) 0 0
\(371\) 435.938 + 41.3001i 1.17504 + 0.111321i
\(372\) 0 0
\(373\) −124.957 124.957i −0.335006 0.335006i 0.519478 0.854484i \(-0.326127\pi\)
−0.854484 + 0.519478i \(0.826127\pi\)
\(374\) 0 0
\(375\) 137.740 + 81.1545i 0.367306 + 0.216412i
\(376\) 0 0
\(377\) 191.247 + 191.247i 0.507285 + 0.507285i
\(378\) 0 0
\(379\) −341.107 −0.900019 −0.450009 0.893024i \(-0.648579\pi\)
−0.450009 + 0.893024i \(0.648579\pi\)
\(380\) 0 0
\(381\) 86.4583i 0.226925i
\(382\) 0 0
\(383\) −229.435 229.435i −0.599048 0.599048i 0.341011 0.940059i \(-0.389231\pi\)
−0.940059 + 0.341011i \(0.889231\pi\)
\(384\) 0 0
\(385\) −43.0484 + 11.0684i −0.111814 + 0.0287492i
\(386\) 0 0
\(387\) 253.165 + 253.165i 0.654173 + 0.654173i
\(388\) 0 0
\(389\) 338.375i 0.869859i −0.900464 0.434930i \(-0.856773\pi\)
0.900464 0.434930i \(-0.143227\pi\)
\(390\) 0 0
\(391\) 117.103 0.299497
\(392\) 0 0
\(393\) −219.035 219.035i −0.557341 0.557341i
\(394\) 0 0
\(395\) 28.3422 60.3157i 0.0717523 0.152698i
\(396\) 0 0
\(397\) 54.8168 + 54.8168i 0.138077 + 0.138077i 0.772767 0.634690i \(-0.218872\pi\)
−0.634690 + 0.772767i \(0.718872\pi\)
\(398\) 0 0
\(399\) −8.91286 + 94.0786i −0.0223380 + 0.235786i
\(400\) 0 0
\(401\) −414.174 −1.03285 −0.516427 0.856332i \(-0.672738\pi\)
−0.516427 + 0.856332i \(0.672738\pi\)
\(402\) 0 0
\(403\) 112.199 112.199i 0.278409 0.278409i
\(404\) 0 0
\(405\) 84.0168 178.798i 0.207449 0.441477i
\(406\) 0 0
\(407\) −29.5510 29.5510i −0.0726070 0.0726070i
\(408\) 0 0
\(409\) −279.231 −0.682715 −0.341358 0.939933i \(-0.610887\pi\)
−0.341358 + 0.939933i \(0.610887\pi\)
\(410\) 0 0
\(411\) −234.237 −0.569920
\(412\) 0 0
\(413\) −208.577 252.233i −0.505028 0.610733i
\(414\) 0 0
\(415\) −276.810 + 99.8286i −0.667011 + 0.240551i
\(416\) 0 0
\(417\) −160.856 + 160.856i −0.385746 + 0.385746i
\(418\) 0 0
\(419\) 800.277i 1.90997i 0.296657 + 0.954984i \(0.404128\pi\)
−0.296657 + 0.954984i \(0.595872\pi\)
\(420\) 0 0
\(421\) 455.032 1.08084 0.540418 0.841397i \(-0.318266\pi\)
0.540418 + 0.841397i \(0.318266\pi\)
\(422\) 0 0
\(423\) 112.108 + 112.108i 0.265031 + 0.265031i
\(424\) 0 0
\(425\) −11.0757 + 118.552i −0.0260604 + 0.278945i
\(426\) 0 0
\(427\) −53.6615 64.8931i −0.125671 0.151975i
\(428\) 0 0
\(429\) 13.0575i 0.0304371i
\(430\) 0 0
\(431\) 27.6204i 0.0640845i −0.999487 0.0320423i \(-0.989799\pi\)
0.999487 0.0320423i \(-0.0102011\pi\)
\(432\) 0 0
\(433\) 356.596 356.596i 0.823548 0.823548i −0.163067 0.986615i \(-0.552139\pi\)
0.986615 + 0.163067i \(0.0521386\pi\)
\(434\) 0 0
\(435\) 72.9865 + 202.381i 0.167785 + 0.465243i
\(436\) 0 0
\(437\) 183.517 + 183.517i 0.419947 + 0.419947i
\(438\) 0 0
\(439\) 114.996i 0.261949i −0.991386 0.130975i \(-0.958189\pi\)
0.991386 0.130975i \(-0.0418106\pi\)
\(440\) 0 0
\(441\) −354.429 67.7643i −0.803694 0.153661i
\(442\) 0 0
\(443\) −247.575 + 247.575i −0.558861 + 0.558861i −0.928983 0.370122i \(-0.879316\pi\)
0.370122 + 0.928983i \(0.379316\pi\)
\(444\) 0 0
\(445\) 234.251 498.515i 0.526406 1.12026i
\(446\) 0 0
\(447\) −170.230 + 170.230i −0.380829 + 0.380829i
\(448\) 0 0
\(449\) 147.163i 0.327756i −0.986481 0.163878i \(-0.947600\pi\)
0.986481 0.163878i \(-0.0524004\pi\)
\(450\) 0 0
\(451\) −56.0193 −0.124211
\(452\) 0 0
\(453\) −94.5182 + 94.5182i −0.208649 + 0.208649i
\(454\) 0 0
\(455\) 242.238 + 143.149i 0.532392 + 0.314613i
\(456\) 0 0
\(457\) 426.763 426.763i 0.933836 0.933836i −0.0641070 0.997943i \(-0.520420\pi\)
0.997943 + 0.0641070i \(0.0204199\pi\)
\(458\) 0 0
\(459\) −99.6800 −0.217168
\(460\) 0 0
\(461\) 324.715i 0.704370i −0.935930 0.352185i \(-0.885439\pi\)
0.935930 0.352185i \(-0.114561\pi\)
\(462\) 0 0
\(463\) 125.828 125.828i 0.271766 0.271766i −0.558045 0.829811i \(-0.688448\pi\)
0.829811 + 0.558045i \(0.188448\pi\)
\(464\) 0 0
\(465\) 118.731 42.8190i 0.255335 0.0920838i
\(466\) 0 0
\(467\) 101.704 101.704i 0.217782 0.217782i −0.589781 0.807563i \(-0.700786\pi\)
0.807563 + 0.589781i \(0.200786\pi\)
\(468\) 0 0
\(469\) 483.096 + 45.7677i 1.03006 + 0.0975858i
\(470\) 0 0
\(471\) 73.9676i 0.157044i
\(472\) 0 0
\(473\) 43.6579 + 43.6579i 0.0923001 + 0.0923001i
\(474\) 0 0
\(475\) −203.144 + 168.430i −0.427671 + 0.354589i
\(476\) 0 0
\(477\) −325.748 + 325.748i −0.682910 + 0.682910i
\(478\) 0 0
\(479\) 745.527i 1.55642i −0.628002 0.778212i \(-0.716127\pi\)
0.628002 0.778212i \(-0.283873\pi\)
\(480\) 0 0
\(481\) 264.553i 0.550007i
\(482\) 0 0
\(483\) 169.638 140.277i 0.351218 0.290429i
\(484\) 0 0
\(485\) −361.617 + 130.413i −0.745602 + 0.268894i
\(486\) 0 0
\(487\) −665.491 665.491i −1.36651 1.36651i −0.865358 0.501154i \(-0.832909\pi\)
−0.501154 0.865358i \(-0.667091\pi\)
\(488\) 0 0
\(489\) 376.661 0.770268
\(490\) 0 0
\(491\) 652.956i 1.32985i 0.746910 + 0.664925i \(0.231536\pi\)
−0.746910 + 0.664925i \(0.768464\pi\)
\(492\) 0 0
\(493\) −113.301 + 113.301i −0.229819 + 0.229819i
\(494\) 0 0
\(495\) 19.8870 42.3220i 0.0401757 0.0854990i
\(496\) 0 0
\(497\) −439.992 532.085i −0.885296 1.07059i
\(498\) 0 0
\(499\) 521.128 1.04434 0.522172 0.852840i \(-0.325122\pi\)
0.522172 + 0.852840i \(0.325122\pi\)
\(500\) 0 0
\(501\) 24.7817 0.0494646
\(502\) 0 0
\(503\) 339.032 + 339.032i 0.674020 + 0.674020i 0.958640 0.284621i \(-0.0918676\pi\)
−0.284621 + 0.958640i \(0.591868\pi\)
\(504\) 0 0
\(505\) 475.610 + 223.487i 0.941801 + 0.442549i
\(506\) 0 0
\(507\) −94.3885 + 94.3885i −0.186171 + 0.186171i
\(508\) 0 0
\(509\) 254.066 0.499147 0.249573 0.968356i \(-0.419710\pi\)
0.249573 + 0.968356i \(0.419710\pi\)
\(510\) 0 0
\(511\) 45.5688 480.995i 0.0891756 0.941283i
\(512\) 0 0
\(513\) −156.212 156.212i −0.304507 0.304507i
\(514\) 0 0
\(515\) 423.316 152.665i 0.821973 0.296436i
\(516\) 0 0
\(517\) 19.3329 + 19.3329i 0.0373944 + 0.0373944i
\(518\) 0 0
\(519\) −382.191 −0.736399
\(520\) 0 0
\(521\) 550.319i 1.05627i −0.849159 0.528137i \(-0.822891\pi\)
0.849159 0.528137i \(-0.177109\pi\)
\(522\) 0 0
\(523\) −557.209 557.209i −1.06541 1.06541i −0.997706 0.0677028i \(-0.978433\pi\)
−0.0677028 0.997706i \(-0.521567\pi\)
\(524\) 0 0
\(525\) 125.968 + 185.004i 0.239939 + 0.352388i
\(526\) 0 0
\(527\) 66.4703 + 66.4703i 0.126130 + 0.126130i
\(528\) 0 0
\(529\) 75.5461i 0.142809i
\(530\) 0 0
\(531\) 344.333 0.648461
\(532\) 0 0
\(533\) 250.754 + 250.754i 0.470459 + 0.470459i
\(534\) 0 0
\(535\) 451.785 162.932i 0.844458 0.304545i
\(536\) 0 0
\(537\) 85.8020 + 85.8020i 0.159780 + 0.159780i
\(538\) 0 0
\(539\) −61.1208 11.6859i −0.113397 0.0216807i
\(540\) 0 0
\(541\) 533.895 0.986866 0.493433 0.869784i \(-0.335742\pi\)
0.493433 + 0.869784i \(0.335742\pi\)
\(542\) 0 0
\(543\) 238.939 238.939i 0.440034 0.440034i
\(544\) 0 0
\(545\) −46.0663 21.6464i −0.0845253 0.0397181i
\(546\) 0 0
\(547\) 71.9174 + 71.9174i 0.131476 + 0.131476i 0.769782 0.638306i \(-0.220365\pi\)
−0.638306 + 0.769782i \(0.720365\pi\)
\(548\) 0 0
\(549\) 88.5881 0.161363
\(550\) 0 0
\(551\) −355.116 −0.644494
\(552\) 0 0
\(553\) 71.9013 59.4566i 0.130020 0.107516i
\(554\) 0 0
\(555\) −89.4961 + 190.459i −0.161254 + 0.343170i
\(556\) 0 0
\(557\) −355.063 + 355.063i −0.637456 + 0.637456i −0.949927 0.312471i \(-0.898843\pi\)
0.312471 + 0.949927i \(0.398843\pi\)
\(558\) 0 0
\(559\) 390.845i 0.699185i
\(560\) 0 0
\(561\) −7.73572 −0.0137892
\(562\) 0 0
\(563\) 58.3961 + 58.3961i 0.103723 + 0.103723i 0.757064 0.653341i \(-0.226633\pi\)
−0.653341 + 0.757064i \(0.726633\pi\)
\(564\) 0 0
\(565\) −313.998 + 113.240i −0.555748 + 0.200425i
\(566\) 0 0
\(567\) 213.142 176.252i 0.375912 0.310849i
\(568\) 0 0
\(569\) 721.380i 1.26780i 0.773413 + 0.633902i \(0.218548\pi\)
−0.773413 + 0.633902i \(0.781452\pi\)
\(570\) 0 0
\(571\) 432.701i 0.757795i 0.925439 + 0.378897i \(0.123697\pi\)
−0.925439 + 0.378897i \(0.876303\pi\)
\(572\) 0 0
\(573\) −102.791 + 102.791i −0.179392 + 0.179392i
\(574\) 0 0
\(575\) 612.023 + 57.1781i 1.06439 + 0.0994402i
\(576\) 0 0
\(577\) −426.273 426.273i −0.738775 0.738775i 0.233566 0.972341i \(-0.424961\pi\)
−0.972341 + 0.233566i \(0.924961\pi\)
\(578\) 0 0
\(579\) 345.939i 0.597477i
\(580\) 0 0
\(581\) −410.128 38.8549i −0.705901 0.0668759i
\(582\) 0 0
\(583\) −56.1748 + 56.1748i −0.0963548 + 0.0963548i
\(584\) 0 0
\(585\) −278.461 + 100.424i −0.476001 + 0.171665i
\(586\) 0 0
\(587\) 169.531 169.531i 0.288809 0.288809i −0.547800 0.836609i \(-0.684534\pi\)
0.836609 + 0.547800i \(0.184534\pi\)
\(588\) 0 0
\(589\) 208.336i 0.353711i
\(590\) 0 0
\(591\) −112.029 −0.189558
\(592\) 0 0
\(593\) −114.854 + 114.854i −0.193683 + 0.193683i −0.797285 0.603603i \(-0.793731\pi\)
0.603603 + 0.797285i \(0.293731\pi\)
\(594\) 0 0
\(595\) −84.8063 + 143.510i −0.142532 + 0.241194i
\(596\) 0 0
\(597\) 18.4962 18.4962i 0.0309819 0.0309819i
\(598\) 0 0
\(599\) 386.473 0.645198 0.322599 0.946536i \(-0.395444\pi\)
0.322599 + 0.946536i \(0.395444\pi\)
\(600\) 0 0
\(601\) 726.731i 1.20920i 0.796528 + 0.604601i \(0.206668\pi\)
−0.796528 + 0.604601i \(0.793332\pi\)
\(602\) 0 0
\(603\) −360.986 + 360.986i −0.598650 + 0.598650i
\(604\) 0 0
\(605\) −253.868 + 540.263i −0.419616 + 0.892996i
\(606\) 0 0
\(607\) −270.361 + 270.361i −0.445405 + 0.445405i −0.893824 0.448419i \(-0.851987\pi\)
0.448419 + 0.893824i \(0.351987\pi\)
\(608\) 0 0
\(609\) −28.4075 + 299.852i −0.0466462 + 0.492368i
\(610\) 0 0
\(611\) 173.077i 0.283268i
\(612\) 0 0
\(613\) 464.995 + 464.995i 0.758556 + 0.758556i 0.976059 0.217504i \(-0.0697915\pi\)
−0.217504 + 0.976059i \(0.569791\pi\)
\(614\) 0 0
\(615\) 95.6968 + 265.353i 0.155605 + 0.431468i
\(616\) 0 0
\(617\) −268.886 + 268.886i −0.435796 + 0.435796i −0.890594 0.454798i \(-0.849711\pi\)
0.454798 + 0.890594i \(0.349711\pi\)
\(618\) 0 0
\(619\) 20.3355i 0.0328522i −0.999865 0.0164261i \(-0.994771\pi\)
0.999865 0.0164261i \(-0.00522882\pi\)
\(620\) 0 0
\(621\) 514.597i 0.828659i
\(622\) 0 0
\(623\) 594.271 491.415i 0.953886 0.788788i
\(624\) 0 0
\(625\) −115.771 + 614.184i −0.185233 + 0.982695i
\(626\) 0 0
\(627\) −12.1229 12.1229i −0.0193348 0.0193348i
\(628\) 0 0
\(629\) −156.730 −0.249174
\(630\) 0 0
\(631\) 144.263i 0.228625i −0.993445 0.114313i \(-0.963533\pi\)
0.993445 0.114313i \(-0.0364666\pi\)
\(632\) 0 0
\(633\) 333.523 333.523i 0.526893 0.526893i
\(634\) 0 0
\(635\) −317.958 + 114.668i −0.500721 + 0.180580i
\(636\) 0 0
\(637\) 221.281 + 325.898i 0.347381 + 0.511614i
\(638\) 0 0
\(639\) 726.370 1.13673
\(640\) 0 0
\(641\) 292.930 0.456989 0.228494 0.973545i \(-0.426620\pi\)
0.228494 + 0.973545i \(0.426620\pi\)
\(642\) 0 0
\(643\) −134.832 134.832i −0.209692 0.209692i 0.594445 0.804137i \(-0.297372\pi\)
−0.804137 + 0.594445i \(0.797372\pi\)
\(644\) 0 0
\(645\) 132.219 281.379i 0.204991 0.436247i
\(646\) 0 0
\(647\) −553.531 + 553.531i −0.855535 + 0.855535i −0.990808 0.135273i \(-0.956809\pi\)
0.135273 + 0.990808i \(0.456809\pi\)
\(648\) 0 0
\(649\) 59.3797 0.0914941
\(650\) 0 0
\(651\) 175.914 + 16.6659i 0.270222 + 0.0256004i
\(652\) 0 0
\(653\) 493.172 + 493.172i 0.755240 + 0.755240i 0.975452 0.220212i \(-0.0706750\pi\)
−0.220212 + 0.975452i \(0.570675\pi\)
\(654\) 0 0
\(655\) 515.018 1096.02i 0.786287 1.67332i
\(656\) 0 0
\(657\) 359.416 + 359.416i 0.547057 + 0.547057i
\(658\) 0 0
\(659\) 669.889 1.01652 0.508262 0.861203i \(-0.330288\pi\)
0.508262 + 0.861203i \(0.330288\pi\)
\(660\) 0 0
\(661\) 696.612i 1.05388i 0.849904 + 0.526938i \(0.176660\pi\)
−0.849904 + 0.526938i \(0.823340\pi\)
\(662\) 0 0
\(663\) 34.6267 + 34.6267i 0.0522273 + 0.0522273i
\(664\) 0 0
\(665\) −357.803 + 91.9971i −0.538050 + 0.138342i
\(666\) 0 0
\(667\) 584.916 + 584.916i 0.876935 + 0.876935i
\(668\) 0 0
\(669\) 495.679i 0.740925i
\(670\) 0 0
\(671\) 15.2769 0.0227673
\(672\) 0 0
\(673\) 596.598 + 596.598i 0.886476 + 0.886476i 0.994183 0.107707i \(-0.0343508\pi\)
−0.107707 + 0.994183i \(0.534351\pi\)
\(674\) 0 0
\(675\) −520.962 48.6707i −0.771795 0.0721048i
\(676\) 0 0
\(677\) −640.789 640.789i −0.946513 0.946513i 0.0521272 0.998640i \(-0.483400\pi\)
−0.998640 + 0.0521272i \(0.983400\pi\)
\(678\) 0 0
\(679\) −535.781 50.7591i −0.789074 0.0747556i
\(680\) 0 0
\(681\) 20.5925 0.0302386
\(682\) 0 0
\(683\) −807.544 + 807.544i −1.18235 + 1.18235i −0.203215 + 0.979134i \(0.565139\pi\)
−0.979134 + 0.203215i \(0.934861\pi\)
\(684\) 0 0
\(685\) −310.665 861.427i −0.453525 1.25756i
\(686\) 0 0
\(687\) −225.782 225.782i −0.328649 0.328649i
\(688\) 0 0
\(689\) 502.901 0.729900
\(690\) 0 0
\(691\) 828.536 1.19904 0.599520 0.800360i \(-0.295358\pi\)
0.599520 + 0.800360i \(0.295358\pi\)
\(692\) 0 0
\(693\) 50.4513 41.7192i 0.0728012 0.0602008i
\(694\) 0 0
\(695\) −804.904 378.222i −1.15814 0.544204i
\(696\) 0 0
\(697\) −148.555 + 148.555i −0.213136 + 0.213136i
\(698\) 0 0
\(699\) 38.8372i 0.0555611i
\(700\) 0 0
\(701\) 250.093 0.356766 0.178383 0.983961i \(-0.442913\pi\)
0.178383 + 0.983961i \(0.442913\pi\)
\(702\) 0 0
\(703\) −245.618 245.618i −0.349385 0.349385i
\(704\) 0 0
\(705\) 58.5503 124.602i 0.0830500 0.176741i
\(706\) 0 0
\(707\) 468.835 + 566.965i 0.663133 + 0.801931i
\(708\) 0 0
\(709\) 235.177i 0.331703i −0.986151 0.165851i \(-0.946963\pi\)
0.986151 0.165851i \(-0.0530372\pi\)
\(710\) 0 0
\(711\) 98.1551i 0.138052i
\(712\) 0 0
\(713\) 343.152 343.152i 0.481280 0.481280i
\(714\) 0 0
\(715\) −48.0202 + 17.3180i −0.0671611 + 0.0242210i
\(716\) 0 0
\(717\) 315.803 + 315.803i 0.440450 + 0.440450i
\(718\) 0 0
\(719\) 1023.00i 1.42281i −0.702783 0.711405i \(-0.748059\pi\)
0.702783 0.711405i \(-0.251941\pi\)
\(720\) 0 0
\(721\) 627.197 + 59.4196i 0.869898 + 0.0824128i
\(722\) 0 0
\(723\) 198.611 198.611i 0.274704 0.274704i
\(724\) 0 0
\(725\) −647.471 + 536.828i −0.893064 + 0.740453i
\(726\) 0 0
\(727\) −148.496 + 148.496i −0.204259 + 0.204259i −0.801822 0.597563i \(-0.796136\pi\)
0.597563 + 0.801822i \(0.296136\pi\)
\(728\) 0 0
\(729\) 50.0603i 0.0686698i
\(730\) 0 0
\(731\) 231.550 0.316757
\(732\) 0 0
\(733\) 912.975 912.975i 1.24553 1.24553i 0.287859 0.957673i \(-0.407057\pi\)
0.957673 0.287859i \(-0.0929433\pi\)
\(734\) 0 0
\(735\) 49.0579 + 309.480i 0.0667454 + 0.421062i
\(736\) 0 0
\(737\) −62.2515 + 62.2515i −0.0844661 + 0.0844661i
\(738\) 0 0
\(739\) 1331.79 1.80215 0.901075 0.433663i \(-0.142779\pi\)
0.901075 + 0.433663i \(0.142779\pi\)
\(740\) 0 0
\(741\) 108.530i 0.146464i
\(742\) 0 0
\(743\) 204.549 204.549i 0.275301 0.275301i −0.555929 0.831230i \(-0.687637\pi\)
0.831230 + 0.555929i \(0.187637\pi\)
\(744\) 0 0
\(745\) −851.811 400.263i −1.14337 0.537266i
\(746\) 0 0
\(747\) 306.462 306.462i 0.410257 0.410257i
\(748\) 0 0
\(749\) 669.377 + 63.4157i 0.893694 + 0.0846672i
\(750\) 0 0
\(751\) 1160.74i 1.54559i −0.634657 0.772794i \(-0.718859\pi\)
0.634657 0.772794i \(-0.281141\pi\)
\(752\) 0 0
\(753\) 150.799 + 150.799i 0.200265 + 0.200265i
\(754\) 0 0
\(755\) −472.957 222.241i −0.626433 0.294359i
\(756\) 0 0
\(757\) −236.165 + 236.165i −0.311975 + 0.311975i −0.845674 0.533699i \(-0.820801\pi\)
0.533699 + 0.845674i \(0.320801\pi\)
\(758\) 0 0
\(759\) 39.9356i 0.0526161i
\(760\) 0 0
\(761\) 326.095i 0.428508i 0.976778 + 0.214254i \(0.0687321\pi\)
−0.976778 + 0.214254i \(0.931268\pi\)
\(762\) 0 0
\(763\) −45.4101 54.9147i −0.0595152 0.0719721i
\(764\) 0 0
\(765\) −59.4946 164.970i −0.0777707 0.215646i
\(766\) 0 0
\(767\) −265.796 265.796i −0.346540 0.346540i
\(768\) 0 0
\(769\) 194.577 0.253026 0.126513 0.991965i \(-0.459621\pi\)
0.126513 + 0.991965i \(0.459621\pi\)
\(770\) 0 0
\(771\) 312.877i 0.405807i
\(772\) 0 0
\(773\) 480.514 480.514i 0.621623 0.621623i −0.324324 0.945946i \(-0.605137\pi\)
0.945946 + 0.324324i \(0.105137\pi\)
\(774\) 0 0
\(775\) 314.941 + 379.852i 0.406375 + 0.490131i
\(776\) 0 0
\(777\) −227.043 + 187.746i −0.292204 + 0.241630i
\(778\) 0 0
\(779\) −465.613 −0.597706
\(780\) 0 0
\(781\) 125.262 0.160386
\(782\) 0 0
\(783\) −497.888 497.888i −0.635872 0.635872i
\(784\) 0 0
\(785\) −272.022 + 98.1021i −0.346525 + 0.124971i
\(786\) 0 0
\(787\) 747.490 747.490i 0.949797 0.949797i −0.0490018 0.998799i \(-0.515604\pi\)
0.998799 + 0.0490018i \(0.0156040\pi\)
\(788\) 0 0
\(789\) −419.939 −0.532243
\(790\) 0 0
\(791\) −465.227 44.0749i −0.588151 0.0557205i
\(792\) 0 0
\(793\) −68.3826 68.3826i −0.0862328 0.0862328i
\(794\) 0 0
\(795\) 362.052 + 170.127i 0.455411 + 0.213996i
\(796\) 0 0
\(797\) −864.487 864.487i −1.08468 1.08468i −0.996066 0.0886105i \(-0.971757\pi\)
−0.0886105 0.996066i \(-0.528243\pi\)
\(798\) 0 0
\(799\) 102.536 0.128331
\(800\) 0 0
\(801\) 811.262i 1.01281i
\(802\) 0 0
\(803\) 61.9808 + 61.9808i 0.0771866 + 0.0771866i
\(804\) 0 0
\(805\) 740.871 + 437.812i 0.920336 + 0.543866i
\(806\) 0 0
\(807\) 33.6579 + 33.6579i 0.0417075 + 0.0417075i
\(808\) 0 0
\(809\) 648.082i 0.801090i −0.916277 0.400545i \(-0.868821\pi\)
0.916277 0.400545i \(-0.131179\pi\)
\(810\) 0 0
\(811\) 1023.59 1.26213 0.631066 0.775729i \(-0.282618\pi\)
0.631066 + 0.775729i \(0.282618\pi\)
\(812\) 0 0
\(813\) −487.732 487.732i −0.599916 0.599916i
\(814\) 0 0
\(815\) 499.559 + 1385.20i 0.612956 + 1.69964i
\(816\) 0 0
\(817\) 362.870 + 362.870i 0.444149 + 0.444149i
\(818\) 0 0
\(819\) −412.575 39.0867i −0.503754 0.0477249i
\(820\) 0 0
\(821\) −678.092 −0.825934 −0.412967 0.910746i \(-0.635508\pi\)
−0.412967 + 0.910746i \(0.635508\pi\)
\(822\) 0 0
\(823\) −1003.44 + 1003.44i −1.21925 + 1.21925i −0.251350 + 0.967896i \(0.580875\pi\)
−0.967896 + 0.251350i \(0.919125\pi\)
\(824\) 0 0
\(825\) −40.4295 3.77712i −0.0490055 0.00457833i
\(826\) 0 0
\(827\) −173.348 173.348i −0.209611 0.209611i 0.594491 0.804102i \(-0.297353\pi\)
−0.804102 + 0.594491i \(0.797353\pi\)
\(828\) 0 0
\(829\) 1000.54 1.20693 0.603463 0.797391i \(-0.293787\pi\)
0.603463 + 0.797391i \(0.293787\pi\)
\(830\) 0 0
\(831\) 403.962 0.486115
\(832\) 0 0
\(833\) −193.073 + 131.095i −0.231781 + 0.157377i
\(834\) 0 0
\(835\) 32.8676 + 91.1370i 0.0393624 + 0.109146i
\(836\) 0 0
\(837\) −292.096 + 292.096i −0.348979 + 0.348979i
\(838\) 0 0
\(839\) 709.026i 0.845085i −0.906343 0.422542i \(-0.861138\pi\)
0.906343 0.422542i \(-0.138862\pi\)
\(840\) 0 0
\(841\) −290.845 −0.345833
\(842\) 0 0
\(843\) −197.532 197.532i −0.234321 0.234321i
\(844\) 0 0
\(845\) −472.308 221.936i −0.558944 0.262646i
\(846\) 0 0
\(847\) −644.037 + 532.567i −0.760374 + 0.628769i
\(848\) 0 0
\(849\) 129.465i 0.152491i
\(850\) 0 0
\(851\) 809.120i 0.950787i
\(852\) 0 0
\(853\) −69.5704 + 69.5704i −0.0815596 + 0.0815596i −0.746710 0.665150i \(-0.768368\pi\)
0.665150 + 0.746710i \(0.268368\pi\)
\(854\) 0 0
\(855\) 165.294 351.766i 0.193326 0.411422i
\(856\) 0 0
\(857\) −696.784 696.784i −0.813050 0.813050i 0.172040 0.985090i \(-0.444964\pi\)
−0.985090 + 0.172040i \(0.944964\pi\)
\(858\) 0 0
\(859\) 1271.54i 1.48026i 0.672466 + 0.740128i \(0.265235\pi\)
−0.672466 + 0.740128i \(0.734765\pi\)
\(860\) 0 0
\(861\) −37.2468 + 393.154i −0.0432599 + 0.456625i
\(862\) 0 0
\(863\) 292.312 292.312i 0.338717 0.338717i −0.517168 0.855884i \(-0.673014\pi\)
0.855884 + 0.517168i \(0.173014\pi\)
\(864\) 0 0
\(865\) −506.894 1405.54i −0.586005 1.62490i
\(866\) 0 0
\(867\) 240.846 240.846i 0.277792 0.277792i
\(868\) 0 0
\(869\) 16.9267i 0.0194784i
\(870\) 0 0
\(871\) 557.302 0.639842
\(872\) 0 0
\(873\) 400.354 400.354i 0.458596 0.458596i
\(874\) 0 0
\(875\) −513.298 + 708.625i −0.586627 + 0.809857i
\(876\) 0 0
\(877\) 647.803 647.803i 0.738658 0.738658i −0.233660 0.972318i \(-0.575070\pi\)
0.972318 + 0.233660i \(0.0750702\pi\)
\(878\) 0 0
\(879\) 127.703 0.145282
\(880\) 0 0
\(881\) 1482.05i 1.68224i 0.540852 + 0.841118i \(0.318102\pi\)
−0.540852 + 0.841118i \(0.681898\pi\)
\(882\) 0 0
\(883\) 450.273 450.273i 0.509935 0.509935i −0.404571 0.914506i \(-0.632579\pi\)
0.914506 + 0.404571i \(0.132579\pi\)
\(884\) 0 0
\(885\) −101.437 281.270i −0.114618 0.317819i
\(886\) 0 0
\(887\) −565.300 + 565.300i −0.637317 + 0.637317i −0.949893 0.312576i \(-0.898808\pi\)
0.312576 + 0.949893i \(0.398808\pi\)
\(888\) 0 0
\(889\) −471.095 44.6308i −0.529916 0.0502034i
\(890\) 0 0
\(891\) 50.1771i 0.0563155i
\(892\) 0 0
\(893\) 160.689 + 160.689i 0.179942 + 0.179942i
\(894\) 0 0
\(895\) −201.747 + 429.342i −0.225415 + 0.479712i
\(896\) 0 0
\(897\) 178.760 178.760i 0.199287 0.199287i
\(898\) 0 0
\(899\) 664.020i 0.738620i
\(900\) 0 0
\(901\) 297.936i 0.330672i
\(902\) 0 0
\(903\) 335.427 277.372i 0.371459 0.307167i
\(904\) 0 0
\(905\) 1195.62 + 561.817i 1.32112 + 0.620792i
\(906\) 0 0
\(907\) −431.192 431.192i −0.475405 0.475405i 0.428254 0.903659i \(-0.359129\pi\)
−0.903659 + 0.428254i \(0.859129\pi\)
\(908\) 0 0
\(909\) −773.986 −0.851470
\(910\) 0 0
\(911\) 737.904i 0.809993i −0.914318 0.404997i \(-0.867273\pi\)
0.914318 0.404997i \(-0.132727\pi\)
\(912\) 0 0
\(913\) 52.8490 52.8490i 0.0578850 0.0578850i
\(914\) 0 0
\(915\) −26.0972 72.3637i −0.0285216 0.0790860i
\(916\) 0 0
\(917\) 1306.55 1080.41i 1.42481 1.17820i
\(918\) 0 0
\(919\) −1502.99 −1.63546 −0.817729 0.575603i \(-0.804767\pi\)
−0.817729 + 0.575603i \(0.804767\pi\)
\(920\) 0 0
\(921\) 555.209 0.602832
\(922\) 0 0
\(923\) −560.697 560.697i −0.607473 0.607473i
\(924\) 0 0
\(925\) −819.127 76.5268i −0.885543 0.0827316i
\(926\) 0 0
\(927\) −468.663 + 468.663i −0.505569 + 0.505569i
\(928\) 0 0
\(929\) 1160.37 1.24905 0.624525 0.781004i \(-0.285292\pi\)
0.624525 + 0.781004i \(0.285292\pi\)
\(930\) 0 0
\(931\) −508.015 97.1289i −0.545666 0.104327i
\(932\) 0 0
\(933\) −376.491 376.491i −0.403528 0.403528i
\(934\) 0 0
\(935\) −10.2598 28.4488i −0.0109730 0.0304265i
\(936\) 0 0
\(937\) 514.044 + 514.044i 0.548606 + 0.548606i 0.926038 0.377431i \(-0.123193\pi\)
−0.377431 + 0.926038i \(0.623193\pi\)
\(938\) 0 0
\(939\) −642.318 −0.684045
\(940\) 0 0
\(941\) 497.636i 0.528838i 0.964408 + 0.264419i \(0.0851801\pi\)
−0.964408 + 0.264419i \(0.914820\pi\)
\(942\) 0 0
\(943\) 766.917 + 766.917i 0.813273 + 0.813273i
\(944\) 0 0
\(945\) −630.639 372.671i −0.667342 0.394361i
\(946\) 0 0
\(947\) 604.530 + 604.530i 0.638363 + 0.638363i 0.950152 0.311789i \(-0.100928\pi\)
−0.311789 + 0.950152i \(0.600928\pi\)
\(948\) 0 0
\(949\) 554.879i 0.584699i
\(950\) 0 0
\(951\) −161.305 −0.169616
\(952\) 0 0
\(953\) −1107.39 1107.39i −1.16200 1.16200i −0.984037 0.177965i \(-0.943049\pi\)
−0.177965 0.984037i \(-0.556951\pi\)
\(954\) 0 0
\(955\) −514.355 241.694i −0.538592 0.253083i
\(956\) 0 0
\(957\) −38.6388 38.6388i −0.0403750 0.0403750i
\(958\) 0 0
\(959\) 120.916 1276.31i 0.126085 1.33088i
\(960\) 0 0
\(961\) −571.440 −0.594630
\(962\) 0 0
\(963\) −500.181 + 500.181i −0.519399 + 0.519399i
\(964\) 0 0
\(965\) −1272.22 + 458.814i −1.31836 + 0.475455i
\(966\) 0 0
\(967\) −710.155 710.155i −0.734390 0.734390i 0.237097 0.971486i \(-0.423804\pi\)
−0.971486 + 0.237097i \(0.923804\pi\)
\(968\) 0 0
\(969\) −64.2966 −0.0663536
\(970\) 0 0
\(971\) 1519.61 1.56500 0.782500 0.622651i \(-0.213944\pi\)
0.782500 + 0.622651i \(0.213944\pi\)
\(972\) 0 0
\(973\) −793.439 959.511i −0.815457 0.986137i
\(974\) 0 0
\(975\) 164.064 + 197.878i 0.168271 + 0.202952i
\(976\) 0 0
\(977\) −361.913 + 361.913i −0.370433 + 0.370433i −0.867635 0.497202i \(-0.834361\pi\)
0.497202 + 0.867635i \(0.334361\pi\)
\(978\) 0 0
\(979\) 139.901i 0.142902i
\(980\) 0 0
\(981\) 74.9662 0.0764181
\(982\) 0 0
\(983\) −83.5940 83.5940i −0.0850397 0.0850397i 0.663307 0.748347i \(-0.269152\pi\)
−0.748347 + 0.663307i \(0.769152\pi\)
\(984\) 0 0
\(985\) −148.582 411.996i −0.150845 0.418270i
\(986\) 0 0
\(987\) 148.536 122.828i 0.150493 0.124445i
\(988\) 0 0
\(989\) 1195.37i 1.20867i
\(990\) 0 0
\(991\) 1610.97i 1.62560i 0.582543 + 0.812800i \(0.302058\pi\)
−0.582543 + 0.812800i \(0.697942\pi\)
\(992\) 0 0
\(993\) 258.698 258.698i 0.260522 0.260522i
\(994\) 0 0
\(995\) 92.5525 + 43.4901i 0.0930176 + 0.0437086i
\(996\) 0 0
\(997\) −524.198 524.198i −0.525775 0.525775i 0.393535 0.919310i \(-0.371252\pi\)
−0.919310 + 0.393535i \(0.871252\pi\)
\(998\) 0 0
\(999\) 688.733i 0.689423i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.3.v.b.223.20 yes 64
4.3 odd 2 inner 560.3.v.b.223.13 64
5.2 odd 4 inner 560.3.v.b.447.19 yes 64
7.6 odd 2 inner 560.3.v.b.223.14 yes 64
20.7 even 4 inner 560.3.v.b.447.14 yes 64
28.27 even 2 inner 560.3.v.b.223.19 yes 64
35.27 even 4 inner 560.3.v.b.447.13 yes 64
140.27 odd 4 inner 560.3.v.b.447.20 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.3.v.b.223.13 64 4.3 odd 2 inner
560.3.v.b.223.14 yes 64 7.6 odd 2 inner
560.3.v.b.223.19 yes 64 28.27 even 2 inner
560.3.v.b.223.20 yes 64 1.1 even 1 trivial
560.3.v.b.447.13 yes 64 35.27 even 4 inner
560.3.v.b.447.14 yes 64 20.7 even 4 inner
560.3.v.b.447.19 yes 64 5.2 odd 4 inner
560.3.v.b.447.20 yes 64 140.27 odd 4 inner