Properties

Label 552.4.a.j.1.2
Level $552$
Weight $4$
Character 552.1
Self dual yes
Analytic conductor $32.569$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,4,Mod(1,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 552.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-15,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5690543232\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 119x^{3} - 173x^{2} + 880x - 575 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(12.3379\) of defining polynomial
Character \(\chi\) \(=\) 552.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -10.6116 q^{5} -23.9380 q^{7} +9.00000 q^{9} -56.6778 q^{11} -42.8818 q^{13} +31.8349 q^{15} -6.90498 q^{17} -6.51792 q^{19} +71.8140 q^{21} -23.0000 q^{23} -12.3931 q^{25} -27.0000 q^{27} +125.161 q^{29} -171.426 q^{31} +170.033 q^{33} +254.021 q^{35} +189.505 q^{37} +128.645 q^{39} -276.188 q^{41} -76.6612 q^{43} -95.5048 q^{45} -206.736 q^{47} +230.028 q^{49} +20.7149 q^{51} +382.960 q^{53} +601.444 q^{55} +19.5538 q^{57} +757.103 q^{59} -109.549 q^{61} -215.442 q^{63} +455.046 q^{65} +835.087 q^{67} +69.0000 q^{69} -158.799 q^{71} -619.113 q^{73} +37.1792 q^{75} +1356.75 q^{77} -996.598 q^{79} +81.0000 q^{81} -824.116 q^{83} +73.2732 q^{85} -375.484 q^{87} +1226.51 q^{89} +1026.50 q^{91} +514.279 q^{93} +69.1658 q^{95} +756.861 q^{97} -510.100 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{3} + 16 q^{5} + 45 q^{9} + 6 q^{11} - 10 q^{13} - 48 q^{15} + 22 q^{17} + 42 q^{19} - 115 q^{23} + 291 q^{25} - 135 q^{27} + 274 q^{29} - 460 q^{31} - 18 q^{33} - 320 q^{35} + 420 q^{37} + 30 q^{39}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −10.6116 −0.949134 −0.474567 0.880219i \(-0.657395\pi\)
−0.474567 + 0.880219i \(0.657395\pi\)
\(6\) 0 0
\(7\) −23.9380 −1.29253 −0.646265 0.763113i \(-0.723670\pi\)
−0.646265 + 0.763113i \(0.723670\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −56.6778 −1.55355 −0.776773 0.629781i \(-0.783145\pi\)
−0.776773 + 0.629781i \(0.783145\pi\)
\(12\) 0 0
\(13\) −42.8818 −0.914867 −0.457433 0.889244i \(-0.651231\pi\)
−0.457433 + 0.889244i \(0.651231\pi\)
\(14\) 0 0
\(15\) 31.8349 0.547983
\(16\) 0 0
\(17\) −6.90498 −0.0985120 −0.0492560 0.998786i \(-0.515685\pi\)
−0.0492560 + 0.998786i \(0.515685\pi\)
\(18\) 0 0
\(19\) −6.51792 −0.0787007 −0.0393504 0.999225i \(-0.512529\pi\)
−0.0393504 + 0.999225i \(0.512529\pi\)
\(20\) 0 0
\(21\) 71.8140 0.746243
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −12.3931 −0.0991445
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 125.161 0.801444 0.400722 0.916200i \(-0.368759\pi\)
0.400722 + 0.916200i \(0.368759\pi\)
\(30\) 0 0
\(31\) −171.426 −0.993197 −0.496598 0.867980i \(-0.665418\pi\)
−0.496598 + 0.867980i \(0.665418\pi\)
\(32\) 0 0
\(33\) 170.033 0.896940
\(34\) 0 0
\(35\) 254.021 1.22678
\(36\) 0 0
\(37\) 189.505 0.842010 0.421005 0.907058i \(-0.361677\pi\)
0.421005 + 0.907058i \(0.361677\pi\)
\(38\) 0 0
\(39\) 128.645 0.528199
\(40\) 0 0
\(41\) −276.188 −1.05203 −0.526015 0.850475i \(-0.676315\pi\)
−0.526015 + 0.850475i \(0.676315\pi\)
\(42\) 0 0
\(43\) −76.6612 −0.271877 −0.135939 0.990717i \(-0.543405\pi\)
−0.135939 + 0.990717i \(0.543405\pi\)
\(44\) 0 0
\(45\) −95.5048 −0.316378
\(46\) 0 0
\(47\) −206.736 −0.641608 −0.320804 0.947146i \(-0.603953\pi\)
−0.320804 + 0.947146i \(0.603953\pi\)
\(48\) 0 0
\(49\) 230.028 0.670635
\(50\) 0 0
\(51\) 20.7149 0.0568759
\(52\) 0 0
\(53\) 382.960 0.992520 0.496260 0.868174i \(-0.334706\pi\)
0.496260 + 0.868174i \(0.334706\pi\)
\(54\) 0 0
\(55\) 601.444 1.47452
\(56\) 0 0
\(57\) 19.5538 0.0454379
\(58\) 0 0
\(59\) 757.103 1.67062 0.835309 0.549781i \(-0.185289\pi\)
0.835309 + 0.549781i \(0.185289\pi\)
\(60\) 0 0
\(61\) −109.549 −0.229939 −0.114970 0.993369i \(-0.536677\pi\)
−0.114970 + 0.993369i \(0.536677\pi\)
\(62\) 0 0
\(63\) −215.442 −0.430843
\(64\) 0 0
\(65\) 455.046 0.868331
\(66\) 0 0
\(67\) 835.087 1.52272 0.761359 0.648331i \(-0.224533\pi\)
0.761359 + 0.648331i \(0.224533\pi\)
\(68\) 0 0
\(69\) 69.0000 0.120386
\(70\) 0 0
\(71\) −158.799 −0.265437 −0.132719 0.991154i \(-0.542371\pi\)
−0.132719 + 0.991154i \(0.542371\pi\)
\(72\) 0 0
\(73\) −619.113 −0.992626 −0.496313 0.868144i \(-0.665313\pi\)
−0.496313 + 0.868144i \(0.665313\pi\)
\(74\) 0 0
\(75\) 37.1792 0.0572411
\(76\) 0 0
\(77\) 1356.75 2.00800
\(78\) 0 0
\(79\) −996.598 −1.41932 −0.709658 0.704546i \(-0.751151\pi\)
−0.709658 + 0.704546i \(0.751151\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −824.116 −1.08986 −0.544931 0.838481i \(-0.683444\pi\)
−0.544931 + 0.838481i \(0.683444\pi\)
\(84\) 0 0
\(85\) 73.2732 0.0935011
\(86\) 0 0
\(87\) −375.484 −0.462714
\(88\) 0 0
\(89\) 1226.51 1.46078 0.730390 0.683030i \(-0.239338\pi\)
0.730390 + 0.683030i \(0.239338\pi\)
\(90\) 0 0
\(91\) 1026.50 1.18249
\(92\) 0 0
\(93\) 514.279 0.573422
\(94\) 0 0
\(95\) 69.1658 0.0746975
\(96\) 0 0
\(97\) 756.861 0.792243 0.396121 0.918198i \(-0.370356\pi\)
0.396121 + 0.918198i \(0.370356\pi\)
\(98\) 0 0
\(99\) −510.100 −0.517848
\(100\) 0 0
\(101\) 190.542 0.187719 0.0938597 0.995585i \(-0.470079\pi\)
0.0938597 + 0.995585i \(0.470079\pi\)
\(102\) 0 0
\(103\) −738.006 −0.705999 −0.353000 0.935623i \(-0.614838\pi\)
−0.353000 + 0.935623i \(0.614838\pi\)
\(104\) 0 0
\(105\) −762.064 −0.708285
\(106\) 0 0
\(107\) −443.423 −0.400629 −0.200315 0.979732i \(-0.564196\pi\)
−0.200315 + 0.979732i \(0.564196\pi\)
\(108\) 0 0
\(109\) −592.014 −0.520227 −0.260113 0.965578i \(-0.583760\pi\)
−0.260113 + 0.965578i \(0.583760\pi\)
\(110\) 0 0
\(111\) −568.514 −0.486135
\(112\) 0 0
\(113\) 2043.52 1.70122 0.850612 0.525793i \(-0.176232\pi\)
0.850612 + 0.525793i \(0.176232\pi\)
\(114\) 0 0
\(115\) 244.068 0.197908
\(116\) 0 0
\(117\) −385.936 −0.304956
\(118\) 0 0
\(119\) 165.291 0.127330
\(120\) 0 0
\(121\) 1881.37 1.41350
\(122\) 0 0
\(123\) 828.563 0.607390
\(124\) 0 0
\(125\) 1457.97 1.04324
\(126\) 0 0
\(127\) −423.322 −0.295777 −0.147889 0.989004i \(-0.547248\pi\)
−0.147889 + 0.989004i \(0.547248\pi\)
\(128\) 0 0
\(129\) 229.984 0.156968
\(130\) 0 0
\(131\) −2255.29 −1.50416 −0.752081 0.659070i \(-0.770950\pi\)
−0.752081 + 0.659070i \(0.770950\pi\)
\(132\) 0 0
\(133\) 156.026 0.101723
\(134\) 0 0
\(135\) 286.514 0.182661
\(136\) 0 0
\(137\) 2477.27 1.54487 0.772435 0.635094i \(-0.219039\pi\)
0.772435 + 0.635094i \(0.219039\pi\)
\(138\) 0 0
\(139\) 1024.14 0.624940 0.312470 0.949928i \(-0.398844\pi\)
0.312470 + 0.949928i \(0.398844\pi\)
\(140\) 0 0
\(141\) 620.208 0.370432
\(142\) 0 0
\(143\) 2430.44 1.42129
\(144\) 0 0
\(145\) −1328.17 −0.760678
\(146\) 0 0
\(147\) −690.083 −0.387191
\(148\) 0 0
\(149\) −365.212 −0.200801 −0.100401 0.994947i \(-0.532012\pi\)
−0.100401 + 0.994947i \(0.532012\pi\)
\(150\) 0 0
\(151\) −3117.91 −1.68035 −0.840173 0.542319i \(-0.817547\pi\)
−0.840173 + 0.542319i \(0.817547\pi\)
\(152\) 0 0
\(153\) −62.1448 −0.0328373
\(154\) 0 0
\(155\) 1819.12 0.942677
\(156\) 0 0
\(157\) −2671.09 −1.35781 −0.678904 0.734227i \(-0.737545\pi\)
−0.678904 + 0.734227i \(0.737545\pi\)
\(158\) 0 0
\(159\) −1148.88 −0.573031
\(160\) 0 0
\(161\) 550.574 0.269511
\(162\) 0 0
\(163\) 2046.87 0.983576 0.491788 0.870715i \(-0.336344\pi\)
0.491788 + 0.870715i \(0.336344\pi\)
\(164\) 0 0
\(165\) −1804.33 −0.851316
\(166\) 0 0
\(167\) −935.107 −0.433298 −0.216649 0.976250i \(-0.569513\pi\)
−0.216649 + 0.976250i \(0.569513\pi\)
\(168\) 0 0
\(169\) −358.152 −0.163019
\(170\) 0 0
\(171\) −58.6613 −0.0262336
\(172\) 0 0
\(173\) −1487.01 −0.653500 −0.326750 0.945111i \(-0.605954\pi\)
−0.326750 + 0.945111i \(0.605954\pi\)
\(174\) 0 0
\(175\) 296.665 0.128147
\(176\) 0 0
\(177\) −2271.31 −0.964532
\(178\) 0 0
\(179\) −2342.99 −0.978341 −0.489170 0.872188i \(-0.662700\pi\)
−0.489170 + 0.872188i \(0.662700\pi\)
\(180\) 0 0
\(181\) 595.008 0.244346 0.122173 0.992509i \(-0.461014\pi\)
0.122173 + 0.992509i \(0.461014\pi\)
\(182\) 0 0
\(183\) 328.646 0.132755
\(184\) 0 0
\(185\) −2010.96 −0.799181
\(186\) 0 0
\(187\) 391.359 0.153043
\(188\) 0 0
\(189\) 646.326 0.248748
\(190\) 0 0
\(191\) −1358.46 −0.514631 −0.257316 0.966327i \(-0.582838\pi\)
−0.257316 + 0.966327i \(0.582838\pi\)
\(192\) 0 0
\(193\) −2821.91 −1.05247 −0.526233 0.850341i \(-0.676396\pi\)
−0.526233 + 0.850341i \(0.676396\pi\)
\(194\) 0 0
\(195\) −1365.14 −0.501331
\(196\) 0 0
\(197\) 2180.29 0.788524 0.394262 0.918998i \(-0.371000\pi\)
0.394262 + 0.918998i \(0.371000\pi\)
\(198\) 0 0
\(199\) −894.363 −0.318591 −0.159296 0.987231i \(-0.550922\pi\)
−0.159296 + 0.987231i \(0.550922\pi\)
\(200\) 0 0
\(201\) −2505.26 −0.879142
\(202\) 0 0
\(203\) −2996.11 −1.03589
\(204\) 0 0
\(205\) 2930.80 0.998518
\(206\) 0 0
\(207\) −207.000 −0.0695048
\(208\) 0 0
\(209\) 369.421 0.122265
\(210\) 0 0
\(211\) −4286.93 −1.39869 −0.699347 0.714783i \(-0.746526\pi\)
−0.699347 + 0.714783i \(0.746526\pi\)
\(212\) 0 0
\(213\) 476.398 0.153250
\(214\) 0 0
\(215\) 813.501 0.258048
\(216\) 0 0
\(217\) 4103.61 1.28374
\(218\) 0 0
\(219\) 1857.34 0.573093
\(220\) 0 0
\(221\) 296.098 0.0901253
\(222\) 0 0
\(223\) −1236.58 −0.371334 −0.185667 0.982613i \(-0.559445\pi\)
−0.185667 + 0.982613i \(0.559445\pi\)
\(224\) 0 0
\(225\) −111.538 −0.0330482
\(226\) 0 0
\(227\) 2123.19 0.620799 0.310399 0.950606i \(-0.399537\pi\)
0.310399 + 0.950606i \(0.399537\pi\)
\(228\) 0 0
\(229\) −2009.27 −0.579810 −0.289905 0.957055i \(-0.593624\pi\)
−0.289905 + 0.957055i \(0.593624\pi\)
\(230\) 0 0
\(231\) −4070.26 −1.15932
\(232\) 0 0
\(233\) −2384.67 −0.670494 −0.335247 0.942130i \(-0.608820\pi\)
−0.335247 + 0.942130i \(0.608820\pi\)
\(234\) 0 0
\(235\) 2193.81 0.608972
\(236\) 0 0
\(237\) 2989.79 0.819443
\(238\) 0 0
\(239\) 4057.12 1.09805 0.549023 0.835807i \(-0.315000\pi\)
0.549023 + 0.835807i \(0.315000\pi\)
\(240\) 0 0
\(241\) 611.129 0.163345 0.0816727 0.996659i \(-0.473974\pi\)
0.0816727 + 0.996659i \(0.473974\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −2440.97 −0.636523
\(246\) 0 0
\(247\) 279.500 0.0720007
\(248\) 0 0
\(249\) 2472.35 0.629232
\(250\) 0 0
\(251\) 5936.57 1.49288 0.746441 0.665452i \(-0.231761\pi\)
0.746441 + 0.665452i \(0.231761\pi\)
\(252\) 0 0
\(253\) 1303.59 0.323937
\(254\) 0 0
\(255\) −219.820 −0.0539829
\(256\) 0 0
\(257\) −1969.70 −0.478080 −0.239040 0.971010i \(-0.576833\pi\)
−0.239040 + 0.971010i \(0.576833\pi\)
\(258\) 0 0
\(259\) −4536.36 −1.08832
\(260\) 0 0
\(261\) 1126.45 0.267148
\(262\) 0 0
\(263\) −4243.92 −0.995024 −0.497512 0.867457i \(-0.665753\pi\)
−0.497512 + 0.867457i \(0.665753\pi\)
\(264\) 0 0
\(265\) −4063.83 −0.942034
\(266\) 0 0
\(267\) −3679.52 −0.843382
\(268\) 0 0
\(269\) −818.053 −0.185418 −0.0927092 0.995693i \(-0.529553\pi\)
−0.0927092 + 0.995693i \(0.529553\pi\)
\(270\) 0 0
\(271\) −8551.04 −1.91675 −0.958374 0.285514i \(-0.907836\pi\)
−0.958374 + 0.285514i \(0.907836\pi\)
\(272\) 0 0
\(273\) −3079.51 −0.682713
\(274\) 0 0
\(275\) 702.411 0.154025
\(276\) 0 0
\(277\) −1935.68 −0.419868 −0.209934 0.977716i \(-0.567325\pi\)
−0.209934 + 0.977716i \(0.567325\pi\)
\(278\) 0 0
\(279\) −1542.84 −0.331066
\(280\) 0 0
\(281\) −226.498 −0.0480844 −0.0240422 0.999711i \(-0.507654\pi\)
−0.0240422 + 0.999711i \(0.507654\pi\)
\(282\) 0 0
\(283\) −664.631 −0.139605 −0.0698025 0.997561i \(-0.522237\pi\)
−0.0698025 + 0.997561i \(0.522237\pi\)
\(284\) 0 0
\(285\) −207.497 −0.0431266
\(286\) 0 0
\(287\) 6611.38 1.35978
\(288\) 0 0
\(289\) −4865.32 −0.990295
\(290\) 0 0
\(291\) −2270.58 −0.457402
\(292\) 0 0
\(293\) 6083.42 1.21296 0.606480 0.795099i \(-0.292581\pi\)
0.606480 + 0.795099i \(0.292581\pi\)
\(294\) 0 0
\(295\) −8034.11 −1.58564
\(296\) 0 0
\(297\) 1530.30 0.298980
\(298\) 0 0
\(299\) 986.281 0.190763
\(300\) 0 0
\(301\) 1835.12 0.351410
\(302\) 0 0
\(303\) −571.627 −0.108380
\(304\) 0 0
\(305\) 1162.49 0.218243
\(306\) 0 0
\(307\) 8366.57 1.55539 0.777696 0.628640i \(-0.216388\pi\)
0.777696 + 0.628640i \(0.216388\pi\)
\(308\) 0 0
\(309\) 2214.02 0.407609
\(310\) 0 0
\(311\) −419.976 −0.0765745 −0.0382872 0.999267i \(-0.512190\pi\)
−0.0382872 + 0.999267i \(0.512190\pi\)
\(312\) 0 0
\(313\) −10053.3 −1.81547 −0.907737 0.419539i \(-0.862192\pi\)
−0.907737 + 0.419539i \(0.862192\pi\)
\(314\) 0 0
\(315\) 2286.19 0.408928
\(316\) 0 0
\(317\) 796.576 0.141136 0.0705681 0.997507i \(-0.477519\pi\)
0.0705681 + 0.997507i \(0.477519\pi\)
\(318\) 0 0
\(319\) −7093.87 −1.24508
\(320\) 0 0
\(321\) 1330.27 0.231304
\(322\) 0 0
\(323\) 45.0061 0.00775296
\(324\) 0 0
\(325\) 531.437 0.0907040
\(326\) 0 0
\(327\) 1776.04 0.300353
\(328\) 0 0
\(329\) 4948.85 0.829297
\(330\) 0 0
\(331\) 327.269 0.0543455 0.0271727 0.999631i \(-0.491350\pi\)
0.0271727 + 0.999631i \(0.491350\pi\)
\(332\) 0 0
\(333\) 1705.54 0.280670
\(334\) 0 0
\(335\) −8861.64 −1.44526
\(336\) 0 0
\(337\) −458.322 −0.0740842 −0.0370421 0.999314i \(-0.511794\pi\)
−0.0370421 + 0.999314i \(0.511794\pi\)
\(338\) 0 0
\(339\) −6130.57 −0.982202
\(340\) 0 0
\(341\) 9716.07 1.54298
\(342\) 0 0
\(343\) 2704.33 0.425714
\(344\) 0 0
\(345\) −732.203 −0.114262
\(346\) 0 0
\(347\) −1135.87 −0.175725 −0.0878624 0.996133i \(-0.528004\pi\)
−0.0878624 + 0.996133i \(0.528004\pi\)
\(348\) 0 0
\(349\) 1679.79 0.257643 0.128821 0.991668i \(-0.458881\pi\)
0.128821 + 0.991668i \(0.458881\pi\)
\(350\) 0 0
\(351\) 1157.81 0.176066
\(352\) 0 0
\(353\) 9318.23 1.40498 0.702492 0.711691i \(-0.252071\pi\)
0.702492 + 0.711691i \(0.252071\pi\)
\(354\) 0 0
\(355\) 1685.12 0.251935
\(356\) 0 0
\(357\) −495.874 −0.0735139
\(358\) 0 0
\(359\) 8757.29 1.28744 0.643721 0.765260i \(-0.277390\pi\)
0.643721 + 0.765260i \(0.277390\pi\)
\(360\) 0 0
\(361\) −6816.52 −0.993806
\(362\) 0 0
\(363\) −5644.12 −0.816086
\(364\) 0 0
\(365\) 6569.80 0.942135
\(366\) 0 0
\(367\) −1384.02 −0.196854 −0.0984271 0.995144i \(-0.531381\pi\)
−0.0984271 + 0.995144i \(0.531381\pi\)
\(368\) 0 0
\(369\) −2485.69 −0.350677
\(370\) 0 0
\(371\) −9167.29 −1.28286
\(372\) 0 0
\(373\) −5627.27 −0.781150 −0.390575 0.920571i \(-0.627724\pi\)
−0.390575 + 0.920571i \(0.627724\pi\)
\(374\) 0 0
\(375\) −4373.90 −0.602312
\(376\) 0 0
\(377\) −5367.14 −0.733215
\(378\) 0 0
\(379\) 13693.5 1.85590 0.927951 0.372702i \(-0.121569\pi\)
0.927951 + 0.372702i \(0.121569\pi\)
\(380\) 0 0
\(381\) 1269.97 0.170767
\(382\) 0 0
\(383\) 14194.7 1.89378 0.946888 0.321565i \(-0.104209\pi\)
0.946888 + 0.321565i \(0.104209\pi\)
\(384\) 0 0
\(385\) −14397.4 −1.90587
\(386\) 0 0
\(387\) −689.951 −0.0906257
\(388\) 0 0
\(389\) 6997.48 0.912047 0.456024 0.889968i \(-0.349273\pi\)
0.456024 + 0.889968i \(0.349273\pi\)
\(390\) 0 0
\(391\) 158.815 0.0205412
\(392\) 0 0
\(393\) 6765.86 0.868429
\(394\) 0 0
\(395\) 10575.5 1.34712
\(396\) 0 0
\(397\) 4376.03 0.553216 0.276608 0.960983i \(-0.410790\pi\)
0.276608 + 0.960983i \(0.410790\pi\)
\(398\) 0 0
\(399\) −468.078 −0.0587298
\(400\) 0 0
\(401\) 12336.5 1.53630 0.768148 0.640273i \(-0.221179\pi\)
0.768148 + 0.640273i \(0.221179\pi\)
\(402\) 0 0
\(403\) 7351.07 0.908643
\(404\) 0 0
\(405\) −859.543 −0.105459
\(406\) 0 0
\(407\) −10740.7 −1.30810
\(408\) 0 0
\(409\) −55.5800 −0.00671945 −0.00335973 0.999994i \(-0.501069\pi\)
−0.00335973 + 0.999994i \(0.501069\pi\)
\(410\) 0 0
\(411\) −7431.80 −0.891931
\(412\) 0 0
\(413\) −18123.5 −2.15932
\(414\) 0 0
\(415\) 8745.22 1.03442
\(416\) 0 0
\(417\) −3072.43 −0.360809
\(418\) 0 0
\(419\) −4196.16 −0.489250 −0.244625 0.969618i \(-0.578665\pi\)
−0.244625 + 0.969618i \(0.578665\pi\)
\(420\) 0 0
\(421\) 6162.19 0.713365 0.356682 0.934226i \(-0.383908\pi\)
0.356682 + 0.934226i \(0.383908\pi\)
\(422\) 0 0
\(423\) −1860.62 −0.213869
\(424\) 0 0
\(425\) 85.5738 0.00976692
\(426\) 0 0
\(427\) 2622.38 0.297203
\(428\) 0 0
\(429\) −7291.33 −0.820580
\(430\) 0 0
\(431\) −10406.2 −1.16299 −0.581493 0.813551i \(-0.697531\pi\)
−0.581493 + 0.813551i \(0.697531\pi\)
\(432\) 0 0
\(433\) −4625.62 −0.513380 −0.256690 0.966494i \(-0.582632\pi\)
−0.256690 + 0.966494i \(0.582632\pi\)
\(434\) 0 0
\(435\) 3984.50 0.439178
\(436\) 0 0
\(437\) 149.912 0.0164102
\(438\) 0 0
\(439\) 11547.8 1.25546 0.627728 0.778433i \(-0.283985\pi\)
0.627728 + 0.778433i \(0.283985\pi\)
\(440\) 0 0
\(441\) 2070.25 0.223545
\(442\) 0 0
\(443\) 4495.30 0.482118 0.241059 0.970510i \(-0.422505\pi\)
0.241059 + 0.970510i \(0.422505\pi\)
\(444\) 0 0
\(445\) −13015.3 −1.38648
\(446\) 0 0
\(447\) 1095.64 0.115933
\(448\) 0 0
\(449\) −11909.9 −1.25181 −0.625903 0.779901i \(-0.715269\pi\)
−0.625903 + 0.779901i \(0.715269\pi\)
\(450\) 0 0
\(451\) 15653.7 1.63438
\(452\) 0 0
\(453\) 9353.74 0.970148
\(454\) 0 0
\(455\) −10892.9 −1.12234
\(456\) 0 0
\(457\) 17167.0 1.75719 0.878596 0.477566i \(-0.158481\pi\)
0.878596 + 0.477566i \(0.158481\pi\)
\(458\) 0 0
\(459\) 186.434 0.0189586
\(460\) 0 0
\(461\) −11601.2 −1.17206 −0.586032 0.810288i \(-0.699311\pi\)
−0.586032 + 0.810288i \(0.699311\pi\)
\(462\) 0 0
\(463\) 14155.3 1.42085 0.710424 0.703773i \(-0.248503\pi\)
0.710424 + 0.703773i \(0.248503\pi\)
\(464\) 0 0
\(465\) −5457.35 −0.544255
\(466\) 0 0
\(467\) −266.993 −0.0264560 −0.0132280 0.999913i \(-0.504211\pi\)
−0.0132280 + 0.999913i \(0.504211\pi\)
\(468\) 0 0
\(469\) −19990.3 −1.96816
\(470\) 0 0
\(471\) 8013.26 0.783931
\(472\) 0 0
\(473\) 4344.99 0.422374
\(474\) 0 0
\(475\) 80.7770 0.00780274
\(476\) 0 0
\(477\) 3446.64 0.330840
\(478\) 0 0
\(479\) 1512.77 0.144301 0.0721504 0.997394i \(-0.477014\pi\)
0.0721504 + 0.997394i \(0.477014\pi\)
\(480\) 0 0
\(481\) −8126.30 −0.770327
\(482\) 0 0
\(483\) −1651.72 −0.155602
\(484\) 0 0
\(485\) −8031.53 −0.751945
\(486\) 0 0
\(487\) 19045.5 1.77215 0.886073 0.463545i \(-0.153423\pi\)
0.886073 + 0.463545i \(0.153423\pi\)
\(488\) 0 0
\(489\) −6140.60 −0.567868
\(490\) 0 0
\(491\) 17593.5 1.61708 0.808539 0.588442i \(-0.200258\pi\)
0.808539 + 0.588442i \(0.200258\pi\)
\(492\) 0 0
\(493\) −864.237 −0.0789519
\(494\) 0 0
\(495\) 5413.00 0.491508
\(496\) 0 0
\(497\) 3801.34 0.343085
\(498\) 0 0
\(499\) −487.931 −0.0437731 −0.0218866 0.999760i \(-0.506967\pi\)
−0.0218866 + 0.999760i \(0.506967\pi\)
\(500\) 0 0
\(501\) 2805.32 0.250165
\(502\) 0 0
\(503\) −5519.58 −0.489276 −0.244638 0.969614i \(-0.578669\pi\)
−0.244638 + 0.969614i \(0.578669\pi\)
\(504\) 0 0
\(505\) −2021.97 −0.178171
\(506\) 0 0
\(507\) 1074.46 0.0941190
\(508\) 0 0
\(509\) −15942.0 −1.38824 −0.694122 0.719858i \(-0.744207\pi\)
−0.694122 + 0.719858i \(0.744207\pi\)
\(510\) 0 0
\(511\) 14820.3 1.28300
\(512\) 0 0
\(513\) 175.984 0.0151460
\(514\) 0 0
\(515\) 7831.46 0.670088
\(516\) 0 0
\(517\) 11717.3 0.996766
\(518\) 0 0
\(519\) 4461.04 0.377299
\(520\) 0 0
\(521\) 10119.4 0.850943 0.425471 0.904972i \(-0.360108\pi\)
0.425471 + 0.904972i \(0.360108\pi\)
\(522\) 0 0
\(523\) 19967.4 1.66943 0.834715 0.550683i \(-0.185632\pi\)
0.834715 + 0.550683i \(0.185632\pi\)
\(524\) 0 0
\(525\) −889.995 −0.0739859
\(526\) 0 0
\(527\) 1183.70 0.0978418
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 6813.93 0.556873
\(532\) 0 0
\(533\) 11843.4 0.962468
\(534\) 0 0
\(535\) 4705.45 0.380251
\(536\) 0 0
\(537\) 7028.96 0.564845
\(538\) 0 0
\(539\) −13037.5 −1.04186
\(540\) 0 0
\(541\) −9132.13 −0.725732 −0.362866 0.931841i \(-0.618202\pi\)
−0.362866 + 0.931841i \(0.618202\pi\)
\(542\) 0 0
\(543\) −1785.02 −0.141073
\(544\) 0 0
\(545\) 6282.25 0.493765
\(546\) 0 0
\(547\) 16329.9 1.27645 0.638224 0.769851i \(-0.279670\pi\)
0.638224 + 0.769851i \(0.279670\pi\)
\(548\) 0 0
\(549\) −985.939 −0.0766463
\(550\) 0 0
\(551\) −815.792 −0.0630742
\(552\) 0 0
\(553\) 23856.6 1.83451
\(554\) 0 0
\(555\) 6032.87 0.461407
\(556\) 0 0
\(557\) −17494.1 −1.33079 −0.665393 0.746494i \(-0.731736\pi\)
−0.665393 + 0.746494i \(0.731736\pi\)
\(558\) 0 0
\(559\) 3287.37 0.248731
\(560\) 0 0
\(561\) −1174.08 −0.0883593
\(562\) 0 0
\(563\) 15509.2 1.16099 0.580494 0.814265i \(-0.302860\pi\)
0.580494 + 0.814265i \(0.302860\pi\)
\(564\) 0 0
\(565\) −21685.1 −1.61469
\(566\) 0 0
\(567\) −1938.98 −0.143614
\(568\) 0 0
\(569\) 13154.8 0.969203 0.484601 0.874735i \(-0.338965\pi\)
0.484601 + 0.874735i \(0.338965\pi\)
\(570\) 0 0
\(571\) −5633.40 −0.412873 −0.206436 0.978460i \(-0.566187\pi\)
−0.206436 + 0.978460i \(0.566187\pi\)
\(572\) 0 0
\(573\) 4075.37 0.297122
\(574\) 0 0
\(575\) 285.040 0.0206731
\(576\) 0 0
\(577\) 24998.5 1.80364 0.901821 0.432109i \(-0.142231\pi\)
0.901821 + 0.432109i \(0.142231\pi\)
\(578\) 0 0
\(579\) 8465.74 0.607641
\(580\) 0 0
\(581\) 19727.7 1.40868
\(582\) 0 0
\(583\) −21705.3 −1.54192
\(584\) 0 0
\(585\) 4095.42 0.289444
\(586\) 0 0
\(587\) 15578.6 1.09540 0.547698 0.836676i \(-0.315504\pi\)
0.547698 + 0.836676i \(0.315504\pi\)
\(588\) 0 0
\(589\) 1117.34 0.0781653
\(590\) 0 0
\(591\) −6540.87 −0.455255
\(592\) 0 0
\(593\) 9044.52 0.626331 0.313165 0.949699i \(-0.398611\pi\)
0.313165 + 0.949699i \(0.398611\pi\)
\(594\) 0 0
\(595\) −1754.01 −0.120853
\(596\) 0 0
\(597\) 2683.09 0.183939
\(598\) 0 0
\(599\) −5390.40 −0.367689 −0.183845 0.982955i \(-0.558854\pi\)
−0.183845 + 0.982955i \(0.558854\pi\)
\(600\) 0 0
\(601\) 1663.90 0.112932 0.0564658 0.998405i \(-0.482017\pi\)
0.0564658 + 0.998405i \(0.482017\pi\)
\(602\) 0 0
\(603\) 7515.78 0.507573
\(604\) 0 0
\(605\) −19964.4 −1.34160
\(606\) 0 0
\(607\) −23418.1 −1.56592 −0.782959 0.622074i \(-0.786290\pi\)
−0.782959 + 0.622074i \(0.786290\pi\)
\(608\) 0 0
\(609\) 8988.34 0.598072
\(610\) 0 0
\(611\) 8865.21 0.586985
\(612\) 0 0
\(613\) 10609.6 0.699049 0.349525 0.936927i \(-0.386343\pi\)
0.349525 + 0.936927i \(0.386343\pi\)
\(614\) 0 0
\(615\) −8792.41 −0.576495
\(616\) 0 0
\(617\) −8462.32 −0.552156 −0.276078 0.961135i \(-0.589035\pi\)
−0.276078 + 0.961135i \(0.589035\pi\)
\(618\) 0 0
\(619\) −29421.9 −1.91045 −0.955224 0.295883i \(-0.904386\pi\)
−0.955224 + 0.295883i \(0.904386\pi\)
\(620\) 0 0
\(621\) 621.000 0.0401286
\(622\) 0 0
\(623\) −29360.1 −1.88810
\(624\) 0 0
\(625\) −13922.3 −0.891026
\(626\) 0 0
\(627\) −1108.26 −0.0705898
\(628\) 0 0
\(629\) −1308.53 −0.0829481
\(630\) 0 0
\(631\) −568.767 −0.0358832 −0.0179416 0.999839i \(-0.505711\pi\)
−0.0179416 + 0.999839i \(0.505711\pi\)
\(632\) 0 0
\(633\) 12860.8 0.807536
\(634\) 0 0
\(635\) 4492.14 0.280732
\(636\) 0 0
\(637\) −9864.00 −0.613542
\(638\) 0 0
\(639\) −1429.20 −0.0884790
\(640\) 0 0
\(641\) −3575.12 −0.220294 −0.110147 0.993915i \(-0.535132\pi\)
−0.110147 + 0.993915i \(0.535132\pi\)
\(642\) 0 0
\(643\) 18881.2 1.15801 0.579006 0.815323i \(-0.303441\pi\)
0.579006 + 0.815323i \(0.303441\pi\)
\(644\) 0 0
\(645\) −2440.50 −0.148984
\(646\) 0 0
\(647\) −24841.6 −1.50947 −0.754734 0.656031i \(-0.772234\pi\)
−0.754734 + 0.656031i \(0.772234\pi\)
\(648\) 0 0
\(649\) −42910.9 −2.59538
\(650\) 0 0
\(651\) −12310.8 −0.741166
\(652\) 0 0
\(653\) 22151.2 1.32748 0.663739 0.747964i \(-0.268969\pi\)
0.663739 + 0.747964i \(0.268969\pi\)
\(654\) 0 0
\(655\) 23932.3 1.42765
\(656\) 0 0
\(657\) −5572.02 −0.330875
\(658\) 0 0
\(659\) −24528.7 −1.44993 −0.724964 0.688786i \(-0.758144\pi\)
−0.724964 + 0.688786i \(0.758144\pi\)
\(660\) 0 0
\(661\) −4798.52 −0.282361 −0.141181 0.989984i \(-0.545090\pi\)
−0.141181 + 0.989984i \(0.545090\pi\)
\(662\) 0 0
\(663\) −888.294 −0.0520339
\(664\) 0 0
\(665\) −1655.69 −0.0965488
\(666\) 0 0
\(667\) −2878.71 −0.167113
\(668\) 0 0
\(669\) 3709.74 0.214390
\(670\) 0 0
\(671\) 6208.98 0.357221
\(672\) 0 0
\(673\) 25372.8 1.45327 0.726635 0.687023i \(-0.241083\pi\)
0.726635 + 0.687023i \(0.241083\pi\)
\(674\) 0 0
\(675\) 334.613 0.0190804
\(676\) 0 0
\(677\) −21369.7 −1.21315 −0.606576 0.795025i \(-0.707458\pi\)
−0.606576 + 0.795025i \(0.707458\pi\)
\(678\) 0 0
\(679\) −18117.7 −1.02400
\(680\) 0 0
\(681\) −6369.58 −0.358418
\(682\) 0 0
\(683\) −1784.74 −0.0999873 −0.0499936 0.998750i \(-0.515920\pi\)
−0.0499936 + 0.998750i \(0.515920\pi\)
\(684\) 0 0
\(685\) −26287.9 −1.46629
\(686\) 0 0
\(687\) 6027.82 0.334753
\(688\) 0 0
\(689\) −16422.0 −0.908023
\(690\) 0 0
\(691\) −1019.61 −0.0561328 −0.0280664 0.999606i \(-0.508935\pi\)
−0.0280664 + 0.999606i \(0.508935\pi\)
\(692\) 0 0
\(693\) 12210.8 0.669335
\(694\) 0 0
\(695\) −10867.8 −0.593152
\(696\) 0 0
\(697\) 1907.07 0.103638
\(698\) 0 0
\(699\) 7154.02 0.387110
\(700\) 0 0
\(701\) 5491.06 0.295855 0.147928 0.988998i \(-0.452740\pi\)
0.147928 + 0.988998i \(0.452740\pi\)
\(702\) 0 0
\(703\) −1235.18 −0.0662668
\(704\) 0 0
\(705\) −6581.43 −0.351590
\(706\) 0 0
\(707\) −4561.20 −0.242633
\(708\) 0 0
\(709\) −3653.09 −0.193504 −0.0967522 0.995309i \(-0.530845\pi\)
−0.0967522 + 0.995309i \(0.530845\pi\)
\(710\) 0 0
\(711\) −8969.38 −0.473105
\(712\) 0 0
\(713\) 3942.81 0.207096
\(714\) 0 0
\(715\) −25791.0 −1.34899
\(716\) 0 0
\(717\) −12171.3 −0.633957
\(718\) 0 0
\(719\) 23252.3 1.20607 0.603035 0.797715i \(-0.293958\pi\)
0.603035 + 0.797715i \(0.293958\pi\)
\(720\) 0 0
\(721\) 17666.4 0.912526
\(722\) 0 0
\(723\) −1833.39 −0.0943076
\(724\) 0 0
\(725\) −1551.13 −0.0794588
\(726\) 0 0
\(727\) −30710.6 −1.56670 −0.783352 0.621579i \(-0.786492\pi\)
−0.783352 + 0.621579i \(0.786492\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 529.344 0.0267832
\(732\) 0 0
\(733\) 6775.47 0.341416 0.170708 0.985322i \(-0.445395\pi\)
0.170708 + 0.985322i \(0.445395\pi\)
\(734\) 0 0
\(735\) 7322.92 0.367496
\(736\) 0 0
\(737\) −47330.9 −2.36561
\(738\) 0 0
\(739\) 24106.3 1.19995 0.599976 0.800018i \(-0.295177\pi\)
0.599976 + 0.800018i \(0.295177\pi\)
\(740\) 0 0
\(741\) −838.500 −0.0415696
\(742\) 0 0
\(743\) −27021.5 −1.33421 −0.667107 0.744962i \(-0.732468\pi\)
−0.667107 + 0.744962i \(0.732468\pi\)
\(744\) 0 0
\(745\) 3875.50 0.190587
\(746\) 0 0
\(747\) −7417.04 −0.363287
\(748\) 0 0
\(749\) 10614.7 0.517826
\(750\) 0 0
\(751\) 12789.3 0.621420 0.310710 0.950505i \(-0.399433\pi\)
0.310710 + 0.950505i \(0.399433\pi\)
\(752\) 0 0
\(753\) −17809.7 −0.861915
\(754\) 0 0
\(755\) 33086.2 1.59487
\(756\) 0 0
\(757\) 10581.1 0.508029 0.254014 0.967200i \(-0.418249\pi\)
0.254014 + 0.967200i \(0.418249\pi\)
\(758\) 0 0
\(759\) −3910.77 −0.187025
\(760\) 0 0
\(761\) −14840.7 −0.706933 −0.353466 0.935447i \(-0.614997\pi\)
−0.353466 + 0.935447i \(0.614997\pi\)
\(762\) 0 0
\(763\) 14171.6 0.672409
\(764\) 0 0
\(765\) 659.459 0.0311670
\(766\) 0 0
\(767\) −32465.9 −1.52839
\(768\) 0 0
\(769\) −22803.1 −1.06931 −0.534655 0.845070i \(-0.679559\pi\)
−0.534655 + 0.845070i \(0.679559\pi\)
\(770\) 0 0
\(771\) 5909.11 0.276020
\(772\) 0 0
\(773\) −40457.8 −1.88249 −0.941245 0.337725i \(-0.890342\pi\)
−0.941245 + 0.337725i \(0.890342\pi\)
\(774\) 0 0
\(775\) 2124.50 0.0984700
\(776\) 0 0
\(777\) 13609.1 0.628344
\(778\) 0 0
\(779\) 1800.17 0.0827955
\(780\) 0 0
\(781\) 9000.40 0.412368
\(782\) 0 0
\(783\) −3379.36 −0.154238
\(784\) 0 0
\(785\) 28344.6 1.28874
\(786\) 0 0
\(787\) 27887.6 1.26313 0.631566 0.775322i \(-0.282413\pi\)
0.631566 + 0.775322i \(0.282413\pi\)
\(788\) 0 0
\(789\) 12731.8 0.574477
\(790\) 0 0
\(791\) −48917.8 −2.19888
\(792\) 0 0
\(793\) 4697.65 0.210364
\(794\) 0 0
\(795\) 12191.5 0.543884
\(796\) 0 0
\(797\) −21037.5 −0.934991 −0.467496 0.883995i \(-0.654844\pi\)
−0.467496 + 0.883995i \(0.654844\pi\)
\(798\) 0 0
\(799\) 1427.51 0.0632060
\(800\) 0 0
\(801\) 11038.6 0.486927
\(802\) 0 0
\(803\) 35090.0 1.54209
\(804\) 0 0
\(805\) −5842.49 −0.255802
\(806\) 0 0
\(807\) 2454.16 0.107051
\(808\) 0 0
\(809\) 21600.7 0.938741 0.469371 0.883001i \(-0.344481\pi\)
0.469371 + 0.883001i \(0.344481\pi\)
\(810\) 0 0
\(811\) −6101.67 −0.264191 −0.132095 0.991237i \(-0.542171\pi\)
−0.132095 + 0.991237i \(0.542171\pi\)
\(812\) 0 0
\(813\) 25653.1 1.10664
\(814\) 0 0
\(815\) −21720.6 −0.933545
\(816\) 0 0
\(817\) 499.671 0.0213969
\(818\) 0 0
\(819\) 9238.54 0.394164
\(820\) 0 0
\(821\) 5358.32 0.227779 0.113889 0.993493i \(-0.463669\pi\)
0.113889 + 0.993493i \(0.463669\pi\)
\(822\) 0 0
\(823\) 21845.2 0.925246 0.462623 0.886555i \(-0.346908\pi\)
0.462623 + 0.886555i \(0.346908\pi\)
\(824\) 0 0
\(825\) −2107.23 −0.0889266
\(826\) 0 0
\(827\) −32998.5 −1.38751 −0.693755 0.720211i \(-0.744045\pi\)
−0.693755 + 0.720211i \(0.744045\pi\)
\(828\) 0 0
\(829\) −25560.5 −1.07087 −0.535435 0.844576i \(-0.679852\pi\)
−0.535435 + 0.844576i \(0.679852\pi\)
\(830\) 0 0
\(831\) 5807.03 0.242411
\(832\) 0 0
\(833\) −1588.34 −0.0660656
\(834\) 0 0
\(835\) 9923.02 0.411258
\(836\) 0 0
\(837\) 4628.51 0.191141
\(838\) 0 0
\(839\) −19753.0 −0.812813 −0.406407 0.913692i \(-0.633218\pi\)
−0.406407 + 0.913692i \(0.633218\pi\)
\(840\) 0 0
\(841\) −8723.63 −0.357687
\(842\) 0 0
\(843\) 679.493 0.0277615
\(844\) 0 0
\(845\) 3800.59 0.154727
\(846\) 0 0
\(847\) −45036.3 −1.82700
\(848\) 0 0
\(849\) 1993.89 0.0806010
\(850\) 0 0
\(851\) −4358.61 −0.175571
\(852\) 0 0
\(853\) −17608.4 −0.706800 −0.353400 0.935472i \(-0.614975\pi\)
−0.353400 + 0.935472i \(0.614975\pi\)
\(854\) 0 0
\(855\) 622.492 0.0248992
\(856\) 0 0
\(857\) −29487.6 −1.17535 −0.587676 0.809096i \(-0.699957\pi\)
−0.587676 + 0.809096i \(0.699957\pi\)
\(858\) 0 0
\(859\) 18762.8 0.745259 0.372629 0.927980i \(-0.378456\pi\)
0.372629 + 0.927980i \(0.378456\pi\)
\(860\) 0 0
\(861\) −19834.1 −0.785070
\(862\) 0 0
\(863\) −3744.37 −0.147694 −0.0738470 0.997270i \(-0.523528\pi\)
−0.0738470 + 0.997270i \(0.523528\pi\)
\(864\) 0 0
\(865\) 15779.7 0.620259
\(866\) 0 0
\(867\) 14596.0 0.571747
\(868\) 0 0
\(869\) 56485.0 2.20497
\(870\) 0 0
\(871\) −35810.0 −1.39308
\(872\) 0 0
\(873\) 6811.74 0.264081
\(874\) 0 0
\(875\) −34900.8 −1.34841
\(876\) 0 0
\(877\) 43793.8 1.68621 0.843107 0.537745i \(-0.180724\pi\)
0.843107 + 0.537745i \(0.180724\pi\)
\(878\) 0 0
\(879\) −18250.3 −0.700303
\(880\) 0 0
\(881\) −3679.93 −0.140726 −0.0703632 0.997521i \(-0.522416\pi\)
−0.0703632 + 0.997521i \(0.522416\pi\)
\(882\) 0 0
\(883\) −20809.5 −0.793085 −0.396542 0.918016i \(-0.629790\pi\)
−0.396542 + 0.918016i \(0.629790\pi\)
\(884\) 0 0
\(885\) 24102.3 0.915470
\(886\) 0 0
\(887\) 5960.34 0.225624 0.112812 0.993616i \(-0.464014\pi\)
0.112812 + 0.993616i \(0.464014\pi\)
\(888\) 0 0
\(889\) 10133.5 0.382301
\(890\) 0 0
\(891\) −4590.90 −0.172616
\(892\) 0 0
\(893\) 1347.49 0.0504950
\(894\) 0 0
\(895\) 24862.9 0.928577
\(896\) 0 0
\(897\) −2958.84 −0.110137
\(898\) 0 0
\(899\) −21456.0 −0.795992
\(900\) 0 0
\(901\) −2644.33 −0.0977751
\(902\) 0 0
\(903\) −5505.35 −0.202886
\(904\) 0 0
\(905\) −6314.01 −0.231917
\(906\) 0 0
\(907\) −24021.9 −0.879421 −0.439710 0.898140i \(-0.644919\pi\)
−0.439710 + 0.898140i \(0.644919\pi\)
\(908\) 0 0
\(909\) 1714.88 0.0625731
\(910\) 0 0
\(911\) 42723.9 1.55379 0.776897 0.629627i \(-0.216792\pi\)
0.776897 + 0.629627i \(0.216792\pi\)
\(912\) 0 0
\(913\) 46709.1 1.69315
\(914\) 0 0
\(915\) −3487.48 −0.126003
\(916\) 0 0
\(917\) 53987.1 1.94418
\(918\) 0 0
\(919\) 42416.4 1.52251 0.761257 0.648451i \(-0.224583\pi\)
0.761257 + 0.648451i \(0.224583\pi\)
\(920\) 0 0
\(921\) −25099.7 −0.898006
\(922\) 0 0
\(923\) 6809.61 0.242840
\(924\) 0 0
\(925\) −2348.54 −0.0834807
\(926\) 0 0
\(927\) −6642.06 −0.235333
\(928\) 0 0
\(929\) −25754.7 −0.909564 −0.454782 0.890603i \(-0.650283\pi\)
−0.454782 + 0.890603i \(0.650283\pi\)
\(930\) 0 0
\(931\) −1499.30 −0.0527795
\(932\) 0 0
\(933\) 1259.93 0.0442103
\(934\) 0 0
\(935\) −4152.96 −0.145258
\(936\) 0 0
\(937\) 9759.21 0.340255 0.170128 0.985422i \(-0.445582\pi\)
0.170128 + 0.985422i \(0.445582\pi\)
\(938\) 0 0
\(939\) 30159.8 1.04816
\(940\) 0 0
\(941\) −32013.0 −1.10903 −0.554514 0.832174i \(-0.687096\pi\)
−0.554514 + 0.832174i \(0.687096\pi\)
\(942\) 0 0
\(943\) 6352.31 0.219364
\(944\) 0 0
\(945\) −6858.58 −0.236095
\(946\) 0 0
\(947\) −30699.1 −1.05342 −0.526709 0.850046i \(-0.676574\pi\)
−0.526709 + 0.850046i \(0.676574\pi\)
\(948\) 0 0
\(949\) 26548.7 0.908120
\(950\) 0 0
\(951\) −2389.73 −0.0814850
\(952\) 0 0
\(953\) −40451.8 −1.37499 −0.687493 0.726191i \(-0.741289\pi\)
−0.687493 + 0.726191i \(0.741289\pi\)
\(954\) 0 0
\(955\) 14415.5 0.488454
\(956\) 0 0
\(957\) 21281.6 0.718847
\(958\) 0 0
\(959\) −59300.8 −1.99679
\(960\) 0 0
\(961\) −403.972 −0.0135602
\(962\) 0 0
\(963\) −3990.81 −0.133543
\(964\) 0 0
\(965\) 29945.1 0.998931
\(966\) 0 0
\(967\) −4775.46 −0.158809 −0.0794046 0.996842i \(-0.525302\pi\)
−0.0794046 + 0.996842i \(0.525302\pi\)
\(968\) 0 0
\(969\) −135.018 −0.00447617
\(970\) 0 0
\(971\) 26994.0 0.892151 0.446076 0.894995i \(-0.352821\pi\)
0.446076 + 0.894995i \(0.352821\pi\)
\(972\) 0 0
\(973\) −24515.9 −0.807754
\(974\) 0 0
\(975\) −1594.31 −0.0523680
\(976\) 0 0
\(977\) −8376.58 −0.274299 −0.137150 0.990550i \(-0.543794\pi\)
−0.137150 + 0.990550i \(0.543794\pi\)
\(978\) 0 0
\(979\) −69515.7 −2.26939
\(980\) 0 0
\(981\) −5328.13 −0.173409
\(982\) 0 0
\(983\) 4759.06 0.154416 0.0772078 0.997015i \(-0.475400\pi\)
0.0772078 + 0.997015i \(0.475400\pi\)
\(984\) 0 0
\(985\) −23136.5 −0.748415
\(986\) 0 0
\(987\) −14846.5 −0.478795
\(988\) 0 0
\(989\) 1763.21 0.0566903
\(990\) 0 0
\(991\) −54632.9 −1.75123 −0.875616 0.483008i \(-0.839544\pi\)
−0.875616 + 0.483008i \(0.839544\pi\)
\(992\) 0 0
\(993\) −981.808 −0.0313764
\(994\) 0 0
\(995\) 9490.66 0.302386
\(996\) 0 0
\(997\) −55666.7 −1.76829 −0.884144 0.467215i \(-0.845257\pi\)
−0.884144 + 0.467215i \(0.845257\pi\)
\(998\) 0 0
\(999\) −5116.63 −0.162045
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.4.a.j.1.2 5
3.2 odd 2 1656.4.a.o.1.4 5
4.3 odd 2 1104.4.a.y.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.4.a.j.1.2 5 1.1 even 1 trivial
1104.4.a.y.1.2 5 4.3 odd 2
1656.4.a.o.1.4 5 3.2 odd 2