Properties

Label 552.4.m.a.137.14
Level $552$
Weight $4$
Character 552.137
Analytic conductor $32.569$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,4,Mod(137,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.137"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 552.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5690543232\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 137.14
Character \(\chi\) \(=\) 552.137
Dual form 552.4.m.a.137.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.28443 - 2.94001i) q^{3} +12.3977 q^{5} +18.3617i q^{7} +(9.71264 + 25.1926i) q^{9} +9.38725 q^{11} +81.1567 q^{13} +(-53.1169 - 36.4493i) q^{15} -92.4031 q^{17} +109.758i q^{19} +(53.9836 - 78.6694i) q^{21} +(-98.5466 + 49.5538i) q^{23} +28.7019 q^{25} +(32.4533 - 136.491i) q^{27} -102.963i q^{29} -264.903 q^{31} +(-40.2190 - 27.5986i) q^{33} +227.642i q^{35} +127.694i q^{37} +(-347.710 - 238.602i) q^{39} +166.636i q^{41} -14.5807i q^{43} +(120.414 + 312.329i) q^{45} +177.957i q^{47} +5.84812 q^{49} +(395.894 + 271.666i) q^{51} +109.326 q^{53} +116.380 q^{55} +(322.691 - 470.251i) q^{57} -108.660i q^{59} -114.919i q^{61} +(-462.578 + 178.341i) q^{63} +1006.15 q^{65} +646.548i q^{67} +(567.904 + 77.4186i) q^{69} -235.609i q^{71} -218.735 q^{73} +(-122.971 - 84.3839i) q^{75} +172.366i q^{77} +1338.31i q^{79} +(-540.329 + 489.372i) q^{81} +126.330 q^{83} -1145.58 q^{85} +(-302.713 + 441.139i) q^{87} +1177.54 q^{89} +1490.18i q^{91} +(1134.96 + 778.817i) q^{93} +1360.75i q^{95} +358.360i q^{97} +(91.1750 + 236.489i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 28 q^{9} + 1872 q^{25} - 444 q^{27} - 216 q^{31} - 68 q^{39} - 4200 q^{49} - 576 q^{55} + 1376 q^{69} - 384 q^{73} - 3592 q^{75} - 252 q^{81} + 3480 q^{85} - 412 q^{87} + 780 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.28443 2.94001i −0.824538 0.565806i
\(4\) 0 0
\(5\) 12.3977 1.10888 0.554440 0.832224i \(-0.312932\pi\)
0.554440 + 0.832224i \(0.312932\pi\)
\(6\) 0 0
\(7\) 18.3617i 0.991438i 0.868483 + 0.495719i \(0.165095\pi\)
−0.868483 + 0.495719i \(0.834905\pi\)
\(8\) 0 0
\(9\) 9.71264 + 25.1926i 0.359727 + 0.933057i
\(10\) 0 0
\(11\) 9.38725 0.257306 0.128653 0.991690i \(-0.458935\pi\)
0.128653 + 0.991690i \(0.458935\pi\)
\(12\) 0 0
\(13\) 81.1567 1.73145 0.865724 0.500521i \(-0.166858\pi\)
0.865724 + 0.500521i \(0.166858\pi\)
\(14\) 0 0
\(15\) −53.1169 36.4493i −0.914314 0.627411i
\(16\) 0 0
\(17\) −92.4031 −1.31830 −0.659148 0.752013i \(-0.729083\pi\)
−0.659148 + 0.752013i \(0.729083\pi\)
\(18\) 0 0
\(19\) 109.758i 1.32528i 0.748939 + 0.662639i \(0.230563\pi\)
−0.748939 + 0.662639i \(0.769437\pi\)
\(20\) 0 0
\(21\) 53.9836 78.6694i 0.560962 0.817479i
\(22\) 0 0
\(23\) −98.5466 + 49.5538i −0.893408 + 0.449247i
\(24\) 0 0
\(25\) 28.7019 0.229615
\(26\) 0 0
\(27\) 32.4533 136.491i 0.231320 0.972878i
\(28\) 0 0
\(29\) 102.963i 0.659304i −0.944103 0.329652i \(-0.893069\pi\)
0.944103 0.329652i \(-0.106931\pi\)
\(30\) 0 0
\(31\) −264.903 −1.53477 −0.767386 0.641186i \(-0.778443\pi\)
−0.767386 + 0.641186i \(0.778443\pi\)
\(32\) 0 0
\(33\) −40.2190 27.5986i −0.212158 0.145585i
\(34\) 0 0
\(35\) 227.642i 1.09939i
\(36\) 0 0
\(37\) 127.694i 0.567370i 0.958917 + 0.283685i \(0.0915571\pi\)
−0.958917 + 0.283685i \(0.908443\pi\)
\(38\) 0 0
\(39\) −347.710 238.602i −1.42765 0.979664i
\(40\) 0 0
\(41\) 166.636i 0.634736i 0.948303 + 0.317368i \(0.102799\pi\)
−0.948303 + 0.317368i \(0.897201\pi\)
\(42\) 0 0
\(43\) 14.5807i 0.0517100i −0.999666 0.0258550i \(-0.991769\pi\)
0.999666 0.0258550i \(-0.00823082\pi\)
\(44\) 0 0
\(45\) 120.414 + 312.329i 0.398895 + 1.03465i
\(46\) 0 0
\(47\) 177.957i 0.552292i 0.961116 + 0.276146i \(0.0890574\pi\)
−0.961116 + 0.276146i \(0.910943\pi\)
\(48\) 0 0
\(49\) 5.84812 0.0170499
\(50\) 0 0
\(51\) 395.894 + 271.666i 1.08699 + 0.745900i
\(52\) 0 0
\(53\) 109.326 0.283342 0.141671 0.989914i \(-0.454752\pi\)
0.141671 + 0.989914i \(0.454752\pi\)
\(54\) 0 0
\(55\) 116.380 0.285321
\(56\) 0 0
\(57\) 322.691 470.251i 0.749850 1.09274i
\(58\) 0 0
\(59\) 108.660i 0.239767i −0.992788 0.119884i \(-0.961748\pi\)
0.992788 0.119884i \(-0.0382521\pi\)
\(60\) 0 0
\(61\) 114.919i 0.241210i −0.992701 0.120605i \(-0.961517\pi\)
0.992701 0.120605i \(-0.0384835\pi\)
\(62\) 0 0
\(63\) −462.578 + 178.341i −0.925069 + 0.356648i
\(64\) 0 0
\(65\) 1006.15 1.91997
\(66\) 0 0
\(67\) 646.548i 1.17893i 0.807793 + 0.589466i \(0.200662\pi\)
−0.807793 + 0.589466i \(0.799338\pi\)
\(68\) 0 0
\(69\) 567.904 + 77.4186i 0.990836 + 0.135074i
\(70\) 0 0
\(71\) 235.609i 0.393826i −0.980421 0.196913i \(-0.936908\pi\)
0.980421 0.196913i \(-0.0630916\pi\)
\(72\) 0 0
\(73\) −218.735 −0.350699 −0.175349 0.984506i \(-0.556105\pi\)
−0.175349 + 0.984506i \(0.556105\pi\)
\(74\) 0 0
\(75\) −122.971 84.3839i −0.189327 0.129918i
\(76\) 0 0
\(77\) 172.366i 0.255103i
\(78\) 0 0
\(79\) 1338.31i 1.90596i 0.303028 + 0.952982i \(0.402003\pi\)
−0.303028 + 0.952982i \(0.597997\pi\)
\(80\) 0 0
\(81\) −540.329 + 489.372i −0.741192 + 0.671293i
\(82\) 0 0
\(83\) 126.330 0.167066 0.0835332 0.996505i \(-0.473380\pi\)
0.0835332 + 0.996505i \(0.473380\pi\)
\(84\) 0 0
\(85\) −1145.58 −1.46183
\(86\) 0 0
\(87\) −302.713 + 441.139i −0.373038 + 0.543621i
\(88\) 0 0
\(89\) 1177.54 1.40246 0.701228 0.712937i \(-0.252635\pi\)
0.701228 + 0.712937i \(0.252635\pi\)
\(90\) 0 0
\(91\) 1490.18i 1.71662i
\(92\) 0 0
\(93\) 1134.96 + 778.817i 1.26548 + 0.868383i
\(94\) 0 0
\(95\) 1360.75i 1.46957i
\(96\) 0 0
\(97\) 358.360i 0.375113i 0.982254 + 0.187556i \(0.0600567\pi\)
−0.982254 + 0.187556i \(0.939943\pi\)
\(98\) 0 0
\(99\) 91.1750 + 236.489i 0.0925599 + 0.240081i
\(100\) 0 0
\(101\) 1543.12i 1.52026i 0.649770 + 0.760130i \(0.274865\pi\)
−0.649770 + 0.760130i \(0.725135\pi\)
\(102\) 0 0
\(103\) 30.4240i 0.0291045i 0.999894 + 0.0145522i \(0.00463228\pi\)
−0.999894 + 0.0145522i \(0.995368\pi\)
\(104\) 0 0
\(105\) 669.271 975.316i 0.622039 0.906486i
\(106\) 0 0
\(107\) 35.0488 0.0316663 0.0158332 0.999875i \(-0.494960\pi\)
0.0158332 + 0.999875i \(0.494960\pi\)
\(108\) 0 0
\(109\) 35.0649i 0.0308130i −0.999881 0.0154065i \(-0.995096\pi\)
0.999881 0.0154065i \(-0.00490423\pi\)
\(110\) 0 0
\(111\) 375.421 547.094i 0.321021 0.467819i
\(112\) 0 0
\(113\) −788.978 −0.656822 −0.328411 0.944535i \(-0.606513\pi\)
−0.328411 + 0.944535i \(0.606513\pi\)
\(114\) 0 0
\(115\) −1221.75 + 614.351i −0.990682 + 0.498161i
\(116\) 0 0
\(117\) 788.246 + 2044.55i 0.622850 + 1.61554i
\(118\) 0 0
\(119\) 1696.68i 1.30701i
\(120\) 0 0
\(121\) −1242.88 −0.933794
\(122\) 0 0
\(123\) 489.912 713.940i 0.359137 0.523364i
\(124\) 0 0
\(125\) −1193.87 −0.854264
\(126\) 0 0
\(127\) 1138.68 0.795604 0.397802 0.917471i \(-0.369773\pi\)
0.397802 + 0.917471i \(0.369773\pi\)
\(128\) 0 0
\(129\) −42.8674 + 62.4698i −0.0292578 + 0.0426369i
\(130\) 0 0
\(131\) 1140.46i 0.760627i −0.924858 0.380314i \(-0.875816\pi\)
0.924858 0.380314i \(-0.124184\pi\)
\(132\) 0 0
\(133\) −2015.35 −1.31393
\(134\) 0 0
\(135\) 402.345 1692.17i 0.256506 1.07880i
\(136\) 0 0
\(137\) 2927.94 1.82592 0.912959 0.408051i \(-0.133792\pi\)
0.912959 + 0.408051i \(0.133792\pi\)
\(138\) 0 0
\(139\) −644.552 −0.393311 −0.196655 0.980473i \(-0.563008\pi\)
−0.196655 + 0.980473i \(0.563008\pi\)
\(140\) 0 0
\(141\) 523.197 762.445i 0.312490 0.455386i
\(142\) 0 0
\(143\) 761.839 0.445512
\(144\) 0 0
\(145\) 1276.50i 0.731089i
\(146\) 0 0
\(147\) −25.0558 17.1935i −0.0140583 0.00964693i
\(148\) 0 0
\(149\) 1130.40 0.621515 0.310758 0.950489i \(-0.399417\pi\)
0.310758 + 0.950489i \(0.399417\pi\)
\(150\) 0 0
\(151\) −2578.93 −1.38987 −0.694936 0.719072i \(-0.744567\pi\)
−0.694936 + 0.719072i \(0.744567\pi\)
\(152\) 0 0
\(153\) −897.478 2327.87i −0.474228 1.23005i
\(154\) 0 0
\(155\) −3284.17 −1.70188
\(156\) 0 0
\(157\) 3457.15i 1.75739i 0.477384 + 0.878695i \(0.341585\pi\)
−0.477384 + 0.878695i \(0.658415\pi\)
\(158\) 0 0
\(159\) −468.401 321.421i −0.233626 0.160317i
\(160\) 0 0
\(161\) −909.891 1809.48i −0.445401 0.885759i
\(162\) 0 0
\(163\) 2659.70 1.27806 0.639029 0.769182i \(-0.279336\pi\)
0.639029 + 0.769182i \(0.279336\pi\)
\(164\) 0 0
\(165\) −498.621 342.159i −0.235258 0.161436i
\(166\) 0 0
\(167\) 1148.16i 0.532021i 0.963970 + 0.266010i \(0.0857055\pi\)
−0.963970 + 0.266010i \(0.914294\pi\)
\(168\) 0 0
\(169\) 4389.42 1.99791
\(170\) 0 0
\(171\) −2765.09 + 1066.04i −1.23656 + 0.476739i
\(172\) 0 0
\(173\) 3089.66i 1.35782i −0.734223 0.678908i \(-0.762453\pi\)
0.734223 0.678908i \(-0.237547\pi\)
\(174\) 0 0
\(175\) 527.015i 0.227649i
\(176\) 0 0
\(177\) −319.460 + 465.544i −0.135662 + 0.197697i
\(178\) 0 0
\(179\) 3862.31i 1.61275i −0.591403 0.806376i \(-0.701426\pi\)
0.591403 0.806376i \(-0.298574\pi\)
\(180\) 0 0
\(181\) 702.667i 0.288557i 0.989537 + 0.144278i \(0.0460861\pi\)
−0.989537 + 0.144278i \(0.953914\pi\)
\(182\) 0 0
\(183\) −337.862 + 492.360i −0.136478 + 0.198887i
\(184\) 0 0
\(185\) 1583.10i 0.629146i
\(186\) 0 0
\(187\) −867.411 −0.339205
\(188\) 0 0
\(189\) 2506.21 + 595.898i 0.964548 + 0.229340i
\(190\) 0 0
\(191\) −1894.71 −0.717781 −0.358890 0.933380i \(-0.616845\pi\)
−0.358890 + 0.933380i \(0.616845\pi\)
\(192\) 0 0
\(193\) 2282.29 0.851205 0.425602 0.904910i \(-0.360062\pi\)
0.425602 + 0.904910i \(0.360062\pi\)
\(194\) 0 0
\(195\) −4310.79 2958.10i −1.58309 1.08633i
\(196\) 0 0
\(197\) 1778.90i 0.643357i −0.946849 0.321678i \(-0.895753\pi\)
0.946849 0.321678i \(-0.104247\pi\)
\(198\) 0 0
\(199\) 4622.24i 1.64654i −0.567649 0.823271i \(-0.692147\pi\)
0.567649 0.823271i \(-0.307853\pi\)
\(200\) 0 0
\(201\) 1900.86 2770.09i 0.667047 0.972075i
\(202\) 0 0
\(203\) 1890.58 0.653659
\(204\) 0 0
\(205\) 2065.90i 0.703846i
\(206\) 0 0
\(207\) −2205.53 2001.34i −0.740556 0.671994i
\(208\) 0 0
\(209\) 1030.33i 0.341001i
\(210\) 0 0
\(211\) 2658.39 0.867352 0.433676 0.901069i \(-0.357216\pi\)
0.433676 + 0.901069i \(0.357216\pi\)
\(212\) 0 0
\(213\) −692.693 + 1009.45i −0.222829 + 0.324724i
\(214\) 0 0
\(215\) 180.766i 0.0573402i
\(216\) 0 0
\(217\) 4864.06i 1.52163i
\(218\) 0 0
\(219\) 937.154 + 643.084i 0.289165 + 0.198427i
\(220\) 0 0
\(221\) −7499.13 −2.28256
\(222\) 0 0
\(223\) −4495.95 −1.35010 −0.675048 0.737774i \(-0.735877\pi\)
−0.675048 + 0.737774i \(0.735877\pi\)
\(224\) 0 0
\(225\) 278.771 + 723.074i 0.0825989 + 0.214244i
\(226\) 0 0
\(227\) −1640.38 −0.479630 −0.239815 0.970819i \(-0.577087\pi\)
−0.239815 + 0.970819i \(0.577087\pi\)
\(228\) 0 0
\(229\) 4875.55i 1.40692i −0.710734 0.703461i \(-0.751637\pi\)
0.710734 0.703461i \(-0.248363\pi\)
\(230\) 0 0
\(231\) 506.758 738.489i 0.144339 0.210342i
\(232\) 0 0
\(233\) 5182.79i 1.45724i 0.684920 + 0.728618i \(0.259837\pi\)
−0.684920 + 0.728618i \(0.740163\pi\)
\(234\) 0 0
\(235\) 2206.25i 0.612426i
\(236\) 0 0
\(237\) 3934.64 5733.87i 1.07841 1.57154i
\(238\) 0 0
\(239\) 5644.76i 1.52774i 0.645371 + 0.763869i \(0.276703\pi\)
−0.645371 + 0.763869i \(0.723297\pi\)
\(240\) 0 0
\(241\) 7241.71i 1.93560i 0.251719 + 0.967800i \(0.419004\pi\)
−0.251719 + 0.967800i \(0.580996\pi\)
\(242\) 0 0
\(243\) 3753.76 508.106i 0.990963 0.134136i
\(244\) 0 0
\(245\) 72.5029 0.0189063
\(246\) 0 0
\(247\) 8907.62i 2.29465i
\(248\) 0 0
\(249\) −541.251 371.412i −0.137753 0.0945271i
\(250\) 0 0
\(251\) 7405.04 1.86216 0.931080 0.364815i \(-0.118868\pi\)
0.931080 + 0.364815i \(0.118868\pi\)
\(252\) 0 0
\(253\) −925.081 + 465.174i −0.229879 + 0.115594i
\(254\) 0 0
\(255\) 4908.16 + 3368.03i 1.20534 + 0.827114i
\(256\) 0 0
\(257\) 251.362i 0.0610098i 0.999535 + 0.0305049i \(0.00971152\pi\)
−0.999535 + 0.0305049i \(0.990288\pi\)
\(258\) 0 0
\(259\) −2344.67 −0.562513
\(260\) 0 0
\(261\) 2593.91 1000.05i 0.615168 0.237170i
\(262\) 0 0
\(263\) 2544.88 0.596669 0.298335 0.954461i \(-0.403569\pi\)
0.298335 + 0.954461i \(0.403569\pi\)
\(264\) 0 0
\(265\) 1355.39 0.314192
\(266\) 0 0
\(267\) −5045.07 3461.97i −1.15638 0.793518i
\(268\) 0 0
\(269\) 2725.67i 0.617795i −0.951095 0.308898i \(-0.900040\pi\)
0.951095 0.308898i \(-0.0999601\pi\)
\(270\) 0 0
\(271\) 2763.77 0.619509 0.309754 0.950817i \(-0.399753\pi\)
0.309754 + 0.950817i \(0.399753\pi\)
\(272\) 0 0
\(273\) 4381.14 6384.55i 0.971276 1.41542i
\(274\) 0 0
\(275\) 269.432 0.0590813
\(276\) 0 0
\(277\) −6405.08 −1.38933 −0.694664 0.719334i \(-0.744447\pi\)
−0.694664 + 0.719334i \(0.744447\pi\)
\(278\) 0 0
\(279\) −2572.90 6673.57i −0.552100 1.43203i
\(280\) 0 0
\(281\) −4327.11 −0.918626 −0.459313 0.888275i \(-0.651904\pi\)
−0.459313 + 0.888275i \(0.651904\pi\)
\(282\) 0 0
\(283\) 876.639i 0.184137i 0.995753 + 0.0920685i \(0.0293479\pi\)
−0.995753 + 0.0920685i \(0.970652\pi\)
\(284\) 0 0
\(285\) 4000.61 5830.01i 0.831493 1.21172i
\(286\) 0 0
\(287\) −3059.72 −0.629301
\(288\) 0 0
\(289\) 3625.33 0.737906
\(290\) 0 0
\(291\) 1053.58 1535.37i 0.212241 0.309295i
\(292\) 0 0
\(293\) 5416.90 1.08006 0.540032 0.841645i \(-0.318412\pi\)
0.540032 + 0.841645i \(0.318412\pi\)
\(294\) 0 0
\(295\) 1347.12i 0.265873i
\(296\) 0 0
\(297\) 304.648 1281.28i 0.0595200 0.250327i
\(298\) 0 0
\(299\) −7997.72 + 4021.62i −1.54689 + 0.777848i
\(300\) 0 0
\(301\) 267.726 0.0512673
\(302\) 0 0
\(303\) 4536.80 6611.39i 0.860173 1.25351i
\(304\) 0 0
\(305\) 1424.72i 0.267473i
\(306\) 0 0
\(307\) −5827.01 −1.08327 −0.541637 0.840613i \(-0.682195\pi\)
−0.541637 + 0.840613i \(0.682195\pi\)
\(308\) 0 0
\(309\) 89.4468 130.349i 0.0164675 0.0239978i
\(310\) 0 0
\(311\) 3293.72i 0.600546i −0.953853 0.300273i \(-0.902922\pi\)
0.953853 0.300273i \(-0.0970778\pi\)
\(312\) 0 0
\(313\) 4905.94i 0.885943i −0.896536 0.442971i \(-0.853924\pi\)
0.896536 0.442971i \(-0.146076\pi\)
\(314\) 0 0
\(315\) −5734.88 + 2211.01i −1.02579 + 0.395479i
\(316\) 0 0
\(317\) 6513.58i 1.15407i 0.816721 + 0.577033i \(0.195790\pi\)
−0.816721 + 0.577033i \(0.804210\pi\)
\(318\) 0 0
\(319\) 966.542i 0.169643i
\(320\) 0 0
\(321\) −150.164 103.044i −0.0261101 0.0179170i
\(322\) 0 0
\(323\) 10142.0i 1.74711i
\(324\) 0 0
\(325\) 2329.35 0.397567
\(326\) 0 0
\(327\) −103.091 + 150.233i −0.0174342 + 0.0254065i
\(328\) 0 0
\(329\) −3267.60 −0.547564
\(330\) 0 0
\(331\) −1331.12 −0.221042 −0.110521 0.993874i \(-0.535252\pi\)
−0.110521 + 0.993874i \(0.535252\pi\)
\(332\) 0 0
\(333\) −3216.93 + 1240.24i −0.529389 + 0.204099i
\(334\) 0 0
\(335\) 8015.68i 1.30729i
\(336\) 0 0
\(337\) 4198.23i 0.678612i −0.940676 0.339306i \(-0.889808\pi\)
0.940676 0.339306i \(-0.110192\pi\)
\(338\) 0 0
\(339\) 3380.32 + 2319.61i 0.541575 + 0.371633i
\(340\) 0 0
\(341\) −2486.71 −0.394906
\(342\) 0 0
\(343\) 6405.44i 1.00834i
\(344\) 0 0
\(345\) 7040.68 + 959.810i 1.09872 + 0.149781i
\(346\) 0 0
\(347\) 9399.49i 1.45415i −0.686556 0.727077i \(-0.740878\pi\)
0.686556 0.727077i \(-0.259122\pi\)
\(348\) 0 0
\(349\) 3399.24 0.521367 0.260683 0.965424i \(-0.416052\pi\)
0.260683 + 0.965424i \(0.416052\pi\)
\(350\) 0 0
\(351\) 2633.81 11077.2i 0.400519 1.68449i
\(352\) 0 0
\(353\) 376.541i 0.0567741i −0.999597 0.0283870i \(-0.990963\pi\)
0.999597 0.0283870i \(-0.00903709\pi\)
\(354\) 0 0
\(355\) 2921.00i 0.436705i
\(356\) 0 0
\(357\) −4988.26 + 7269.29i −0.739514 + 1.07768i
\(358\) 0 0
\(359\) 1497.46 0.220148 0.110074 0.993923i \(-0.464891\pi\)
0.110074 + 0.993923i \(0.464891\pi\)
\(360\) 0 0
\(361\) −5187.87 −0.756360
\(362\) 0 0
\(363\) 5325.03 + 3654.08i 0.769949 + 0.528346i
\(364\) 0 0
\(365\) −2711.80 −0.388883
\(366\) 0 0
\(367\) 13581.0i 1.93167i −0.259156 0.965835i \(-0.583444\pi\)
0.259156 0.965835i \(-0.416556\pi\)
\(368\) 0 0
\(369\) −4197.98 + 1618.48i −0.592245 + 0.228332i
\(370\) 0 0
\(371\) 2007.42i 0.280916i
\(372\) 0 0
\(373\) 10774.5i 1.49567i 0.663887 + 0.747833i \(0.268906\pi\)
−0.663887 + 0.747833i \(0.731094\pi\)
\(374\) 0 0
\(375\) 5115.05 + 3510.00i 0.704374 + 0.483348i
\(376\) 0 0
\(377\) 8356.17i 1.14155i
\(378\) 0 0
\(379\) 11553.2i 1.56582i 0.622135 + 0.782910i \(0.286265\pi\)
−0.622135 + 0.782910i \(0.713735\pi\)
\(380\) 0 0
\(381\) −4878.60 3347.74i −0.656006 0.450158i
\(382\) 0 0
\(383\) 11918.1 1.59004 0.795019 0.606584i \(-0.207461\pi\)
0.795019 + 0.606584i \(0.207461\pi\)
\(384\) 0 0
\(385\) 2136.93i 0.282878i
\(386\) 0 0
\(387\) 367.324 141.617i 0.0482484 0.0186015i
\(388\) 0 0
\(389\) 3563.37 0.464447 0.232223 0.972662i \(-0.425400\pi\)
0.232223 + 0.972662i \(0.425400\pi\)
\(390\) 0 0
\(391\) 9106.01 4578.92i 1.17778 0.592241i
\(392\) 0 0
\(393\) −3352.96 + 4886.20i −0.430367 + 0.627166i
\(394\) 0 0
\(395\) 16591.9i 2.11349i
\(396\) 0 0
\(397\) −9061.44 −1.14554 −0.572771 0.819715i \(-0.694132\pi\)
−0.572771 + 0.819715i \(0.694132\pi\)
\(398\) 0 0
\(399\) 8634.61 + 5925.15i 1.08339 + 0.743430i
\(400\) 0 0
\(401\) −10202.5 −1.27054 −0.635271 0.772289i \(-0.719112\pi\)
−0.635271 + 0.772289i \(0.719112\pi\)
\(402\) 0 0
\(403\) −21498.6 −2.65738
\(404\) 0 0
\(405\) −6698.82 + 6067.07i −0.821893 + 0.744383i
\(406\) 0 0
\(407\) 1198.69i 0.145988i
\(408\) 0 0
\(409\) 1518.58 0.183592 0.0917958 0.995778i \(-0.470739\pi\)
0.0917958 + 0.995778i \(0.470739\pi\)
\(410\) 0 0
\(411\) −12544.5 8608.18i −1.50554 1.03312i
\(412\) 0 0
\(413\) 1995.17 0.237714
\(414\) 0 0
\(415\) 1566.19 0.185257
\(416\) 0 0
\(417\) 2761.54 + 1894.99i 0.324300 + 0.222538i
\(418\) 0 0
\(419\) −4942.95 −0.576322 −0.288161 0.957582i \(-0.593044\pi\)
−0.288161 + 0.957582i \(0.593044\pi\)
\(420\) 0 0
\(421\) 4158.33i 0.481389i −0.970601 0.240694i \(-0.922625\pi\)
0.970601 0.240694i \(-0.0773751\pi\)
\(422\) 0 0
\(423\) −4483.20 + 1728.43i −0.515320 + 0.198675i
\(424\) 0 0
\(425\) −2652.14 −0.302701
\(426\) 0 0
\(427\) 2110.10 0.239145
\(428\) 0 0
\(429\) −3264.04 2239.82i −0.367342 0.252073i
\(430\) 0 0
\(431\) 9325.32 1.04219 0.521096 0.853498i \(-0.325523\pi\)
0.521096 + 0.853498i \(0.325523\pi\)
\(432\) 0 0
\(433\) 13944.4i 1.54763i 0.633411 + 0.773815i \(0.281654\pi\)
−0.633411 + 0.773815i \(0.718346\pi\)
\(434\) 0 0
\(435\) −3752.94 + 5469.09i −0.413654 + 0.602811i
\(436\) 0 0
\(437\) −5438.94 10816.3i −0.595377 1.18401i
\(438\) 0 0
\(439\) 10433.9 1.13436 0.567178 0.823595i \(-0.308035\pi\)
0.567178 + 0.823595i \(0.308035\pi\)
\(440\) 0 0
\(441\) 56.8007 + 147.329i 0.00613332 + 0.0159085i
\(442\) 0 0
\(443\) 5374.83i 0.576447i 0.957563 + 0.288223i \(0.0930646\pi\)
−0.957563 + 0.288223i \(0.906935\pi\)
\(444\) 0 0
\(445\) 14598.7 1.55516
\(446\) 0 0
\(447\) −4843.11 3323.39i −0.512463 0.351657i
\(448\) 0 0
\(449\) 17791.1i 1.86996i −0.354698 0.934981i \(-0.615416\pi\)
0.354698 0.934981i \(-0.384584\pi\)
\(450\) 0 0
\(451\) 1564.25i 0.163321i
\(452\) 0 0
\(453\) 11049.3 + 7582.10i 1.14600 + 0.786397i
\(454\) 0 0
\(455\) 18474.7i 1.90353i
\(456\) 0 0
\(457\) 3807.81i 0.389763i 0.980827 + 0.194882i \(0.0624322\pi\)
−0.980827 + 0.194882i \(0.937568\pi\)
\(458\) 0 0
\(459\) −2998.79 + 12612.2i −0.304949 + 1.28254i
\(460\) 0 0
\(461\) 9661.96i 0.976144i −0.872803 0.488072i \(-0.837700\pi\)
0.872803 0.488072i \(-0.162300\pi\)
\(462\) 0 0
\(463\) −3899.22 −0.391386 −0.195693 0.980665i \(-0.562696\pi\)
−0.195693 + 0.980665i \(0.562696\pi\)
\(464\) 0 0
\(465\) 14070.8 + 9655.51i 1.40326 + 0.962933i
\(466\) 0 0
\(467\) 4231.91 0.419335 0.209668 0.977773i \(-0.432762\pi\)
0.209668 + 0.977773i \(0.432762\pi\)
\(468\) 0 0
\(469\) −11871.7 −1.16884
\(470\) 0 0
\(471\) 10164.1 14811.9i 0.994342 1.44904i
\(472\) 0 0
\(473\) 136.872i 0.0133053i
\(474\) 0 0
\(475\) 3150.27i 0.304304i
\(476\) 0 0
\(477\) 1061.85 + 2754.21i 0.101926 + 0.264374i
\(478\) 0 0
\(479\) 19702.3 1.87938 0.939689 0.342030i \(-0.111114\pi\)
0.939689 + 0.342030i \(0.111114\pi\)
\(480\) 0 0
\(481\) 10363.2i 0.982373i
\(482\) 0 0
\(483\) −1421.54 + 10427.7i −0.133918 + 0.982352i
\(484\) 0 0
\(485\) 4442.82i 0.415955i
\(486\) 0 0
\(487\) −2563.01 −0.238483 −0.119241 0.992865i \(-0.538046\pi\)
−0.119241 + 0.992865i \(0.538046\pi\)
\(488\) 0 0
\(489\) −11395.3 7819.54i −1.05381 0.723133i
\(490\) 0 0
\(491\) 4514.55i 0.414946i −0.978241 0.207473i \(-0.933476\pi\)
0.978241 0.207473i \(-0.0665240\pi\)
\(492\) 0 0
\(493\) 9514.13i 0.869158i
\(494\) 0 0
\(495\) 1130.36 + 2931.91i 0.102638 + 0.266221i
\(496\) 0 0
\(497\) 4326.18 0.390454
\(498\) 0 0
\(499\) 4927.41 0.442047 0.221023 0.975269i \(-0.429060\pi\)
0.221023 + 0.975269i \(0.429060\pi\)
\(500\) 0 0
\(501\) 3375.61 4919.22i 0.301020 0.438671i
\(502\) 0 0
\(503\) 8329.96 0.738399 0.369199 0.929350i \(-0.379632\pi\)
0.369199 + 0.929350i \(0.379632\pi\)
\(504\) 0 0
\(505\) 19131.1i 1.68579i
\(506\) 0 0
\(507\) −18806.1 12904.9i −1.64736 1.13043i
\(508\) 0 0
\(509\) 2654.64i 0.231169i 0.993298 + 0.115584i \(0.0368740\pi\)
−0.993298 + 0.115584i \(0.963126\pi\)
\(510\) 0 0
\(511\) 4016.35i 0.347696i
\(512\) 0 0
\(513\) 14981.0 + 3562.02i 1.28933 + 0.306563i
\(514\) 0 0
\(515\) 377.186i 0.0322734i
\(516\) 0 0
\(517\) 1670.53i 0.142108i
\(518\) 0 0
\(519\) −9083.63 + 13237.4i −0.768261 + 1.11957i
\(520\) 0 0
\(521\) −15201.4 −1.27828 −0.639141 0.769090i \(-0.720710\pi\)
−0.639141 + 0.769090i \(0.720710\pi\)
\(522\) 0 0
\(523\) 16925.8i 1.41513i 0.706646 + 0.707567i \(0.250207\pi\)
−0.706646 + 0.707567i \(0.749793\pi\)
\(524\) 0 0
\(525\) 1549.43 2257.96i 0.128805 0.187706i
\(526\) 0 0
\(527\) 24477.8 2.02328
\(528\) 0 0
\(529\) 7255.85 9766.71i 0.596355 0.802721i
\(530\) 0 0
\(531\) 2737.41 1055.37i 0.223717 0.0862508i
\(532\) 0 0
\(533\) 13523.6i 1.09901i
\(534\) 0 0
\(535\) 434.523 0.0351142
\(536\) 0 0
\(537\) −11355.2 + 16547.8i −0.912504 + 1.32978i
\(538\) 0 0
\(539\) 54.8977 0.00438704
\(540\) 0 0
\(541\) −16485.5 −1.31011 −0.655053 0.755583i \(-0.727354\pi\)
−0.655053 + 0.755583i \(0.727354\pi\)
\(542\) 0 0
\(543\) 2065.85 3010.52i 0.163267 0.237926i
\(544\) 0 0
\(545\) 434.723i 0.0341679i
\(546\) 0 0
\(547\) 17417.0 1.36142 0.680710 0.732553i \(-0.261671\pi\)
0.680710 + 0.732553i \(0.261671\pi\)
\(548\) 0 0
\(549\) 2895.09 1116.16i 0.225063 0.0867699i
\(550\) 0 0
\(551\) 11301.1 0.873760
\(552\) 0 0
\(553\) −24573.6 −1.88965
\(554\) 0 0
\(555\) 4654.34 6782.69i 0.355974 0.518755i
\(556\) 0 0
\(557\) 19632.3 1.49344 0.746720 0.665139i \(-0.231628\pi\)
0.746720 + 0.665139i \(0.231628\pi\)
\(558\) 0 0
\(559\) 1183.32i 0.0895333i
\(560\) 0 0
\(561\) 3716.36 + 2550.20i 0.279688 + 0.191924i
\(562\) 0 0
\(563\) 18598.0 1.39221 0.696104 0.717941i \(-0.254915\pi\)
0.696104 + 0.717941i \(0.254915\pi\)
\(564\) 0 0
\(565\) −9781.48 −0.728336
\(566\) 0 0
\(567\) −8985.71 9921.36i −0.665545 0.734847i
\(568\) 0 0
\(569\) −16101.0 −1.18627 −0.593135 0.805103i \(-0.702110\pi\)
−0.593135 + 0.805103i \(0.702110\pi\)
\(570\) 0 0
\(571\) 7527.11i 0.551663i −0.961206 0.275832i \(-0.911047\pi\)
0.961206 0.275832i \(-0.0889532\pi\)
\(572\) 0 0
\(573\) 8117.73 + 5570.46i 0.591838 + 0.406125i
\(574\) 0 0
\(575\) −2828.47 + 1422.29i −0.205140 + 0.103154i
\(576\) 0 0
\(577\) 15693.5 1.13228 0.566141 0.824308i \(-0.308436\pi\)
0.566141 + 0.824308i \(0.308436\pi\)
\(578\) 0 0
\(579\) −9778.29 6709.95i −0.701851 0.481617i
\(580\) 0 0
\(581\) 2319.63i 0.165636i
\(582\) 0 0
\(583\) 1026.27 0.0729055
\(584\) 0 0
\(585\) 9772.41 + 25347.6i 0.690666 + 1.79144i
\(586\) 0 0
\(587\) 7032.47i 0.494483i −0.968954 0.247241i \(-0.920476\pi\)
0.968954 0.247241i \(-0.0795240\pi\)
\(588\) 0 0
\(589\) 29075.3i 2.03400i
\(590\) 0 0
\(591\) −5229.99 + 7621.56i −0.364015 + 0.530472i
\(592\) 0 0
\(593\) 14778.1i 1.02338i −0.859171 0.511688i \(-0.829020\pi\)
0.859171 0.511688i \(-0.170980\pi\)
\(594\) 0 0
\(595\) 21034.8i 1.44932i
\(596\) 0 0
\(597\) −13589.4 + 19803.6i −0.931623 + 1.35764i
\(598\) 0 0
\(599\) 10705.3i 0.730226i −0.930963 0.365113i \(-0.881030\pi\)
0.930963 0.365113i \(-0.118970\pi\)
\(600\) 0 0
\(601\) −6917.27 −0.469486 −0.234743 0.972057i \(-0.575425\pi\)
−0.234743 + 0.972057i \(0.575425\pi\)
\(602\) 0 0
\(603\) −16288.2 + 6279.69i −1.10001 + 0.424094i
\(604\) 0 0
\(605\) −15408.8 −1.03547
\(606\) 0 0
\(607\) 28683.4 1.91800 0.958998 0.283413i \(-0.0914667\pi\)
0.958998 + 0.283413i \(0.0914667\pi\)
\(608\) 0 0
\(609\) −8100.06 5558.33i −0.538967 0.369844i
\(610\) 0 0
\(611\) 14442.4i 0.956265i
\(612\) 0 0
\(613\) 13259.0i 0.873614i 0.899555 + 0.436807i \(0.143891\pi\)
−0.899555 + 0.436807i \(0.856109\pi\)
\(614\) 0 0
\(615\) 6073.76 8851.18i 0.398240 0.580348i
\(616\) 0 0
\(617\) −23587.3 −1.53904 −0.769522 0.638621i \(-0.779505\pi\)
−0.769522 + 0.638621i \(0.779505\pi\)
\(618\) 0 0
\(619\) 274.662i 0.0178345i 0.999960 + 0.00891727i \(0.00283849\pi\)
−0.999960 + 0.00891727i \(0.997162\pi\)
\(620\) 0 0
\(621\) 3565.48 + 15058.9i 0.230399 + 0.973096i
\(622\) 0 0
\(623\) 21621.6i 1.39045i
\(624\) 0 0
\(625\) −18388.9 −1.17689
\(626\) 0 0
\(627\) 3029.18 4414.37i 0.192941 0.281169i
\(628\) 0 0
\(629\) 11799.3i 0.747962i
\(630\) 0 0
\(631\) 18688.8i 1.17907i −0.807744 0.589533i \(-0.799312\pi\)
0.807744 0.589533i \(-0.200688\pi\)
\(632\) 0 0
\(633\) −11389.7 7815.71i −0.715165 0.490753i
\(634\) 0 0
\(635\) 14117.0 0.882230
\(636\) 0 0
\(637\) 474.614 0.0295210
\(638\) 0 0
\(639\) 5935.59 2288.38i 0.367462 0.141670i
\(640\) 0 0
\(641\) −1053.54 −0.0649179 −0.0324590 0.999473i \(-0.510334\pi\)
−0.0324590 + 0.999473i \(0.510334\pi\)
\(642\) 0 0
\(643\) 11628.4i 0.713186i −0.934260 0.356593i \(-0.883938\pi\)
0.934260 0.356593i \(-0.116062\pi\)
\(644\) 0 0
\(645\) −531.455 + 774.479i −0.0324434 + 0.0472792i
\(646\) 0 0
\(647\) 2835.47i 0.172293i −0.996282 0.0861467i \(-0.972545\pi\)
0.996282 0.0861467i \(-0.0274554\pi\)
\(648\) 0 0
\(649\) 1020.01i 0.0616935i
\(650\) 0 0
\(651\) −14300.4 + 20839.7i −0.860948 + 1.25464i
\(652\) 0 0
\(653\) 29050.2i 1.74093i 0.492235 + 0.870463i \(0.336180\pi\)
−0.492235 + 0.870463i \(0.663820\pi\)
\(654\) 0 0
\(655\) 14139.0i 0.843444i
\(656\) 0 0
\(657\) −2124.50 5510.49i −0.126156 0.327222i
\(658\) 0 0
\(659\) −13975.6 −0.826120 −0.413060 0.910704i \(-0.635540\pi\)
−0.413060 + 0.910704i \(0.635540\pi\)
\(660\) 0 0
\(661\) 23391.1i 1.37641i −0.725517 0.688205i \(-0.758399\pi\)
0.725517 0.688205i \(-0.241601\pi\)
\(662\) 0 0
\(663\) 32129.5 + 22047.6i 1.88206 + 1.29149i
\(664\) 0 0
\(665\) −24985.6 −1.45699
\(666\) 0 0
\(667\) 5102.22 + 10146.7i 0.296190 + 0.589027i
\(668\) 0 0
\(669\) 19262.6 + 13218.2i 1.11321 + 0.763892i
\(670\) 0 0
\(671\) 1078.77i 0.0620647i
\(672\) 0 0
\(673\) 23103.0 1.32326 0.661631 0.749830i \(-0.269865\pi\)
0.661631 + 0.749830i \(0.269865\pi\)
\(674\) 0 0
\(675\) 931.472 3917.55i 0.0531146 0.223387i
\(676\) 0 0
\(677\) −25309.1 −1.43679 −0.718394 0.695636i \(-0.755123\pi\)
−0.718394 + 0.695636i \(0.755123\pi\)
\(678\) 0 0
\(679\) −6580.09 −0.371901
\(680\) 0 0
\(681\) 7028.10 + 4822.75i 0.395474 + 0.271378i
\(682\) 0 0
\(683\) 8912.66i 0.499317i −0.968334 0.249659i \(-0.919682\pi\)
0.968334 0.249659i \(-0.0803184\pi\)
\(684\) 0 0
\(685\) 36299.6 2.02472
\(686\) 0 0
\(687\) −14334.2 + 20888.9i −0.796045 + 1.16006i
\(688\) 0 0
\(689\) 8872.57 0.490592
\(690\) 0 0
\(691\) −11850.1 −0.652387 −0.326193 0.945303i \(-0.605766\pi\)
−0.326193 + 0.945303i \(0.605766\pi\)
\(692\) 0 0
\(693\) −4342.34 + 1674.13i −0.238026 + 0.0917675i
\(694\) 0 0
\(695\) −7990.94 −0.436135
\(696\) 0 0
\(697\) 15397.7i 0.836770i
\(698\) 0 0
\(699\) 15237.5 22205.3i 0.824513 1.20155i
\(700\) 0 0
\(701\) 2889.72 0.155697 0.0778483 0.996965i \(-0.475195\pi\)
0.0778483 + 0.996965i \(0.475195\pi\)
\(702\) 0 0
\(703\) −14015.4 −0.751923
\(704\) 0 0
\(705\) 6486.41 9452.53i 0.346514 0.504969i
\(706\) 0 0
\(707\) −28334.3 −1.50725
\(708\) 0 0
\(709\) 22383.1i 1.18563i −0.805337 0.592817i \(-0.798016\pi\)
0.805337 0.592817i \(-0.201984\pi\)
\(710\) 0 0
\(711\) −33715.3 + 12998.5i −1.77837 + 0.685627i
\(712\) 0 0
\(713\) 26105.2 13126.9i 1.37118 0.689491i
\(714\) 0 0
\(715\) 9445.02 0.494019
\(716\) 0 0
\(717\) 16595.7 24184.6i 0.864403 1.25968i
\(718\) 0 0
\(719\) 4058.05i 0.210486i −0.994447 0.105243i \(-0.966438\pi\)
0.994447 0.105243i \(-0.0335621\pi\)
\(720\) 0 0
\(721\) −558.635 −0.0288553
\(722\) 0 0
\(723\) 21290.7 31026.6i 1.09517 1.59598i
\(724\) 0 0
\(725\) 2955.24i 0.151386i
\(726\) 0 0
\(727\) 13565.8i 0.692062i 0.938223 + 0.346031i \(0.112471\pi\)
−0.938223 + 0.346031i \(0.887529\pi\)
\(728\) 0 0
\(729\) −17576.6 8859.17i −0.892982 0.450093i
\(730\) 0 0
\(731\) 1347.30i 0.0681692i
\(732\) 0 0
\(733\) 4576.75i 0.230622i 0.993329 + 0.115311i \(0.0367865\pi\)
−0.993329 + 0.115311i \(0.963214\pi\)
\(734\) 0 0
\(735\) −310.634 213.160i −0.0155890 0.0106973i
\(736\) 0 0
\(737\) 6069.31i 0.303346i
\(738\) 0 0
\(739\) 30960.5 1.54114 0.770569 0.637356i \(-0.219972\pi\)
0.770569 + 0.637356i \(0.219972\pi\)
\(740\) 0 0
\(741\) 26188.5 38164.1i 1.29833 1.89203i
\(742\) 0 0
\(743\) −16597.1 −0.819498 −0.409749 0.912198i \(-0.634384\pi\)
−0.409749 + 0.912198i \(0.634384\pi\)
\(744\) 0 0
\(745\) 14014.3 0.689186
\(746\) 0 0
\(747\) 1227.00 + 3182.57i 0.0600983 + 0.155882i
\(748\) 0 0
\(749\) 643.556i 0.0313952i
\(750\) 0 0
\(751\) 21526.7i 1.04597i −0.852343 0.522983i \(-0.824819\pi\)
0.852343 0.522983i \(-0.175181\pi\)
\(752\) 0 0
\(753\) −31726.4 21770.9i −1.53542 1.05362i
\(754\) 0 0
\(755\) −31972.7 −1.54120
\(756\) 0 0
\(757\) 30152.8i 1.44772i −0.689949 0.723858i \(-0.742367\pi\)
0.689949 0.723858i \(-0.257633\pi\)
\(758\) 0 0
\(759\) 5331.06 + 726.748i 0.254948 + 0.0347553i
\(760\) 0 0
\(761\) 25726.3i 1.22546i 0.790291 + 0.612732i \(0.209930\pi\)
−0.790291 + 0.612732i \(0.790070\pi\)
\(762\) 0 0
\(763\) 643.852 0.0305492
\(764\) 0 0
\(765\) −11126.6 28860.1i −0.525861 1.36397i
\(766\) 0 0
\(767\) 8818.45i 0.415145i
\(768\) 0 0
\(769\) 12938.2i 0.606716i −0.952877 0.303358i \(-0.901892\pi\)
0.952877 0.303358i \(-0.0981078\pi\)
\(770\) 0 0
\(771\) 739.008 1076.94i 0.0345197 0.0503050i
\(772\) 0 0
\(773\) 18029.6 0.838911 0.419455 0.907776i \(-0.362221\pi\)
0.419455 + 0.907776i \(0.362221\pi\)
\(774\) 0 0
\(775\) −7603.21 −0.352407
\(776\) 0 0
\(777\) 10045.6 + 6893.37i 0.463813 + 0.318273i
\(778\) 0 0
\(779\) −18289.7 −0.841201
\(780\) 0 0
\(781\) 2211.72i 0.101334i
\(782\) 0 0
\(783\) −14053.6 3341.50i −0.641422 0.152510i
\(784\) 0 0
\(785\) 42860.5i 1.94873i
\(786\) 0 0
\(787\) 7131.49i 0.323012i 0.986872 + 0.161506i \(0.0516351\pi\)
−0.986872 + 0.161506i \(0.948365\pi\)
\(788\) 0 0
\(789\) −10903.4 7481.98i −0.491977 0.337599i
\(790\) 0 0
\(791\) 14487.0i 0.651198i
\(792\) 0 0
\(793\) 9326.42i 0.417643i
\(794\) 0 0
\(795\) −5807.07 3984.87i −0.259064 0.177772i
\(796\) 0 0
\(797\) −26586.0 −1.18159 −0.590794 0.806822i \(-0.701185\pi\)
−0.590794 + 0.806822i \(0.701185\pi\)
\(798\) 0 0
\(799\) 16443.8i 0.728085i
\(800\) 0 0
\(801\) 11437.0 + 29665.1i 0.504502 + 1.30857i
\(802\) 0 0
\(803\) −2053.32 −0.0902368
\(804\) 0 0
\(805\) −11280.5 22433.3i −0.493896 0.982200i
\(806\) 0 0
\(807\) −8013.50 + 11677.9i −0.349552 + 0.509396i
\(808\) 0 0
\(809\) 44879.9i 1.95042i −0.221275 0.975212i \(-0.571022\pi\)
0.221275 0.975212i \(-0.428978\pi\)
\(810\) 0 0
\(811\) −36002.8 −1.55885 −0.779425 0.626495i \(-0.784489\pi\)
−0.779425 + 0.626495i \(0.784489\pi\)
\(812\) 0 0
\(813\) −11841.2 8125.51i −0.510809 0.350522i
\(814\) 0 0
\(815\) 32974.0 1.41721
\(816\) 0 0
\(817\) 1600.35 0.0685301
\(818\) 0 0
\(819\) −37541.3 + 14473.5i −1.60171 + 0.617517i
\(820\) 0 0
\(821\) 35228.8i 1.49756i −0.662820 0.748779i \(-0.730640\pi\)
0.662820 0.748779i \(-0.269360\pi\)
\(822\) 0 0
\(823\) −13778.8 −0.583596 −0.291798 0.956480i \(-0.594253\pi\)
−0.291798 + 0.956480i \(0.594253\pi\)
\(824\) 0 0
\(825\) −1154.36 792.133i −0.0487148 0.0334285i
\(826\) 0 0
\(827\) −4860.54 −0.204374 −0.102187 0.994765i \(-0.532584\pi\)
−0.102187 + 0.994765i \(0.532584\pi\)
\(828\) 0 0
\(829\) 4879.34 0.204423 0.102211 0.994763i \(-0.467408\pi\)
0.102211 + 0.994763i \(0.467408\pi\)
\(830\) 0 0
\(831\) 27442.1 + 18831.0i 1.14555 + 0.786090i
\(832\) 0 0
\(833\) −540.384 −0.0224768
\(834\) 0 0
\(835\) 14234.5i 0.589947i
\(836\) 0 0
\(837\) −8596.97 + 36156.8i −0.355024 + 1.49315i
\(838\) 0 0
\(839\) 2364.12 0.0972808 0.0486404 0.998816i \(-0.484511\pi\)
0.0486404 + 0.998816i \(0.484511\pi\)
\(840\) 0 0
\(841\) 13787.6 0.565319
\(842\) 0 0
\(843\) 18539.2 + 12721.8i 0.757442 + 0.519764i
\(844\) 0 0
\(845\) 54418.5 2.21545
\(846\) 0 0
\(847\) 22821.4i 0.925799i
\(848\) 0 0
\(849\) 2577.33 3755.90i 0.104186 0.151828i
\(850\) 0 0
\(851\) −6327.70 12583.8i −0.254889 0.506893i
\(852\) 0 0
\(853\) 36712.9 1.47365 0.736827 0.676082i \(-0.236323\pi\)
0.736827 + 0.676082i \(0.236323\pi\)
\(854\) 0 0
\(855\) −34280.6 + 13216.4i −1.37120 + 0.528646i
\(856\) 0 0
\(857\) 29902.0i 1.19187i −0.803032 0.595935i \(-0.796781\pi\)
0.803032 0.595935i \(-0.203219\pi\)
\(858\) 0 0
\(859\) −840.472 −0.0333836 −0.0166918 0.999861i \(-0.505313\pi\)
−0.0166918 + 0.999861i \(0.505313\pi\)
\(860\) 0 0
\(861\) 13109.1 + 8995.61i 0.518883 + 0.356062i
\(862\) 0 0
\(863\) 5568.66i 0.219652i 0.993951 + 0.109826i \(0.0350293\pi\)
−0.993951 + 0.109826i \(0.964971\pi\)
\(864\) 0 0
\(865\) 38304.5i 1.50566i
\(866\) 0 0
\(867\) −15532.5 10658.5i −0.608432 0.417512i
\(868\) 0 0
\(869\) 12563.0i 0.490415i
\(870\) 0 0
\(871\) 52471.7i 2.04126i
\(872\) 0 0
\(873\) −9028.00 + 3480.62i −0.350002 + 0.134938i
\(874\) 0 0
\(875\) 21921.5i 0.846951i
\(876\) 0 0
\(877\) 30311.8 1.16711 0.583556 0.812073i \(-0.301661\pi\)
0.583556 + 0.812073i \(0.301661\pi\)
\(878\) 0 0
\(879\) −23208.3 15925.8i −0.890554 0.611106i
\(880\) 0 0
\(881\) −442.674 −0.0169286 −0.00846428 0.999964i \(-0.502694\pi\)
−0.00846428 + 0.999964i \(0.502694\pi\)
\(882\) 0 0
\(883\) 33297.2 1.26901 0.634507 0.772917i \(-0.281203\pi\)
0.634507 + 0.772917i \(0.281203\pi\)
\(884\) 0 0
\(885\) −3960.56 + 5771.65i −0.150433 + 0.219223i
\(886\) 0 0
\(887\) 579.492i 0.0219362i −0.999940 0.0109681i \(-0.996509\pi\)
0.999940 0.0109681i \(-0.00349133\pi\)
\(888\) 0 0
\(889\) 20908.1i 0.788793i
\(890\) 0 0
\(891\) −5072.21 + 4593.86i −0.190713 + 0.172727i
\(892\) 0 0
\(893\) −19532.3 −0.731940
\(894\) 0 0
\(895\) 47883.6i 1.78835i
\(896\) 0 0
\(897\) 46089.3 + 6283.05i 1.71558 + 0.233874i
\(898\) 0 0
\(899\) 27275.3i 1.01188i
\(900\) 0 0
\(901\) −10102.1 −0.373529
\(902\) 0 0
\(903\) −1147.05 787.118i −0.0422719 0.0290073i
\(904\) 0 0
\(905\) 8711.42i 0.319975i
\(906\) 0 0
\(907\) 2559.33i 0.0936947i −0.998902 0.0468474i \(-0.985083\pi\)
0.998902 0.0468474i \(-0.0149174\pi\)
\(908\) 0 0
\(909\) −38875.2 + 14987.8i −1.41849 + 0.546880i
\(910\) 0 0
\(911\) 10981.3 0.399371 0.199685 0.979860i \(-0.436008\pi\)
0.199685 + 0.979860i \(0.436008\pi\)
\(912\) 0 0
\(913\) 1185.89 0.0429871
\(914\) 0 0
\(915\) −4188.70 + 6104.11i −0.151338 + 0.220542i
\(916\) 0 0
\(917\) 20940.7 0.754115
\(918\) 0 0
\(919\) 42227.2i 1.51572i −0.652416 0.757861i \(-0.726245\pi\)
0.652416 0.757861i \(-0.273755\pi\)
\(920\) 0 0
\(921\) 24965.4 + 17131.5i 0.893201 + 0.612923i
\(922\) 0 0
\(923\) 19121.2i 0.681889i
\(924\) 0 0
\(925\) 3665.05i 0.130277i
\(926\) 0 0
\(927\) −766.457 + 295.497i −0.0271561 + 0.0104697i
\(928\) 0 0
\(929\) 19797.1i 0.699162i 0.936906 + 0.349581i \(0.113676\pi\)
−0.936906 + 0.349581i \(0.886324\pi\)
\(930\) 0 0
\(931\) 641.879i 0.0225958i
\(932\) 0 0
\(933\) −9683.59 + 14111.7i −0.339793 + 0.495174i
\(934\) 0 0
\(935\) −10753.9 −0.376138
\(936\) 0 0
\(937\) 36899.2i 1.28649i 0.765659 + 0.643246i \(0.222413\pi\)
−0.765659 + 0.643246i \(0.777587\pi\)
\(938\) 0 0
\(939\) −14423.5 + 21019.1i −0.501272 + 0.730494i
\(940\) 0 0
\(941\) 4129.78 0.143068 0.0715340 0.997438i \(-0.477211\pi\)
0.0715340 + 0.997438i \(0.477211\pi\)
\(942\) 0 0
\(943\) −8257.44 16421.4i −0.285153 0.567078i
\(944\) 0 0
\(945\) 31071.1 + 7387.74i 1.06957 + 0.254310i
\(946\) 0 0
\(947\) 6391.30i 0.219313i −0.993970 0.109656i \(-0.965025\pi\)
0.993970 0.109656i \(-0.0349751\pi\)
\(948\) 0 0
\(949\) −17751.8 −0.607217
\(950\) 0 0
\(951\) 19150.0 27907.0i 0.652978 0.951572i
\(952\) 0 0
\(953\) −3659.59 −0.124392 −0.0621961 0.998064i \(-0.519810\pi\)
−0.0621961 + 0.998064i \(0.519810\pi\)
\(954\) 0 0
\(955\) −23489.9 −0.795933
\(956\) 0 0
\(957\) −2841.65 + 4141.08i −0.0959848 + 0.139877i
\(958\) 0 0
\(959\) 53761.9i 1.81029i
\(960\) 0 0
\(961\) 40382.4 1.35552
\(962\) 0 0
\(963\) 340.417 + 882.969i 0.0113913 + 0.0295465i
\(964\) 0 0
\(965\) 28295.0 0.943884
\(966\) 0 0
\(967\) 14635.7 0.486713 0.243356 0.969937i \(-0.421752\pi\)
0.243356 + 0.969937i \(0.421752\pi\)
\(968\) 0 0
\(969\) −29817.6 + 43452.7i −0.988524 + 1.44056i
\(970\) 0 0
\(971\) −2016.09 −0.0666316 −0.0333158 0.999445i \(-0.510607\pi\)
−0.0333158 + 0.999445i \(0.510607\pi\)
\(972\) 0 0
\(973\) 11835.1i 0.389943i
\(974\) 0 0
\(975\) −9979.94 6848.33i −0.327809 0.224946i
\(976\) 0 0
\(977\) −684.955 −0.0224295 −0.0112148 0.999937i \(-0.503570\pi\)
−0.0112148 + 0.999937i \(0.503570\pi\)
\(978\) 0 0
\(979\) 11053.8 0.360860
\(980\) 0 0
\(981\) 883.376 340.573i 0.0287503 0.0110843i
\(982\) 0 0
\(983\) 37483.0 1.21620 0.608099 0.793861i \(-0.291932\pi\)
0.608099 + 0.793861i \(0.291932\pi\)
\(984\) 0 0
\(985\) 22054.2i 0.713405i
\(986\) 0 0
\(987\) 13999.8 + 9606.78i 0.451487 + 0.309815i
\(988\) 0 0
\(989\) 722.527 + 1436.87i 0.0232306 + 0.0461981i
\(990\) 0 0
\(991\) 32662.5 1.04698 0.523490 0.852032i \(-0.324630\pi\)
0.523490 + 0.852032i \(0.324630\pi\)
\(992\) 0 0
\(993\) 5703.08 + 3913.51i 0.182258 + 0.125067i
\(994\) 0 0
\(995\) 57304.9i 1.82582i
\(996\) 0 0
\(997\) 28008.9 0.889719 0.444860 0.895600i \(-0.353254\pi\)
0.444860 + 0.895600i \(0.353254\pi\)
\(998\) 0 0
\(999\) 17429.0 + 4144.08i 0.551982 + 0.131244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.4.m.a.137.14 yes 72
3.2 odd 2 inner 552.4.m.a.137.15 yes 72
23.22 odd 2 inner 552.4.m.a.137.13 72
69.68 even 2 inner 552.4.m.a.137.16 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.4.m.a.137.13 72 23.22 odd 2 inner
552.4.m.a.137.14 yes 72 1.1 even 1 trivial
552.4.m.a.137.15 yes 72 3.2 odd 2 inner
552.4.m.a.137.16 yes 72 69.68 even 2 inner