Properties

Label 558.2.a.e.1.1
Level $558$
Weight $2$
Character 558.1
Self dual yes
Analytic conductor $4.456$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(1,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,0,1,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.45565243279\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 558.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} -4.00000 q^{7} +1.00000 q^{8} -3.00000 q^{10} -3.00000 q^{11} +5.00000 q^{13} -4.00000 q^{14} +1.00000 q^{16} -3.00000 q^{17} -7.00000 q^{19} -3.00000 q^{20} -3.00000 q^{22} -6.00000 q^{23} +4.00000 q^{25} +5.00000 q^{26} -4.00000 q^{28} -6.00000 q^{29} +1.00000 q^{31} +1.00000 q^{32} -3.00000 q^{34} +12.0000 q^{35} +2.00000 q^{37} -7.00000 q^{38} -3.00000 q^{40} +12.0000 q^{41} +8.00000 q^{43} -3.00000 q^{44} -6.00000 q^{46} +3.00000 q^{47} +9.00000 q^{49} +4.00000 q^{50} +5.00000 q^{52} -12.0000 q^{53} +9.00000 q^{55} -4.00000 q^{56} -6.00000 q^{58} -6.00000 q^{59} +5.00000 q^{61} +1.00000 q^{62} +1.00000 q^{64} -15.0000 q^{65} +11.0000 q^{67} -3.00000 q^{68} +12.0000 q^{70} +3.00000 q^{71} -4.00000 q^{73} +2.00000 q^{74} -7.00000 q^{76} +12.0000 q^{77} -13.0000 q^{79} -3.00000 q^{80} +12.0000 q^{82} +3.00000 q^{83} +9.00000 q^{85} +8.00000 q^{86} -3.00000 q^{88} +6.00000 q^{89} -20.0000 q^{91} -6.00000 q^{92} +3.00000 q^{94} +21.0000 q^{95} -7.00000 q^{97} +9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) −3.00000 −0.670820
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 5.00000 0.980581
\(27\) 0 0
\(28\) −4.00000 −0.755929
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) 12.0000 2.02837
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −7.00000 −1.13555
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) 12.0000 1.87409 0.937043 0.349215i \(-0.113552\pi\)
0.937043 + 0.349215i \(0.113552\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 4.00000 0.565685
\(51\) 0 0
\(52\) 5.00000 0.693375
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) −4.00000 −0.534522
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 1.00000 0.127000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −15.0000 −1.86052
\(66\) 0 0
\(67\) 11.0000 1.34386 0.671932 0.740613i \(-0.265465\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) −3.00000 −0.363803
\(69\) 0 0
\(70\) 12.0000 1.43427
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) 12.0000 1.36753
\(78\) 0 0
\(79\) −13.0000 −1.46261 −0.731307 0.682048i \(-0.761089\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) −3.00000 −0.335410
\(81\) 0 0
\(82\) 12.0000 1.32518
\(83\) 3.00000 0.329293 0.164646 0.986353i \(-0.447352\pi\)
0.164646 + 0.986353i \(0.447352\pi\)
\(84\) 0 0
\(85\) 9.00000 0.976187
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) −3.00000 −0.319801
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −20.0000 −2.09657
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) 3.00000 0.309426
\(95\) 21.0000 2.15455
\(96\) 0 0
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 5.00000 0.490290
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 9.00000 0.858116
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 18.0000 1.67851
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −6.00000 −0.552345
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 5.00000 0.452679
\(123\) 0 0
\(124\) 1.00000 0.0898027
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −15.0000 −1.31559
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) 28.0000 2.42791
\(134\) 11.0000 0.950255
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) 12.0000 1.01419
\(141\) 0 0
\(142\) 3.00000 0.251754
\(143\) −15.0000 −1.25436
\(144\) 0 0
\(145\) 18.0000 1.49482
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) 9.00000 0.737309 0.368654 0.929567i \(-0.379819\pi\)
0.368654 + 0.929567i \(0.379819\pi\)
\(150\) 0 0
\(151\) −7.00000 −0.569652 −0.284826 0.958579i \(-0.591936\pi\)
−0.284826 + 0.958579i \(0.591936\pi\)
\(152\) −7.00000 −0.567775
\(153\) 0 0
\(154\) 12.0000 0.966988
\(155\) −3.00000 −0.240966
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) −13.0000 −1.03422
\(159\) 0 0
\(160\) −3.00000 −0.237171
\(161\) 24.0000 1.89146
\(162\) 0 0
\(163\) −7.00000 −0.548282 −0.274141 0.961689i \(-0.588394\pi\)
−0.274141 + 0.961689i \(0.588394\pi\)
\(164\) 12.0000 0.937043
\(165\) 0 0
\(166\) 3.00000 0.232845
\(167\) 6.00000 0.464294 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 9.00000 0.690268
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) −21.0000 −1.59660 −0.798300 0.602260i \(-0.794267\pi\)
−0.798300 + 0.602260i \(0.794267\pi\)
\(174\) 0 0
\(175\) −16.0000 −1.20949
\(176\) −3.00000 −0.226134
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) −21.0000 −1.56961 −0.784807 0.619740i \(-0.787238\pi\)
−0.784807 + 0.619740i \(0.787238\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −20.0000 −1.48250
\(183\) 0 0
\(184\) −6.00000 −0.442326
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) 9.00000 0.658145
\(188\) 3.00000 0.218797
\(189\) 0 0
\(190\) 21.0000 1.52350
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −1.00000 −0.0719816 −0.0359908 0.999352i \(-0.511459\pi\)
−0.0359908 + 0.999352i \(0.511459\pi\)
\(194\) −7.00000 −0.502571
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −1.00000 −0.0708881 −0.0354441 0.999372i \(-0.511285\pi\)
−0.0354441 + 0.999372i \(0.511285\pi\)
\(200\) 4.00000 0.282843
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) 24.0000 1.68447
\(204\) 0 0
\(205\) −36.0000 −2.51435
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) 5.00000 0.346688
\(209\) 21.0000 1.45260
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) −12.0000 −0.824163
\(213\) 0 0
\(214\) −18.0000 −1.23045
\(215\) −24.0000 −1.63679
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) −16.0000 −1.08366
\(219\) 0 0
\(220\) 9.00000 0.606780
\(221\) −15.0000 −1.00901
\(222\) 0 0
\(223\) −19.0000 −1.27233 −0.636167 0.771551i \(-0.719481\pi\)
−0.636167 + 0.771551i \(0.719481\pi\)
\(224\) −4.00000 −0.267261
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 5.00000 0.330409 0.165205 0.986259i \(-0.447172\pi\)
0.165205 + 0.986259i \(0.447172\pi\)
\(230\) 18.0000 1.18688
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) −6.00000 −0.390567
\(237\) 0 0
\(238\) 12.0000 0.777844
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 20.0000 1.28831 0.644157 0.764894i \(-0.277208\pi\)
0.644157 + 0.764894i \(0.277208\pi\)
\(242\) −2.00000 −0.128565
\(243\) 0 0
\(244\) 5.00000 0.320092
\(245\) −27.0000 −1.72497
\(246\) 0 0
\(247\) −35.0000 −2.22700
\(248\) 1.00000 0.0635001
\(249\) 0 0
\(250\) 3.00000 0.189737
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 18.0000 1.13165
\(254\) −16.0000 −1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) −15.0000 −0.930261
\(261\) 0 0
\(262\) 6.00000 0.370681
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 36.0000 2.21146
\(266\) 28.0000 1.71679
\(267\) 0 0
\(268\) 11.0000 0.671932
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 11.0000 0.668202 0.334101 0.942537i \(-0.391567\pi\)
0.334101 + 0.942537i \(0.391567\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) −12.0000 −0.723627
\(276\) 0 0
\(277\) −19.0000 −1.14160 −0.570800 0.821089i \(-0.693367\pi\)
−0.570800 + 0.821089i \(0.693367\pi\)
\(278\) 2.00000 0.119952
\(279\) 0 0
\(280\) 12.0000 0.717137
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 0 0
\(283\) −13.0000 −0.772770 −0.386385 0.922338i \(-0.626276\pi\)
−0.386385 + 0.922338i \(0.626276\pi\)
\(284\) 3.00000 0.178017
\(285\) 0 0
\(286\) −15.0000 −0.886969
\(287\) −48.0000 −2.83335
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 18.0000 1.05700
\(291\) 0 0
\(292\) −4.00000 −0.234082
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 18.0000 1.04800
\(296\) 2.00000 0.116248
\(297\) 0 0
\(298\) 9.00000 0.521356
\(299\) −30.0000 −1.73494
\(300\) 0 0
\(301\) −32.0000 −1.84445
\(302\) −7.00000 −0.402805
\(303\) 0 0
\(304\) −7.00000 −0.401478
\(305\) −15.0000 −0.858898
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 12.0000 0.683763
\(309\) 0 0
\(310\) −3.00000 −0.170389
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) 0 0
\(313\) 20.0000 1.13047 0.565233 0.824931i \(-0.308786\pi\)
0.565233 + 0.824931i \(0.308786\pi\)
\(314\) −22.0000 −1.24153
\(315\) 0 0
\(316\) −13.0000 −0.731307
\(317\) −21.0000 −1.17948 −0.589739 0.807594i \(-0.700769\pi\)
−0.589739 + 0.807594i \(0.700769\pi\)
\(318\) 0 0
\(319\) 18.0000 1.00781
\(320\) −3.00000 −0.167705
\(321\) 0 0
\(322\) 24.0000 1.33747
\(323\) 21.0000 1.16847
\(324\) 0 0
\(325\) 20.0000 1.10940
\(326\) −7.00000 −0.387694
\(327\) 0 0
\(328\) 12.0000 0.662589
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) 2.00000 0.109930 0.0549650 0.998488i \(-0.482495\pi\)
0.0549650 + 0.998488i \(0.482495\pi\)
\(332\) 3.00000 0.164646
\(333\) 0 0
\(334\) 6.00000 0.328305
\(335\) −33.0000 −1.80298
\(336\) 0 0
\(337\) 20.0000 1.08947 0.544735 0.838608i \(-0.316630\pi\)
0.544735 + 0.838608i \(0.316630\pi\)
\(338\) 12.0000 0.652714
\(339\) 0 0
\(340\) 9.00000 0.488094
\(341\) −3.00000 −0.162459
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) −21.0000 −1.12897
\(347\) −3.00000 −0.161048 −0.0805242 0.996753i \(-0.525659\pi\)
−0.0805242 + 0.996753i \(0.525659\pi\)
\(348\) 0 0
\(349\) 8.00000 0.428230 0.214115 0.976808i \(-0.431313\pi\)
0.214115 + 0.976808i \(0.431313\pi\)
\(350\) −16.0000 −0.855236
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) −21.0000 −1.11772 −0.558859 0.829263i \(-0.688761\pi\)
−0.558859 + 0.829263i \(0.688761\pi\)
\(354\) 0 0
\(355\) −9.00000 −0.477670
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) −21.0000 −1.10988
\(359\) 3.00000 0.158334 0.0791670 0.996861i \(-0.474774\pi\)
0.0791670 + 0.996861i \(0.474774\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) −20.0000 −1.04828
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) −25.0000 −1.30499 −0.652495 0.757793i \(-0.726278\pi\)
−0.652495 + 0.757793i \(0.726278\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) −6.00000 −0.311925
\(371\) 48.0000 2.49204
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 9.00000 0.465379
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) −30.0000 −1.54508
\(378\) 0 0
\(379\) −13.0000 −0.667765 −0.333883 0.942615i \(-0.608359\pi\)
−0.333883 + 0.942615i \(0.608359\pi\)
\(380\) 21.0000 1.07728
\(381\) 0 0
\(382\) 0 0
\(383\) 36.0000 1.83951 0.919757 0.392488i \(-0.128386\pi\)
0.919757 + 0.392488i \(0.128386\pi\)
\(384\) 0 0
\(385\) −36.0000 −1.83473
\(386\) −1.00000 −0.0508987
\(387\) 0 0
\(388\) −7.00000 −0.355371
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 39.0000 1.96230
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) −1.00000 −0.0501255
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) 3.00000 0.149813 0.0749064 0.997191i \(-0.476134\pi\)
0.0749064 + 0.997191i \(0.476134\pi\)
\(402\) 0 0
\(403\) 5.00000 0.249068
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 32.0000 1.58230 0.791149 0.611623i \(-0.209483\pi\)
0.791149 + 0.611623i \(0.209483\pi\)
\(410\) −36.0000 −1.77791
\(411\) 0 0
\(412\) −4.00000 −0.197066
\(413\) 24.0000 1.18096
\(414\) 0 0
\(415\) −9.00000 −0.441793
\(416\) 5.00000 0.245145
\(417\) 0 0
\(418\) 21.0000 1.02714
\(419\) 30.0000 1.46560 0.732798 0.680446i \(-0.238214\pi\)
0.732798 + 0.680446i \(0.238214\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 8.00000 0.389434
\(423\) 0 0
\(424\) −12.0000 −0.582772
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) −20.0000 −0.967868
\(428\) −18.0000 −0.870063
\(429\) 0 0
\(430\) −24.0000 −1.15738
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) −16.0000 −0.766261
\(437\) 42.0000 2.00913
\(438\) 0 0
\(439\) 26.0000 1.24091 0.620456 0.784241i \(-0.286947\pi\)
0.620456 + 0.784241i \(0.286947\pi\)
\(440\) 9.00000 0.429058
\(441\) 0 0
\(442\) −15.0000 −0.713477
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) −19.0000 −0.899676
\(447\) 0 0
\(448\) −4.00000 −0.188982
\(449\) −21.0000 −0.991051 −0.495526 0.868593i \(-0.665025\pi\)
−0.495526 + 0.868593i \(0.665025\pi\)
\(450\) 0 0
\(451\) −36.0000 −1.69517
\(452\) −6.00000 −0.282216
\(453\) 0 0
\(454\) −12.0000 −0.563188
\(455\) 60.0000 2.81284
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 5.00000 0.233635
\(459\) 0 0
\(460\) 18.0000 0.839254
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −1.00000 −0.0464739 −0.0232370 0.999730i \(-0.507397\pi\)
−0.0232370 + 0.999730i \(0.507397\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) 24.0000 1.11178
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −44.0000 −2.03173
\(470\) −9.00000 −0.415139
\(471\) 0 0
\(472\) −6.00000 −0.276172
\(473\) −24.0000 −1.10352
\(474\) 0 0
\(475\) −28.0000 −1.28473
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 6.00000 0.274434
\(479\) −15.0000 −0.685367 −0.342684 0.939451i \(-0.611336\pi\)
−0.342684 + 0.939451i \(0.611336\pi\)
\(480\) 0 0
\(481\) 10.0000 0.455961
\(482\) 20.0000 0.910975
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 21.0000 0.953561
\(486\) 0 0
\(487\) 23.0000 1.04223 0.521115 0.853487i \(-0.325516\pi\)
0.521115 + 0.853487i \(0.325516\pi\)
\(488\) 5.00000 0.226339
\(489\) 0 0
\(490\) −27.0000 −1.21974
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 0 0
\(493\) 18.0000 0.810679
\(494\) −35.0000 −1.57472
\(495\) 0 0
\(496\) 1.00000 0.0449013
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 3.00000 0.134164
\(501\) 0 0
\(502\) 12.0000 0.535586
\(503\) 39.0000 1.73892 0.869462 0.494000i \(-0.164466\pi\)
0.869462 + 0.494000i \(0.164466\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 18.0000 0.800198
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) −24.0000 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(510\) 0 0
\(511\) 16.0000 0.707798
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0 0
\(515\) 12.0000 0.528783
\(516\) 0 0
\(517\) −9.00000 −0.395820
\(518\) −8.00000 −0.351500
\(519\) 0 0
\(520\) −15.0000 −0.657794
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 6.00000 0.262111
\(525\) 0 0
\(526\) 0 0
\(527\) −3.00000 −0.130682
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 36.0000 1.56374
\(531\) 0 0
\(532\) 28.0000 1.21395
\(533\) 60.0000 2.59889
\(534\) 0 0
\(535\) 54.0000 2.33462
\(536\) 11.0000 0.475128
\(537\) 0 0
\(538\) 24.0000 1.03471
\(539\) −27.0000 −1.16297
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 11.0000 0.472490
\(543\) 0 0
\(544\) −3.00000 −0.128624
\(545\) 48.0000 2.05609
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 18.0000 0.768922
\(549\) 0 0
\(550\) −12.0000 −0.511682
\(551\) 42.0000 1.78926
\(552\) 0 0
\(553\) 52.0000 2.21126
\(554\) −19.0000 −0.807233
\(555\) 0 0
\(556\) 2.00000 0.0848189
\(557\) 36.0000 1.52537 0.762684 0.646771i \(-0.223881\pi\)
0.762684 + 0.646771i \(0.223881\pi\)
\(558\) 0 0
\(559\) 40.0000 1.69182
\(560\) 12.0000 0.507093
\(561\) 0 0
\(562\) 12.0000 0.506189
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) −13.0000 −0.546431
\(567\) 0 0
\(568\) 3.00000 0.125877
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) −15.0000 −0.627182
\(573\) 0 0
\(574\) −48.0000 −2.00348
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) 35.0000 1.45707 0.728535 0.685009i \(-0.240202\pi\)
0.728535 + 0.685009i \(0.240202\pi\)
\(578\) −8.00000 −0.332756
\(579\) 0 0
\(580\) 18.0000 0.747409
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 36.0000 1.49097
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 3.00000 0.123823 0.0619116 0.998082i \(-0.480280\pi\)
0.0619116 + 0.998082i \(0.480280\pi\)
\(588\) 0 0
\(589\) −7.00000 −0.288430
\(590\) 18.0000 0.741048
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) 24.0000 0.985562 0.492781 0.870153i \(-0.335980\pi\)
0.492781 + 0.870153i \(0.335980\pi\)
\(594\) 0 0
\(595\) −36.0000 −1.47586
\(596\) 9.00000 0.368654
\(597\) 0 0
\(598\) −30.0000 −1.22679
\(599\) −15.0000 −0.612883 −0.306442 0.951889i \(-0.599138\pi\)
−0.306442 + 0.951889i \(0.599138\pi\)
\(600\) 0 0
\(601\) −46.0000 −1.87638 −0.938190 0.346122i \(-0.887498\pi\)
−0.938190 + 0.346122i \(0.887498\pi\)
\(602\) −32.0000 −1.30422
\(603\) 0 0
\(604\) −7.00000 −0.284826
\(605\) 6.00000 0.243935
\(606\) 0 0
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) −7.00000 −0.283887
\(609\) 0 0
\(610\) −15.0000 −0.607332
\(611\) 15.0000 0.606835
\(612\) 0 0
\(613\) −7.00000 −0.282727 −0.141364 0.989958i \(-0.545149\pi\)
−0.141364 + 0.989958i \(0.545149\pi\)
\(614\) −16.0000 −0.645707
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) 8.00000 0.321547 0.160774 0.986991i \(-0.448601\pi\)
0.160774 + 0.986991i \(0.448601\pi\)
\(620\) −3.00000 −0.120483
\(621\) 0 0
\(622\) −3.00000 −0.120289
\(623\) −24.0000 −0.961540
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 20.0000 0.799361
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) −6.00000 −0.239236
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −13.0000 −0.517112
\(633\) 0 0
\(634\) −21.0000 −0.834017
\(635\) 48.0000 1.90482
\(636\) 0 0
\(637\) 45.0000 1.78296
\(638\) 18.0000 0.712627
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) 21.0000 0.829450 0.414725 0.909947i \(-0.363878\pi\)
0.414725 + 0.909947i \(0.363878\pi\)
\(642\) 0 0
\(643\) 50.0000 1.97181 0.985904 0.167313i \(-0.0535092\pi\)
0.985904 + 0.167313i \(0.0535092\pi\)
\(644\) 24.0000 0.945732
\(645\) 0 0
\(646\) 21.0000 0.826234
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) 0 0
\(649\) 18.0000 0.706562
\(650\) 20.0000 0.784465
\(651\) 0 0
\(652\) −7.00000 −0.274141
\(653\) 9.00000 0.352197 0.176099 0.984373i \(-0.443652\pi\)
0.176099 + 0.984373i \(0.443652\pi\)
\(654\) 0 0
\(655\) −18.0000 −0.703318
\(656\) 12.0000 0.468521
\(657\) 0 0
\(658\) −12.0000 −0.467809
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 2.00000 0.0777322
\(663\) 0 0
\(664\) 3.00000 0.116423
\(665\) −84.0000 −3.25738
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 6.00000 0.232147
\(669\) 0 0
\(670\) −33.0000 −1.27490
\(671\) −15.0000 −0.579069
\(672\) 0 0
\(673\) −22.0000 −0.848038 −0.424019 0.905653i \(-0.639381\pi\)
−0.424019 + 0.905653i \(0.639381\pi\)
\(674\) 20.0000 0.770371
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −48.0000 −1.84479 −0.922395 0.386248i \(-0.873771\pi\)
−0.922395 + 0.386248i \(0.873771\pi\)
\(678\) 0 0
\(679\) 28.0000 1.07454
\(680\) 9.00000 0.345134
\(681\) 0 0
\(682\) −3.00000 −0.114876
\(683\) −48.0000 −1.83667 −0.918334 0.395805i \(-0.870466\pi\)
−0.918334 + 0.395805i \(0.870466\pi\)
\(684\) 0 0
\(685\) −54.0000 −2.06323
\(686\) −8.00000 −0.305441
\(687\) 0 0
\(688\) 8.00000 0.304997
\(689\) −60.0000 −2.28582
\(690\) 0 0
\(691\) −37.0000 −1.40755 −0.703773 0.710425i \(-0.748503\pi\)
−0.703773 + 0.710425i \(0.748503\pi\)
\(692\) −21.0000 −0.798300
\(693\) 0 0
\(694\) −3.00000 −0.113878
\(695\) −6.00000 −0.227593
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 8.00000 0.302804
\(699\) 0 0
\(700\) −16.0000 −0.604743
\(701\) 45.0000 1.69963 0.849813 0.527084i \(-0.176715\pi\)
0.849813 + 0.527084i \(0.176715\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) −3.00000 −0.113067
\(705\) 0 0
\(706\) −21.0000 −0.790345
\(707\) −24.0000 −0.902613
\(708\) 0 0
\(709\) 11.0000 0.413114 0.206557 0.978435i \(-0.433774\pi\)
0.206557 + 0.978435i \(0.433774\pi\)
\(710\) −9.00000 −0.337764
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) −6.00000 −0.224702
\(714\) 0 0
\(715\) 45.0000 1.68290
\(716\) −21.0000 −0.784807
\(717\) 0 0
\(718\) 3.00000 0.111959
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 30.0000 1.11648
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) −24.0000 −0.891338
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) −20.0000 −0.741249
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) −25.0000 −0.922767
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) −33.0000 −1.21557
\(738\) 0 0
\(739\) 2.00000 0.0735712 0.0367856 0.999323i \(-0.488288\pi\)
0.0367856 + 0.999323i \(0.488288\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) 48.0000 1.76214
\(743\) −36.0000 −1.32071 −0.660356 0.750953i \(-0.729595\pi\)
−0.660356 + 0.750953i \(0.729595\pi\)
\(744\) 0 0
\(745\) −27.0000 −0.989203
\(746\) −4.00000 −0.146450
\(747\) 0 0
\(748\) 9.00000 0.329073
\(749\) 72.0000 2.63082
\(750\) 0 0
\(751\) −46.0000 −1.67856 −0.839282 0.543696i \(-0.817024\pi\)
−0.839282 + 0.543696i \(0.817024\pi\)
\(752\) 3.00000 0.109399
\(753\) 0 0
\(754\) −30.0000 −1.09254
\(755\) 21.0000 0.764268
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) −13.0000 −0.472181
\(759\) 0 0
\(760\) 21.0000 0.761750
\(761\) −9.00000 −0.326250 −0.163125 0.986605i \(-0.552157\pi\)
−0.163125 + 0.986605i \(0.552157\pi\)
\(762\) 0 0
\(763\) 64.0000 2.31696
\(764\) 0 0
\(765\) 0 0
\(766\) 36.0000 1.30073
\(767\) −30.0000 −1.08324
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) −36.0000 −1.29735
\(771\) 0 0
\(772\) −1.00000 −0.0359908
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) −7.00000 −0.251285
\(777\) 0 0
\(778\) −30.0000 −1.07555
\(779\) −84.0000 −3.00961
\(780\) 0 0
\(781\) −9.00000 −0.322045
\(782\) 18.0000 0.643679
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) 66.0000 2.35564
\(786\) 0 0
\(787\) 14.0000 0.499046 0.249523 0.968369i \(-0.419726\pi\)
0.249523 + 0.968369i \(0.419726\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 39.0000 1.38756
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) 25.0000 0.887776
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) −1.00000 −0.0354441
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) 0 0
\(799\) −9.00000 −0.318397
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) 3.00000 0.105934
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) −72.0000 −2.53767
\(806\) 5.00000 0.176117
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) 9.00000 0.316423 0.158212 0.987405i \(-0.449427\pi\)
0.158212 + 0.987405i \(0.449427\pi\)
\(810\) 0 0
\(811\) −52.0000 −1.82597 −0.912983 0.407997i \(-0.866228\pi\)
−0.912983 + 0.407997i \(0.866228\pi\)
\(812\) 24.0000 0.842235
\(813\) 0 0
\(814\) −6.00000 −0.210300
\(815\) 21.0000 0.735598
\(816\) 0 0
\(817\) −56.0000 −1.95919
\(818\) 32.0000 1.11885
\(819\) 0 0
\(820\) −36.0000 −1.25717
\(821\) 48.0000 1.67521 0.837606 0.546275i \(-0.183955\pi\)
0.837606 + 0.546275i \(0.183955\pi\)
\(822\) 0 0
\(823\) −7.00000 −0.244005 −0.122002 0.992530i \(-0.538932\pi\)
−0.122002 + 0.992530i \(0.538932\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) 24.0000 0.835067
\(827\) 15.0000 0.521601 0.260801 0.965393i \(-0.416014\pi\)
0.260801 + 0.965393i \(0.416014\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) −9.00000 −0.312395
\(831\) 0 0
\(832\) 5.00000 0.173344
\(833\) −27.0000 −0.935495
\(834\) 0 0
\(835\) −18.0000 −0.622916
\(836\) 21.0000 0.726300
\(837\) 0 0
\(838\) 30.0000 1.03633
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −22.0000 −0.758170
\(843\) 0 0
\(844\) 8.00000 0.275371
\(845\) −36.0000 −1.23844
\(846\) 0 0
\(847\) 8.00000 0.274883
\(848\) −12.0000 −0.412082
\(849\) 0 0
\(850\) −12.0000 −0.411597
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) −34.0000 −1.16414 −0.582069 0.813139i \(-0.697757\pi\)
−0.582069 + 0.813139i \(0.697757\pi\)
\(854\) −20.0000 −0.684386
\(855\) 0 0
\(856\) −18.0000 −0.615227
\(857\) −12.0000 −0.409912 −0.204956 0.978771i \(-0.565705\pi\)
−0.204956 + 0.978771i \(0.565705\pi\)
\(858\) 0 0
\(859\) 26.0000 0.887109 0.443554 0.896248i \(-0.353717\pi\)
0.443554 + 0.896248i \(0.353717\pi\)
\(860\) −24.0000 −0.818393
\(861\) 0 0
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 63.0000 2.14206
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) −4.00000 −0.135769
\(869\) 39.0000 1.32298
\(870\) 0 0
\(871\) 55.0000 1.86360
\(872\) −16.0000 −0.541828
\(873\) 0 0
\(874\) 42.0000 1.42067
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) −46.0000 −1.55331 −0.776655 0.629926i \(-0.783085\pi\)
−0.776655 + 0.629926i \(0.783085\pi\)
\(878\) 26.0000 0.877457
\(879\) 0 0
\(880\) 9.00000 0.303390
\(881\) −3.00000 −0.101073 −0.0505363 0.998722i \(-0.516093\pi\)
−0.0505363 + 0.998722i \(0.516093\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) −15.0000 −0.504505
\(885\) 0 0
\(886\) −18.0000 −0.604722
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 64.0000 2.14649
\(890\) −18.0000 −0.603361
\(891\) 0 0
\(892\) −19.0000 −0.636167
\(893\) −21.0000 −0.702738
\(894\) 0 0
\(895\) 63.0000 2.10586
\(896\) −4.00000 −0.133631
\(897\) 0 0
\(898\) −21.0000 −0.700779
\(899\) −6.00000 −0.200111
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) −36.0000 −1.19867
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) −6.00000 −0.199447
\(906\) 0 0
\(907\) 5.00000 0.166022 0.0830111 0.996549i \(-0.473546\pi\)
0.0830111 + 0.996549i \(0.473546\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 60.0000 1.98898
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) −9.00000 −0.297857
\(914\) 26.0000 0.860004
\(915\) 0 0
\(916\) 5.00000 0.165205
\(917\) −24.0000 −0.792550
\(918\) 0 0
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 18.0000 0.593442
\(921\) 0 0
\(922\) −30.0000 −0.987997
\(923\) 15.0000 0.493731
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) −1.00000 −0.0328620
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) −63.0000 −2.06474
\(932\) 24.0000 0.786146
\(933\) 0 0
\(934\) 0 0
\(935\) −27.0000 −0.882994
\(936\) 0 0
\(937\) −31.0000 −1.01273 −0.506363 0.862320i \(-0.669010\pi\)
−0.506363 + 0.862320i \(0.669010\pi\)
\(938\) −44.0000 −1.43665
\(939\) 0 0
\(940\) −9.00000 −0.293548
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 0 0
\(943\) −72.0000 −2.34464
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) −24.0000 −0.780307
\(947\) 15.0000 0.487435 0.243717 0.969846i \(-0.421633\pi\)
0.243717 + 0.969846i \(0.421633\pi\)
\(948\) 0 0
\(949\) −20.0000 −0.649227
\(950\) −28.0000 −0.908440
\(951\) 0 0
\(952\) 12.0000 0.388922
\(953\) 33.0000 1.06897 0.534487 0.845176i \(-0.320505\pi\)
0.534487 + 0.845176i \(0.320505\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 6.00000 0.194054
\(957\) 0 0
\(958\) −15.0000 −0.484628
\(959\) −72.0000 −2.32500
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 10.0000 0.322413
\(963\) 0 0
\(964\) 20.0000 0.644157
\(965\) 3.00000 0.0965734
\(966\) 0 0
\(967\) 11.0000 0.353736 0.176868 0.984235i \(-0.443403\pi\)
0.176868 + 0.984235i \(0.443403\pi\)
\(968\) −2.00000 −0.0642824
\(969\) 0 0
\(970\) 21.0000 0.674269
\(971\) −18.0000 −0.577647 −0.288824 0.957382i \(-0.593264\pi\)
−0.288824 + 0.957382i \(0.593264\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) 23.0000 0.736968
\(975\) 0 0
\(976\) 5.00000 0.160046
\(977\) −54.0000 −1.72761 −0.863807 0.503824i \(-0.831926\pi\)
−0.863807 + 0.503824i \(0.831926\pi\)
\(978\) 0 0
\(979\) −18.0000 −0.575282
\(980\) −27.0000 −0.862483
\(981\) 0 0
\(982\) −36.0000 −1.14881
\(983\) −6.00000 −0.191370 −0.0956851 0.995412i \(-0.530504\pi\)
−0.0956851 + 0.995412i \(0.530504\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) 18.0000 0.573237
\(987\) 0 0
\(988\) −35.0000 −1.11350
\(989\) −48.0000 −1.52631
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 1.00000 0.0317500
\(993\) 0 0
\(994\) −12.0000 −0.380617
\(995\) 3.00000 0.0951064
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) 32.0000 1.01294
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.a.e.1.1 yes 1
3.2 odd 2 558.2.a.d.1.1 1
4.3 odd 2 4464.2.a.d.1.1 1
12.11 even 2 4464.2.a.y.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.a.d.1.1 1 3.2 odd 2
558.2.a.e.1.1 yes 1 1.1 even 1 trivial
4464.2.a.d.1.1 1 4.3 odd 2
4464.2.a.y.1.1 1 12.11 even 2