Properties

Label 552.4.a.g.1.3
Level $552$
Weight $4$
Character 552.1
Self dual yes
Analytic conductor $32.569$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,4,Mod(1,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 552.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-12,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5690543232\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1623576.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 22x^{2} + 17x + 91 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.01990\) of defining polynomial
Character \(\chi\) \(=\) 552.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +6.31926 q^{5} -2.85219 q^{7} +9.00000 q^{9} +22.6922 q^{11} -88.2664 q^{13} -18.9578 q^{15} +61.5538 q^{17} -37.0209 q^{19} +8.55656 q^{21} +23.0000 q^{23} -85.0669 q^{25} -27.0000 q^{27} +37.1407 q^{29} +165.392 q^{31} -68.0765 q^{33} -18.0237 q^{35} -85.9061 q^{37} +264.799 q^{39} -285.578 q^{41} +120.281 q^{43} +56.8734 q^{45} +142.899 q^{47} -334.865 q^{49} -184.661 q^{51} -489.906 q^{53} +143.398 q^{55} +111.063 q^{57} -558.479 q^{59} -44.9003 q^{61} -25.6697 q^{63} -557.779 q^{65} -436.743 q^{67} -69.0000 q^{69} +80.7506 q^{71} -473.265 q^{73} +255.201 q^{75} -64.7223 q^{77} -468.810 q^{79} +81.0000 q^{81} -562.534 q^{83} +388.975 q^{85} -111.422 q^{87} +508.096 q^{89} +251.752 q^{91} -496.176 q^{93} -233.945 q^{95} -273.880 q^{97} +204.229 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} - 14 q^{5} + 14 q^{7} + 36 q^{9} - 16 q^{11} + 4 q^{13} + 42 q^{15} - 22 q^{17} + 134 q^{19} - 42 q^{21} + 92 q^{23} + 24 q^{25} - 108 q^{27} - 180 q^{29} + 276 q^{31} + 48 q^{33} - 96 q^{35}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 6.31926 0.565212 0.282606 0.959236i \(-0.408801\pi\)
0.282606 + 0.959236i \(0.408801\pi\)
\(6\) 0 0
\(7\) −2.85219 −0.154004 −0.0770018 0.997031i \(-0.524535\pi\)
−0.0770018 + 0.997031i \(0.524535\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 22.6922 0.621995 0.310997 0.950411i \(-0.399337\pi\)
0.310997 + 0.950411i \(0.399337\pi\)
\(12\) 0 0
\(13\) −88.2664 −1.88313 −0.941565 0.336831i \(-0.890645\pi\)
−0.941565 + 0.336831i \(0.890645\pi\)
\(14\) 0 0
\(15\) −18.9578 −0.326325
\(16\) 0 0
\(17\) 61.5538 0.878176 0.439088 0.898444i \(-0.355302\pi\)
0.439088 + 0.898444i \(0.355302\pi\)
\(18\) 0 0
\(19\) −37.0209 −0.447009 −0.223505 0.974703i \(-0.571750\pi\)
−0.223505 + 0.974703i \(0.571750\pi\)
\(20\) 0 0
\(21\) 8.55656 0.0889141
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −85.0669 −0.680535
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 37.1407 0.237822 0.118911 0.992905i \(-0.462060\pi\)
0.118911 + 0.992905i \(0.462060\pi\)
\(30\) 0 0
\(31\) 165.392 0.958236 0.479118 0.877751i \(-0.340957\pi\)
0.479118 + 0.877751i \(0.340957\pi\)
\(32\) 0 0
\(33\) −68.0765 −0.359109
\(34\) 0 0
\(35\) −18.0237 −0.0870447
\(36\) 0 0
\(37\) −85.9061 −0.381699 −0.190850 0.981619i \(-0.561124\pi\)
−0.190850 + 0.981619i \(0.561124\pi\)
\(38\) 0 0
\(39\) 264.799 1.08723
\(40\) 0 0
\(41\) −285.578 −1.08780 −0.543899 0.839151i \(-0.683053\pi\)
−0.543899 + 0.839151i \(0.683053\pi\)
\(42\) 0 0
\(43\) 120.281 0.426575 0.213288 0.976989i \(-0.431583\pi\)
0.213288 + 0.976989i \(0.431583\pi\)
\(44\) 0 0
\(45\) 56.8734 0.188404
\(46\) 0 0
\(47\) 142.899 0.443487 0.221744 0.975105i \(-0.428825\pi\)
0.221744 + 0.975105i \(0.428825\pi\)
\(48\) 0 0
\(49\) −334.865 −0.976283
\(50\) 0 0
\(51\) −184.661 −0.507015
\(52\) 0 0
\(53\) −489.906 −1.26969 −0.634847 0.772638i \(-0.718937\pi\)
−0.634847 + 0.772638i \(0.718937\pi\)
\(54\) 0 0
\(55\) 143.398 0.351559
\(56\) 0 0
\(57\) 111.063 0.258081
\(58\) 0 0
\(59\) −558.479 −1.23234 −0.616168 0.787615i \(-0.711316\pi\)
−0.616168 + 0.787615i \(0.711316\pi\)
\(60\) 0 0
\(61\) −44.9003 −0.0942441 −0.0471221 0.998889i \(-0.515005\pi\)
−0.0471221 + 0.998889i \(0.515005\pi\)
\(62\) 0 0
\(63\) −25.6697 −0.0513346
\(64\) 0 0
\(65\) −557.779 −1.06437
\(66\) 0 0
\(67\) −436.743 −0.796368 −0.398184 0.917306i \(-0.630359\pi\)
−0.398184 + 0.917306i \(0.630359\pi\)
\(68\) 0 0
\(69\) −69.0000 −0.120386
\(70\) 0 0
\(71\) 80.7506 0.134977 0.0674883 0.997720i \(-0.478501\pi\)
0.0674883 + 0.997720i \(0.478501\pi\)
\(72\) 0 0
\(73\) −473.265 −0.758788 −0.379394 0.925235i \(-0.623867\pi\)
−0.379394 + 0.925235i \(0.623867\pi\)
\(74\) 0 0
\(75\) 255.201 0.392907
\(76\) 0 0
\(77\) −64.7223 −0.0957895
\(78\) 0 0
\(79\) −468.810 −0.667662 −0.333831 0.942633i \(-0.608341\pi\)
−0.333831 + 0.942633i \(0.608341\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −562.534 −0.743929 −0.371965 0.928247i \(-0.621316\pi\)
−0.371965 + 0.928247i \(0.621316\pi\)
\(84\) 0 0
\(85\) 388.975 0.496356
\(86\) 0 0
\(87\) −111.422 −0.137307
\(88\) 0 0
\(89\) 508.096 0.605147 0.302574 0.953126i \(-0.402154\pi\)
0.302574 + 0.953126i \(0.402154\pi\)
\(90\) 0 0
\(91\) 251.752 0.290009
\(92\) 0 0
\(93\) −496.176 −0.553238
\(94\) 0 0
\(95\) −233.945 −0.252655
\(96\) 0 0
\(97\) −273.880 −0.286684 −0.143342 0.989673i \(-0.545785\pi\)
−0.143342 + 0.989673i \(0.545785\pi\)
\(98\) 0 0
\(99\) 204.229 0.207332
\(100\) 0 0
\(101\) −850.889 −0.838283 −0.419142 0.907921i \(-0.637669\pi\)
−0.419142 + 0.907921i \(0.637669\pi\)
\(102\) 0 0
\(103\) −953.440 −0.912090 −0.456045 0.889957i \(-0.650734\pi\)
−0.456045 + 0.889957i \(0.650734\pi\)
\(104\) 0 0
\(105\) 54.0712 0.0502553
\(106\) 0 0
\(107\) −635.312 −0.573999 −0.286999 0.957931i \(-0.592658\pi\)
−0.286999 + 0.957931i \(0.592658\pi\)
\(108\) 0 0
\(109\) −492.269 −0.432577 −0.216288 0.976330i \(-0.569395\pi\)
−0.216288 + 0.976330i \(0.569395\pi\)
\(110\) 0 0
\(111\) 257.718 0.220374
\(112\) 0 0
\(113\) −2263.93 −1.88472 −0.942358 0.334607i \(-0.891397\pi\)
−0.942358 + 0.334607i \(0.891397\pi\)
\(114\) 0 0
\(115\) 145.343 0.117855
\(116\) 0 0
\(117\) −794.398 −0.627710
\(118\) 0 0
\(119\) −175.563 −0.135242
\(120\) 0 0
\(121\) −816.066 −0.613122
\(122\) 0 0
\(123\) 856.733 0.628040
\(124\) 0 0
\(125\) −1327.47 −0.949859
\(126\) 0 0
\(127\) −329.042 −0.229904 −0.114952 0.993371i \(-0.536671\pi\)
−0.114952 + 0.993371i \(0.536671\pi\)
\(128\) 0 0
\(129\) −360.844 −0.246283
\(130\) 0 0
\(131\) 2156.47 1.43826 0.719128 0.694878i \(-0.244542\pi\)
0.719128 + 0.694878i \(0.244542\pi\)
\(132\) 0 0
\(133\) 105.591 0.0688410
\(134\) 0 0
\(135\) −170.620 −0.108775
\(136\) 0 0
\(137\) 1714.23 1.06903 0.534514 0.845160i \(-0.320495\pi\)
0.534514 + 0.845160i \(0.320495\pi\)
\(138\) 0 0
\(139\) 1999.27 1.21997 0.609984 0.792413i \(-0.291176\pi\)
0.609984 + 0.792413i \(0.291176\pi\)
\(140\) 0 0
\(141\) −428.696 −0.256048
\(142\) 0 0
\(143\) −2002.96 −1.17130
\(144\) 0 0
\(145\) 234.702 0.134420
\(146\) 0 0
\(147\) 1004.60 0.563657
\(148\) 0 0
\(149\) −1080.84 −0.594269 −0.297135 0.954836i \(-0.596031\pi\)
−0.297135 + 0.954836i \(0.596031\pi\)
\(150\) 0 0
\(151\) 1525.31 0.822038 0.411019 0.911627i \(-0.365173\pi\)
0.411019 + 0.911627i \(0.365173\pi\)
\(152\) 0 0
\(153\) 553.984 0.292725
\(154\) 0 0
\(155\) 1045.16 0.541606
\(156\) 0 0
\(157\) 313.469 0.159347 0.0796737 0.996821i \(-0.474612\pi\)
0.0796737 + 0.996821i \(0.474612\pi\)
\(158\) 0 0
\(159\) 1469.72 0.733058
\(160\) 0 0
\(161\) −65.6003 −0.0321120
\(162\) 0 0
\(163\) 859.158 0.412850 0.206425 0.978462i \(-0.433817\pi\)
0.206425 + 0.978462i \(0.433817\pi\)
\(164\) 0 0
\(165\) −430.193 −0.202973
\(166\) 0 0
\(167\) 1947.50 0.902406 0.451203 0.892421i \(-0.350995\pi\)
0.451203 + 0.892421i \(0.350995\pi\)
\(168\) 0 0
\(169\) 5593.96 2.54618
\(170\) 0 0
\(171\) −333.188 −0.149003
\(172\) 0 0
\(173\) −2007.07 −0.882051 −0.441025 0.897495i \(-0.645385\pi\)
−0.441025 + 0.897495i \(0.645385\pi\)
\(174\) 0 0
\(175\) 242.627 0.104805
\(176\) 0 0
\(177\) 1675.44 0.711489
\(178\) 0 0
\(179\) −3266.37 −1.36391 −0.681955 0.731394i \(-0.738870\pi\)
−0.681955 + 0.731394i \(0.738870\pi\)
\(180\) 0 0
\(181\) 4305.00 1.76789 0.883946 0.467589i \(-0.154877\pi\)
0.883946 + 0.467589i \(0.154877\pi\)
\(182\) 0 0
\(183\) 134.701 0.0544119
\(184\) 0 0
\(185\) −542.863 −0.215741
\(186\) 0 0
\(187\) 1396.79 0.546221
\(188\) 0 0
\(189\) 77.0091 0.0296380
\(190\) 0 0
\(191\) −2323.50 −0.880221 −0.440111 0.897944i \(-0.645061\pi\)
−0.440111 + 0.897944i \(0.645061\pi\)
\(192\) 0 0
\(193\) −4809.99 −1.79394 −0.896972 0.442088i \(-0.854238\pi\)
−0.896972 + 0.442088i \(0.854238\pi\)
\(194\) 0 0
\(195\) 1673.34 0.614513
\(196\) 0 0
\(197\) 1611.12 0.582679 0.291340 0.956620i \(-0.405899\pi\)
0.291340 + 0.956620i \(0.405899\pi\)
\(198\) 0 0
\(199\) −701.349 −0.249836 −0.124918 0.992167i \(-0.539867\pi\)
−0.124918 + 0.992167i \(0.539867\pi\)
\(200\) 0 0
\(201\) 1310.23 0.459783
\(202\) 0 0
\(203\) −105.932 −0.0366255
\(204\) 0 0
\(205\) −1804.64 −0.614837
\(206\) 0 0
\(207\) 207.000 0.0695048
\(208\) 0 0
\(209\) −840.084 −0.278037
\(210\) 0 0
\(211\) 270.581 0.0882822 0.0441411 0.999025i \(-0.485945\pi\)
0.0441411 + 0.999025i \(0.485945\pi\)
\(212\) 0 0
\(213\) −242.252 −0.0779288
\(214\) 0 0
\(215\) 760.089 0.241105
\(216\) 0 0
\(217\) −471.729 −0.147572
\(218\) 0 0
\(219\) 1419.80 0.438086
\(220\) 0 0
\(221\) −5433.13 −1.65372
\(222\) 0 0
\(223\) 4279.20 1.28501 0.642504 0.766283i \(-0.277896\pi\)
0.642504 + 0.766283i \(0.277896\pi\)
\(224\) 0 0
\(225\) −765.602 −0.226845
\(226\) 0 0
\(227\) −2864.39 −0.837517 −0.418759 0.908098i \(-0.637535\pi\)
−0.418759 + 0.908098i \(0.637535\pi\)
\(228\) 0 0
\(229\) −405.112 −0.116902 −0.0584510 0.998290i \(-0.518616\pi\)
−0.0584510 + 0.998290i \(0.518616\pi\)
\(230\) 0 0
\(231\) 194.167 0.0553041
\(232\) 0 0
\(233\) 1060.59 0.298205 0.149102 0.988822i \(-0.452362\pi\)
0.149102 + 0.988822i \(0.452362\pi\)
\(234\) 0 0
\(235\) 903.014 0.250664
\(236\) 0 0
\(237\) 1406.43 0.385475
\(238\) 0 0
\(239\) 2328.30 0.630148 0.315074 0.949067i \(-0.397971\pi\)
0.315074 + 0.949067i \(0.397971\pi\)
\(240\) 0 0
\(241\) 2780.67 0.743231 0.371616 0.928387i \(-0.378804\pi\)
0.371616 + 0.928387i \(0.378804\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −2116.10 −0.551807
\(246\) 0 0
\(247\) 3267.70 0.841776
\(248\) 0 0
\(249\) 1687.60 0.429508
\(250\) 0 0
\(251\) 6383.54 1.60528 0.802641 0.596463i \(-0.203428\pi\)
0.802641 + 0.596463i \(0.203428\pi\)
\(252\) 0 0
\(253\) 521.920 0.129695
\(254\) 0 0
\(255\) −1166.92 −0.286571
\(256\) 0 0
\(257\) 1499.30 0.363905 0.181953 0.983307i \(-0.441758\pi\)
0.181953 + 0.983307i \(0.441758\pi\)
\(258\) 0 0
\(259\) 245.020 0.0587831
\(260\) 0 0
\(261\) 334.266 0.0792741
\(262\) 0 0
\(263\) 6448.80 1.51198 0.755988 0.654585i \(-0.227157\pi\)
0.755988 + 0.654585i \(0.227157\pi\)
\(264\) 0 0
\(265\) −3095.85 −0.717646
\(266\) 0 0
\(267\) −1524.29 −0.349382
\(268\) 0 0
\(269\) −1437.57 −0.325836 −0.162918 0.986640i \(-0.552091\pi\)
−0.162918 + 0.986640i \(0.552091\pi\)
\(270\) 0 0
\(271\) 6642.90 1.48903 0.744516 0.667605i \(-0.232680\pi\)
0.744516 + 0.667605i \(0.232680\pi\)
\(272\) 0 0
\(273\) −755.257 −0.167437
\(274\) 0 0
\(275\) −1930.35 −0.423289
\(276\) 0 0
\(277\) 4316.43 0.936279 0.468139 0.883655i \(-0.344925\pi\)
0.468139 + 0.883655i \(0.344925\pi\)
\(278\) 0 0
\(279\) 1488.53 0.319412
\(280\) 0 0
\(281\) −727.607 −0.154468 −0.0772338 0.997013i \(-0.524609\pi\)
−0.0772338 + 0.997013i \(0.524609\pi\)
\(282\) 0 0
\(283\) −8460.61 −1.77714 −0.888571 0.458740i \(-0.848301\pi\)
−0.888571 + 0.458740i \(0.848301\pi\)
\(284\) 0 0
\(285\) 701.834 0.145870
\(286\) 0 0
\(287\) 814.521 0.167525
\(288\) 0 0
\(289\) −1124.13 −0.228807
\(290\) 0 0
\(291\) 821.640 0.165517
\(292\) 0 0
\(293\) −5914.22 −1.17922 −0.589611 0.807687i \(-0.700719\pi\)
−0.589611 + 0.807687i \(0.700719\pi\)
\(294\) 0 0
\(295\) −3529.18 −0.696531
\(296\) 0 0
\(297\) −612.688 −0.119703
\(298\) 0 0
\(299\) −2030.13 −0.392660
\(300\) 0 0
\(301\) −343.065 −0.0656941
\(302\) 0 0
\(303\) 2552.67 0.483983
\(304\) 0 0
\(305\) −283.737 −0.0532679
\(306\) 0 0
\(307\) −9350.48 −1.73831 −0.869154 0.494542i \(-0.835336\pi\)
−0.869154 + 0.494542i \(0.835336\pi\)
\(308\) 0 0
\(309\) 2860.32 0.526595
\(310\) 0 0
\(311\) 7867.96 1.43457 0.717284 0.696781i \(-0.245385\pi\)
0.717284 + 0.696781i \(0.245385\pi\)
\(312\) 0 0
\(313\) 8753.13 1.58069 0.790345 0.612662i \(-0.209901\pi\)
0.790345 + 0.612662i \(0.209901\pi\)
\(314\) 0 0
\(315\) −162.214 −0.0290149
\(316\) 0 0
\(317\) −4125.98 −0.731035 −0.365518 0.930804i \(-0.619108\pi\)
−0.365518 + 0.930804i \(0.619108\pi\)
\(318\) 0 0
\(319\) 842.802 0.147924
\(320\) 0 0
\(321\) 1905.93 0.331398
\(322\) 0 0
\(323\) −2278.78 −0.392553
\(324\) 0 0
\(325\) 7508.55 1.28154
\(326\) 0 0
\(327\) 1476.81 0.249748
\(328\) 0 0
\(329\) −407.574 −0.0682987
\(330\) 0 0
\(331\) −1419.98 −0.235798 −0.117899 0.993026i \(-0.537616\pi\)
−0.117899 + 0.993026i \(0.537616\pi\)
\(332\) 0 0
\(333\) −773.155 −0.127233
\(334\) 0 0
\(335\) −2759.90 −0.450117
\(336\) 0 0
\(337\) 7170.82 1.15911 0.579554 0.814934i \(-0.303227\pi\)
0.579554 + 0.814934i \(0.303227\pi\)
\(338\) 0 0
\(339\) 6791.80 1.08814
\(340\) 0 0
\(341\) 3753.10 0.596018
\(342\) 0 0
\(343\) 1933.40 0.304355
\(344\) 0 0
\(345\) −436.029 −0.0680435
\(346\) 0 0
\(347\) −6441.72 −0.996569 −0.498285 0.867014i \(-0.666037\pi\)
−0.498285 + 0.867014i \(0.666037\pi\)
\(348\) 0 0
\(349\) 5614.80 0.861185 0.430592 0.902547i \(-0.358305\pi\)
0.430592 + 0.902547i \(0.358305\pi\)
\(350\) 0 0
\(351\) 2383.19 0.362409
\(352\) 0 0
\(353\) −1019.36 −0.153697 −0.0768487 0.997043i \(-0.524486\pi\)
−0.0768487 + 0.997043i \(0.524486\pi\)
\(354\) 0 0
\(355\) 510.285 0.0762904
\(356\) 0 0
\(357\) 526.689 0.0780822
\(358\) 0 0
\(359\) −3893.79 −0.572442 −0.286221 0.958164i \(-0.592399\pi\)
−0.286221 + 0.958164i \(0.592399\pi\)
\(360\) 0 0
\(361\) −5488.45 −0.800183
\(362\) 0 0
\(363\) 2448.20 0.353986
\(364\) 0 0
\(365\) −2990.69 −0.428876
\(366\) 0 0
\(367\) −10570.6 −1.50350 −0.751748 0.659450i \(-0.770789\pi\)
−0.751748 + 0.659450i \(0.770789\pi\)
\(368\) 0 0
\(369\) −2570.20 −0.362599
\(370\) 0 0
\(371\) 1397.30 0.195538
\(372\) 0 0
\(373\) 9571.31 1.32864 0.664321 0.747447i \(-0.268721\pi\)
0.664321 + 0.747447i \(0.268721\pi\)
\(374\) 0 0
\(375\) 3982.40 0.548401
\(376\) 0 0
\(377\) −3278.27 −0.447850
\(378\) 0 0
\(379\) 5635.85 0.763836 0.381918 0.924196i \(-0.375264\pi\)
0.381918 + 0.924196i \(0.375264\pi\)
\(380\) 0 0
\(381\) 987.126 0.132735
\(382\) 0 0
\(383\) 9400.32 1.25414 0.627068 0.778965i \(-0.284255\pi\)
0.627068 + 0.778965i \(0.284255\pi\)
\(384\) 0 0
\(385\) −408.997 −0.0541414
\(386\) 0 0
\(387\) 1082.53 0.142192
\(388\) 0 0
\(389\) −6676.76 −0.870245 −0.435122 0.900371i \(-0.643295\pi\)
−0.435122 + 0.900371i \(0.643295\pi\)
\(390\) 0 0
\(391\) 1415.74 0.183112
\(392\) 0 0
\(393\) −6469.40 −0.830377
\(394\) 0 0
\(395\) −2962.54 −0.377371
\(396\) 0 0
\(397\) −4238.68 −0.535853 −0.267926 0.963439i \(-0.586338\pi\)
−0.267926 + 0.963439i \(0.586338\pi\)
\(398\) 0 0
\(399\) −316.772 −0.0397454
\(400\) 0 0
\(401\) 3565.52 0.444023 0.222012 0.975044i \(-0.428738\pi\)
0.222012 + 0.975044i \(0.428738\pi\)
\(402\) 0 0
\(403\) −14598.6 −1.80448
\(404\) 0 0
\(405\) 511.860 0.0628013
\(406\) 0 0
\(407\) −1949.40 −0.237415
\(408\) 0 0
\(409\) 15676.8 1.89527 0.947635 0.319355i \(-0.103466\pi\)
0.947635 + 0.319355i \(0.103466\pi\)
\(410\) 0 0
\(411\) −5142.70 −0.617203
\(412\) 0 0
\(413\) 1592.89 0.189784
\(414\) 0 0
\(415\) −3554.80 −0.420478
\(416\) 0 0
\(417\) −5997.80 −0.704349
\(418\) 0 0
\(419\) −4706.77 −0.548785 −0.274392 0.961618i \(-0.588477\pi\)
−0.274392 + 0.961618i \(0.588477\pi\)
\(420\) 0 0
\(421\) −9095.16 −1.05290 −0.526450 0.850206i \(-0.676477\pi\)
−0.526450 + 0.850206i \(0.676477\pi\)
\(422\) 0 0
\(423\) 1286.09 0.147829
\(424\) 0 0
\(425\) −5236.19 −0.597630
\(426\) 0 0
\(427\) 128.064 0.0145139
\(428\) 0 0
\(429\) 6008.87 0.676249
\(430\) 0 0
\(431\) −11851.8 −1.32455 −0.662274 0.749262i \(-0.730409\pi\)
−0.662274 + 0.749262i \(0.730409\pi\)
\(432\) 0 0
\(433\) −8987.98 −0.997540 −0.498770 0.866734i \(-0.666215\pi\)
−0.498770 + 0.866734i \(0.666215\pi\)
\(434\) 0 0
\(435\) −704.105 −0.0776075
\(436\) 0 0
\(437\) −851.480 −0.0932078
\(438\) 0 0
\(439\) −803.064 −0.0873079 −0.0436540 0.999047i \(-0.513900\pi\)
−0.0436540 + 0.999047i \(0.513900\pi\)
\(440\) 0 0
\(441\) −3013.79 −0.325428
\(442\) 0 0
\(443\) −4011.52 −0.430233 −0.215117 0.976588i \(-0.569013\pi\)
−0.215117 + 0.976588i \(0.569013\pi\)
\(444\) 0 0
\(445\) 3210.79 0.342036
\(446\) 0 0
\(447\) 3242.53 0.343101
\(448\) 0 0
\(449\) 5140.49 0.540301 0.270150 0.962818i \(-0.412927\pi\)
0.270150 + 0.962818i \(0.412927\pi\)
\(450\) 0 0
\(451\) −6480.37 −0.676605
\(452\) 0 0
\(453\) −4575.92 −0.474604
\(454\) 0 0
\(455\) 1590.89 0.163917
\(456\) 0 0
\(457\) 5322.84 0.544840 0.272420 0.962178i \(-0.412176\pi\)
0.272420 + 0.962178i \(0.412176\pi\)
\(458\) 0 0
\(459\) −1661.95 −0.169005
\(460\) 0 0
\(461\) −7664.96 −0.774387 −0.387194 0.921998i \(-0.626556\pi\)
−0.387194 + 0.921998i \(0.626556\pi\)
\(462\) 0 0
\(463\) 2636.18 0.264608 0.132304 0.991209i \(-0.457762\pi\)
0.132304 + 0.991209i \(0.457762\pi\)
\(464\) 0 0
\(465\) −3135.47 −0.312697
\(466\) 0 0
\(467\) −3029.09 −0.300149 −0.150074 0.988675i \(-0.547951\pi\)
−0.150074 + 0.988675i \(0.547951\pi\)
\(468\) 0 0
\(469\) 1245.67 0.122644
\(470\) 0 0
\(471\) −940.406 −0.0919992
\(472\) 0 0
\(473\) 2729.44 0.265328
\(474\) 0 0
\(475\) 3149.25 0.304205
\(476\) 0 0
\(477\) −4409.16 −0.423231
\(478\) 0 0
\(479\) −5133.59 −0.489687 −0.244843 0.969563i \(-0.578737\pi\)
−0.244843 + 0.969563i \(0.578737\pi\)
\(480\) 0 0
\(481\) 7582.62 0.718790
\(482\) 0 0
\(483\) 196.801 0.0185399
\(484\) 0 0
\(485\) −1730.72 −0.162037
\(486\) 0 0
\(487\) 1779.51 0.165580 0.0827899 0.996567i \(-0.473617\pi\)
0.0827899 + 0.996567i \(0.473617\pi\)
\(488\) 0 0
\(489\) −2577.48 −0.238359
\(490\) 0 0
\(491\) −1336.02 −0.122798 −0.0613989 0.998113i \(-0.519556\pi\)
−0.0613989 + 0.998113i \(0.519556\pi\)
\(492\) 0 0
\(493\) 2286.15 0.208850
\(494\) 0 0
\(495\) 1290.58 0.117186
\(496\) 0 0
\(497\) −230.316 −0.0207869
\(498\) 0 0
\(499\) −14269.2 −1.28012 −0.640058 0.768326i \(-0.721090\pi\)
−0.640058 + 0.768326i \(0.721090\pi\)
\(500\) 0 0
\(501\) −5842.49 −0.521004
\(502\) 0 0
\(503\) 270.476 0.0239760 0.0119880 0.999928i \(-0.496184\pi\)
0.0119880 + 0.999928i \(0.496184\pi\)
\(504\) 0 0
\(505\) −5376.99 −0.473808
\(506\) 0 0
\(507\) −16781.9 −1.47004
\(508\) 0 0
\(509\) 9398.27 0.818411 0.409205 0.912442i \(-0.365806\pi\)
0.409205 + 0.912442i \(0.365806\pi\)
\(510\) 0 0
\(511\) 1349.84 0.116856
\(512\) 0 0
\(513\) 999.564 0.0860269
\(514\) 0 0
\(515\) −6025.04 −0.515524
\(516\) 0 0
\(517\) 3242.68 0.275847
\(518\) 0 0
\(519\) 6021.21 0.509252
\(520\) 0 0
\(521\) 3173.60 0.266868 0.133434 0.991058i \(-0.457400\pi\)
0.133434 + 0.991058i \(0.457400\pi\)
\(522\) 0 0
\(523\) −15479.0 −1.29416 −0.647082 0.762420i \(-0.724011\pi\)
−0.647082 + 0.762420i \(0.724011\pi\)
\(524\) 0 0
\(525\) −727.880 −0.0605091
\(526\) 0 0
\(527\) 10180.5 0.841499
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −5026.31 −0.410778
\(532\) 0 0
\(533\) 25206.9 2.04847
\(534\) 0 0
\(535\) −4014.70 −0.324431
\(536\) 0 0
\(537\) 9799.11 0.787454
\(538\) 0 0
\(539\) −7598.81 −0.607243
\(540\) 0 0
\(541\) −2803.49 −0.222794 −0.111397 0.993776i \(-0.535533\pi\)
−0.111397 + 0.993776i \(0.535533\pi\)
\(542\) 0 0
\(543\) −12915.0 −1.02069
\(544\) 0 0
\(545\) −3110.78 −0.244498
\(546\) 0 0
\(547\) −11514.9 −0.900077 −0.450039 0.893009i \(-0.648590\pi\)
−0.450039 + 0.893009i \(0.648590\pi\)
\(548\) 0 0
\(549\) −404.102 −0.0314147
\(550\) 0 0
\(551\) −1374.98 −0.106309
\(552\) 0 0
\(553\) 1337.14 0.102822
\(554\) 0 0
\(555\) 1628.59 0.124558
\(556\) 0 0
\(557\) 8639.23 0.657192 0.328596 0.944471i \(-0.393425\pi\)
0.328596 + 0.944471i \(0.393425\pi\)
\(558\) 0 0
\(559\) −10616.8 −0.803296
\(560\) 0 0
\(561\) −4190.37 −0.315361
\(562\) 0 0
\(563\) 12296.8 0.920512 0.460256 0.887786i \(-0.347758\pi\)
0.460256 + 0.887786i \(0.347758\pi\)
\(564\) 0 0
\(565\) −14306.4 −1.06526
\(566\) 0 0
\(567\) −231.027 −0.0171115
\(568\) 0 0
\(569\) −11047.3 −0.813930 −0.406965 0.913444i \(-0.633413\pi\)
−0.406965 + 0.913444i \(0.633413\pi\)
\(570\) 0 0
\(571\) −8028.80 −0.588432 −0.294216 0.955739i \(-0.595059\pi\)
−0.294216 + 0.955739i \(0.595059\pi\)
\(572\) 0 0
\(573\) 6970.49 0.508196
\(574\) 0 0
\(575\) −1956.54 −0.141901
\(576\) 0 0
\(577\) 8795.59 0.634602 0.317301 0.948325i \(-0.397223\pi\)
0.317301 + 0.948325i \(0.397223\pi\)
\(578\) 0 0
\(579\) 14430.0 1.03573
\(580\) 0 0
\(581\) 1604.45 0.114568
\(582\) 0 0
\(583\) −11117.0 −0.789743
\(584\) 0 0
\(585\) −5020.01 −0.354789
\(586\) 0 0
\(587\) −3235.31 −0.227488 −0.113744 0.993510i \(-0.536284\pi\)
−0.113744 + 0.993510i \(0.536284\pi\)
\(588\) 0 0
\(589\) −6122.96 −0.428340
\(590\) 0 0
\(591\) −4833.37 −0.336410
\(592\) 0 0
\(593\) 239.789 0.0166053 0.00830265 0.999966i \(-0.497357\pi\)
0.00830265 + 0.999966i \(0.497357\pi\)
\(594\) 0 0
\(595\) −1109.43 −0.0764406
\(596\) 0 0
\(597\) 2104.05 0.144243
\(598\) 0 0
\(599\) −1913.61 −0.130531 −0.0652653 0.997868i \(-0.520789\pi\)
−0.0652653 + 0.997868i \(0.520789\pi\)
\(600\) 0 0
\(601\) 7618.63 0.517089 0.258544 0.965999i \(-0.416757\pi\)
0.258544 + 0.965999i \(0.416757\pi\)
\(602\) 0 0
\(603\) −3930.69 −0.265456
\(604\) 0 0
\(605\) −5156.94 −0.346544
\(606\) 0 0
\(607\) 17540.4 1.17289 0.586443 0.809990i \(-0.300528\pi\)
0.586443 + 0.809990i \(0.300528\pi\)
\(608\) 0 0
\(609\) 317.796 0.0211458
\(610\) 0 0
\(611\) −12613.1 −0.835145
\(612\) 0 0
\(613\) −10741.9 −0.707764 −0.353882 0.935290i \(-0.615139\pi\)
−0.353882 + 0.935290i \(0.615139\pi\)
\(614\) 0 0
\(615\) 5413.92 0.354976
\(616\) 0 0
\(617\) −9650.00 −0.629650 −0.314825 0.949150i \(-0.601946\pi\)
−0.314825 + 0.949150i \(0.601946\pi\)
\(618\) 0 0
\(619\) −7375.27 −0.478897 −0.239449 0.970909i \(-0.576967\pi\)
−0.239449 + 0.970909i \(0.576967\pi\)
\(620\) 0 0
\(621\) −621.000 −0.0401286
\(622\) 0 0
\(623\) −1449.19 −0.0931949
\(624\) 0 0
\(625\) 2244.74 0.143664
\(626\) 0 0
\(627\) 2520.25 0.160525
\(628\) 0 0
\(629\) −5287.85 −0.335199
\(630\) 0 0
\(631\) −8675.39 −0.547324 −0.273662 0.961826i \(-0.588235\pi\)
−0.273662 + 0.961826i \(0.588235\pi\)
\(632\) 0 0
\(633\) −811.742 −0.0509698
\(634\) 0 0
\(635\) −2079.30 −0.129944
\(636\) 0 0
\(637\) 29557.3 1.83847
\(638\) 0 0
\(639\) 726.756 0.0449922
\(640\) 0 0
\(641\) 931.473 0.0573962 0.0286981 0.999588i \(-0.490864\pi\)
0.0286981 + 0.999588i \(0.490864\pi\)
\(642\) 0 0
\(643\) −13303.0 −0.815896 −0.407948 0.913005i \(-0.633755\pi\)
−0.407948 + 0.913005i \(0.633755\pi\)
\(644\) 0 0
\(645\) −2280.27 −0.139202
\(646\) 0 0
\(647\) 23484.7 1.42701 0.713507 0.700648i \(-0.247106\pi\)
0.713507 + 0.700648i \(0.247106\pi\)
\(648\) 0 0
\(649\) −12673.1 −0.766506
\(650\) 0 0
\(651\) 1415.19 0.0852006
\(652\) 0 0
\(653\) 3951.23 0.236789 0.118395 0.992967i \(-0.462225\pi\)
0.118395 + 0.992967i \(0.462225\pi\)
\(654\) 0 0
\(655\) 13627.3 0.812919
\(656\) 0 0
\(657\) −4259.39 −0.252929
\(658\) 0 0
\(659\) 17903.6 1.05831 0.529153 0.848526i \(-0.322510\pi\)
0.529153 + 0.848526i \(0.322510\pi\)
\(660\) 0 0
\(661\) 24420.0 1.43695 0.718477 0.695551i \(-0.244840\pi\)
0.718477 + 0.695551i \(0.244840\pi\)
\(662\) 0 0
\(663\) 16299.4 0.954776
\(664\) 0 0
\(665\) 667.254 0.0389098
\(666\) 0 0
\(667\) 854.235 0.0495894
\(668\) 0 0
\(669\) −12837.6 −0.741899
\(670\) 0 0
\(671\) −1018.88 −0.0586194
\(672\) 0 0
\(673\) −3564.95 −0.204188 −0.102094 0.994775i \(-0.532554\pi\)
−0.102094 + 0.994775i \(0.532554\pi\)
\(674\) 0 0
\(675\) 2296.81 0.130969
\(676\) 0 0
\(677\) −2573.49 −0.146097 −0.0730483 0.997328i \(-0.523273\pi\)
−0.0730483 + 0.997328i \(0.523273\pi\)
\(678\) 0 0
\(679\) 781.157 0.0441503
\(680\) 0 0
\(681\) 8593.18 0.483541
\(682\) 0 0
\(683\) 1122.55 0.0628888 0.0314444 0.999506i \(-0.489989\pi\)
0.0314444 + 0.999506i \(0.489989\pi\)
\(684\) 0 0
\(685\) 10832.7 0.604227
\(686\) 0 0
\(687\) 1215.34 0.0674934
\(688\) 0 0
\(689\) 43242.3 2.39100
\(690\) 0 0
\(691\) −11878.2 −0.653935 −0.326968 0.945036i \(-0.606027\pi\)
−0.326968 + 0.945036i \(0.606027\pi\)
\(692\) 0 0
\(693\) −582.501 −0.0319298
\(694\) 0 0
\(695\) 12633.9 0.689541
\(696\) 0 0
\(697\) −17578.4 −0.955278
\(698\) 0 0
\(699\) −3181.78 −0.172169
\(700\) 0 0
\(701\) 24060.3 1.29635 0.648177 0.761490i \(-0.275532\pi\)
0.648177 + 0.761490i \(0.275532\pi\)
\(702\) 0 0
\(703\) 3180.32 0.170623
\(704\) 0 0
\(705\) −2709.04 −0.144721
\(706\) 0 0
\(707\) 2426.90 0.129099
\(708\) 0 0
\(709\) 8958.27 0.474520 0.237260 0.971446i \(-0.423751\pi\)
0.237260 + 0.971446i \(0.423751\pi\)
\(710\) 0 0
\(711\) −4219.29 −0.222554
\(712\) 0 0
\(713\) 3804.02 0.199806
\(714\) 0 0
\(715\) −12657.2 −0.662031
\(716\) 0 0
\(717\) −6984.91 −0.363816
\(718\) 0 0
\(719\) 1583.22 0.0821201 0.0410600 0.999157i \(-0.486927\pi\)
0.0410600 + 0.999157i \(0.486927\pi\)
\(720\) 0 0
\(721\) 2719.39 0.140465
\(722\) 0 0
\(723\) −8342.01 −0.429105
\(724\) 0 0
\(725\) −3159.44 −0.161847
\(726\) 0 0
\(727\) 9360.49 0.477526 0.238763 0.971078i \(-0.423258\pi\)
0.238763 + 0.971078i \(0.423258\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 7403.77 0.374608
\(732\) 0 0
\(733\) 29110.0 1.46685 0.733425 0.679770i \(-0.237920\pi\)
0.733425 + 0.679770i \(0.237920\pi\)
\(734\) 0 0
\(735\) 6348.30 0.318586
\(736\) 0 0
\(737\) −9910.65 −0.495337
\(738\) 0 0
\(739\) 8095.45 0.402971 0.201486 0.979491i \(-0.435423\pi\)
0.201486 + 0.979491i \(0.435423\pi\)
\(740\) 0 0
\(741\) −9803.10 −0.486000
\(742\) 0 0
\(743\) 26058.3 1.28666 0.643328 0.765590i \(-0.277553\pi\)
0.643328 + 0.765590i \(0.277553\pi\)
\(744\) 0 0
\(745\) −6830.13 −0.335888
\(746\) 0 0
\(747\) −5062.81 −0.247976
\(748\) 0 0
\(749\) 1812.03 0.0883979
\(750\) 0 0
\(751\) −5375.84 −0.261208 −0.130604 0.991435i \(-0.541692\pi\)
−0.130604 + 0.991435i \(0.541692\pi\)
\(752\) 0 0
\(753\) −19150.6 −0.926810
\(754\) 0 0
\(755\) 9638.82 0.464626
\(756\) 0 0
\(757\) 9027.75 0.433447 0.216723 0.976233i \(-0.430463\pi\)
0.216723 + 0.976233i \(0.430463\pi\)
\(758\) 0 0
\(759\) −1565.76 −0.0748794
\(760\) 0 0
\(761\) 35567.6 1.69425 0.847126 0.531392i \(-0.178331\pi\)
0.847126 + 0.531392i \(0.178331\pi\)
\(762\) 0 0
\(763\) 1404.04 0.0666184
\(764\) 0 0
\(765\) 3500.77 0.165452
\(766\) 0 0
\(767\) 49294.9 2.32065
\(768\) 0 0
\(769\) −37434.7 −1.75543 −0.877717 0.479179i \(-0.840934\pi\)
−0.877717 + 0.479179i \(0.840934\pi\)
\(770\) 0 0
\(771\) −4497.90 −0.210101
\(772\) 0 0
\(773\) −34295.9 −1.59578 −0.797891 0.602802i \(-0.794051\pi\)
−0.797891 + 0.602802i \(0.794051\pi\)
\(774\) 0 0
\(775\) −14069.4 −0.652113
\(776\) 0 0
\(777\) −735.061 −0.0339384
\(778\) 0 0
\(779\) 10572.3 0.486256
\(780\) 0 0
\(781\) 1832.41 0.0839547
\(782\) 0 0
\(783\) −1002.80 −0.0457689
\(784\) 0 0
\(785\) 1980.89 0.0900651
\(786\) 0 0
\(787\) −14951.9 −0.677227 −0.338613 0.940926i \(-0.609958\pi\)
−0.338613 + 0.940926i \(0.609958\pi\)
\(788\) 0 0
\(789\) −19346.4 −0.872940
\(790\) 0 0
\(791\) 6457.16 0.290253
\(792\) 0 0
\(793\) 3963.19 0.177474
\(794\) 0 0
\(795\) 9287.54 0.414333
\(796\) 0 0
\(797\) −28803.3 −1.28013 −0.640065 0.768321i \(-0.721093\pi\)
−0.640065 + 0.768321i \(0.721093\pi\)
\(798\) 0 0
\(799\) 8795.96 0.389460
\(800\) 0 0
\(801\) 4572.87 0.201716
\(802\) 0 0
\(803\) −10739.4 −0.471962
\(804\) 0 0
\(805\) −414.546 −0.0181501
\(806\) 0 0
\(807\) 4312.70 0.188122
\(808\) 0 0
\(809\) 7507.43 0.326264 0.163132 0.986604i \(-0.447840\pi\)
0.163132 + 0.986604i \(0.447840\pi\)
\(810\) 0 0
\(811\) 33767.4 1.46206 0.731031 0.682344i \(-0.239039\pi\)
0.731031 + 0.682344i \(0.239039\pi\)
\(812\) 0 0
\(813\) −19928.7 −0.859693
\(814\) 0 0
\(815\) 5429.25 0.233348
\(816\) 0 0
\(817\) −4452.92 −0.190683
\(818\) 0 0
\(819\) 2265.77 0.0966696
\(820\) 0 0
\(821\) 46177.1 1.96296 0.981481 0.191559i \(-0.0613545\pi\)
0.981481 + 0.191559i \(0.0613545\pi\)
\(822\) 0 0
\(823\) −9956.57 −0.421706 −0.210853 0.977518i \(-0.567624\pi\)
−0.210853 + 0.977518i \(0.567624\pi\)
\(824\) 0 0
\(825\) 5791.06 0.244386
\(826\) 0 0
\(827\) 30710.3 1.29130 0.645648 0.763635i \(-0.276587\pi\)
0.645648 + 0.763635i \(0.276587\pi\)
\(828\) 0 0
\(829\) 32169.8 1.34777 0.673887 0.738835i \(-0.264624\pi\)
0.673887 + 0.738835i \(0.264624\pi\)
\(830\) 0 0
\(831\) −12949.3 −0.540561
\(832\) 0 0
\(833\) −20612.2 −0.857348
\(834\) 0 0
\(835\) 12306.7 0.510051
\(836\) 0 0
\(837\) −4465.59 −0.184413
\(838\) 0 0
\(839\) 23470.9 0.965800 0.482900 0.875676i \(-0.339584\pi\)
0.482900 + 0.875676i \(0.339584\pi\)
\(840\) 0 0
\(841\) −23009.6 −0.943441
\(842\) 0 0
\(843\) 2182.82 0.0891819
\(844\) 0 0
\(845\) 35349.7 1.43913
\(846\) 0 0
\(847\) 2327.57 0.0944231
\(848\) 0 0
\(849\) 25381.8 1.02603
\(850\) 0 0
\(851\) −1975.84 −0.0795898
\(852\) 0 0
\(853\) −22049.1 −0.885050 −0.442525 0.896756i \(-0.645917\pi\)
−0.442525 + 0.896756i \(0.645917\pi\)
\(854\) 0 0
\(855\) −2105.50 −0.0842183
\(856\) 0 0
\(857\) 42122.4 1.67896 0.839482 0.543387i \(-0.182858\pi\)
0.839482 + 0.543387i \(0.182858\pi\)
\(858\) 0 0
\(859\) 25283.3 1.00426 0.502128 0.864793i \(-0.332551\pi\)
0.502128 + 0.864793i \(0.332551\pi\)
\(860\) 0 0
\(861\) −2443.56 −0.0967205
\(862\) 0 0
\(863\) 1331.63 0.0525251 0.0262626 0.999655i \(-0.491639\pi\)
0.0262626 + 0.999655i \(0.491639\pi\)
\(864\) 0 0
\(865\) −12683.2 −0.498546
\(866\) 0 0
\(867\) 3372.39 0.132102
\(868\) 0 0
\(869\) −10638.3 −0.415282
\(870\) 0 0
\(871\) 38549.7 1.49967
\(872\) 0 0
\(873\) −2464.92 −0.0955612
\(874\) 0 0
\(875\) 3786.19 0.146282
\(876\) 0 0
\(877\) −11303.8 −0.435235 −0.217618 0.976034i \(-0.569829\pi\)
−0.217618 + 0.976034i \(0.569829\pi\)
\(878\) 0 0
\(879\) 17742.6 0.680824
\(880\) 0 0
\(881\) −46376.7 −1.77352 −0.886760 0.462230i \(-0.847050\pi\)
−0.886760 + 0.462230i \(0.847050\pi\)
\(882\) 0 0
\(883\) −50480.9 −1.92392 −0.961958 0.273198i \(-0.911919\pi\)
−0.961958 + 0.273198i \(0.911919\pi\)
\(884\) 0 0
\(885\) 10587.5 0.402142
\(886\) 0 0
\(887\) −9578.96 −0.362604 −0.181302 0.983427i \(-0.558031\pi\)
−0.181302 + 0.983427i \(0.558031\pi\)
\(888\) 0 0
\(889\) 938.490 0.0354060
\(890\) 0 0
\(891\) 1838.06 0.0691105
\(892\) 0 0
\(893\) −5290.23 −0.198243
\(894\) 0 0
\(895\) −20641.1 −0.770899
\(896\) 0 0
\(897\) 6090.38 0.226702
\(898\) 0 0
\(899\) 6142.77 0.227890
\(900\) 0 0
\(901\) −30155.6 −1.11501
\(902\) 0 0
\(903\) 1029.19 0.0379285
\(904\) 0 0
\(905\) 27204.5 0.999234
\(906\) 0 0
\(907\) 42298.9 1.54852 0.774261 0.632866i \(-0.218122\pi\)
0.774261 + 0.632866i \(0.218122\pi\)
\(908\) 0 0
\(909\) −7658.00 −0.279428
\(910\) 0 0
\(911\) 9558.76 0.347635 0.173818 0.984778i \(-0.444390\pi\)
0.173818 + 0.984778i \(0.444390\pi\)
\(912\) 0 0
\(913\) −12765.1 −0.462720
\(914\) 0 0
\(915\) 851.210 0.0307542
\(916\) 0 0
\(917\) −6150.65 −0.221497
\(918\) 0 0
\(919\) 44677.2 1.60366 0.801830 0.597552i \(-0.203860\pi\)
0.801830 + 0.597552i \(0.203860\pi\)
\(920\) 0 0
\(921\) 28051.5 1.00361
\(922\) 0 0
\(923\) −7127.57 −0.254178
\(924\) 0 0
\(925\) 7307.77 0.259760
\(926\) 0 0
\(927\) −8580.96 −0.304030
\(928\) 0 0
\(929\) −46461.2 −1.64084 −0.820421 0.571761i \(-0.806261\pi\)
−0.820421 + 0.571761i \(0.806261\pi\)
\(930\) 0 0
\(931\) 12397.0 0.436407
\(932\) 0 0
\(933\) −23603.9 −0.828249
\(934\) 0 0
\(935\) 8826.68 0.308731
\(936\) 0 0
\(937\) −27305.2 −0.951997 −0.475998 0.879446i \(-0.657913\pi\)
−0.475998 + 0.879446i \(0.657913\pi\)
\(938\) 0 0
\(939\) −26259.4 −0.912612
\(940\) 0 0
\(941\) −11491.8 −0.398112 −0.199056 0.979988i \(-0.563787\pi\)
−0.199056 + 0.979988i \(0.563787\pi\)
\(942\) 0 0
\(943\) −6568.28 −0.226822
\(944\) 0 0
\(945\) 486.641 0.0167518
\(946\) 0 0
\(947\) −18682.9 −0.641089 −0.320544 0.947233i \(-0.603866\pi\)
−0.320544 + 0.947233i \(0.603866\pi\)
\(948\) 0 0
\(949\) 41773.4 1.42890
\(950\) 0 0
\(951\) 12377.9 0.422063
\(952\) 0 0
\(953\) −41342.7 −1.40527 −0.702634 0.711551i \(-0.747993\pi\)
−0.702634 + 0.711551i \(0.747993\pi\)
\(954\) 0 0
\(955\) −14682.8 −0.497512
\(956\) 0 0
\(957\) −2528.41 −0.0854041
\(958\) 0 0
\(959\) −4889.31 −0.164634
\(960\) 0 0
\(961\) −2436.45 −0.0817847
\(962\) 0 0
\(963\) −5717.80 −0.191333
\(964\) 0 0
\(965\) −30395.6 −1.01396
\(966\) 0 0
\(967\) −44316.0 −1.47374 −0.736870 0.676034i \(-0.763697\pi\)
−0.736870 + 0.676034i \(0.763697\pi\)
\(968\) 0 0
\(969\) 6836.33 0.226640
\(970\) 0 0
\(971\) −17365.8 −0.573940 −0.286970 0.957940i \(-0.592648\pi\)
−0.286970 + 0.957940i \(0.592648\pi\)
\(972\) 0 0
\(973\) −5702.29 −0.187880
\(974\) 0 0
\(975\) −22525.6 −0.739895
\(976\) 0 0
\(977\) 23303.8 0.763105 0.381552 0.924347i \(-0.375390\pi\)
0.381552 + 0.924347i \(0.375390\pi\)
\(978\) 0 0
\(979\) 11529.8 0.376398
\(980\) 0 0
\(981\) −4430.42 −0.144192
\(982\) 0 0
\(983\) −39472.2 −1.28074 −0.640369 0.768067i \(-0.721219\pi\)
−0.640369 + 0.768067i \(0.721219\pi\)
\(984\) 0 0
\(985\) 10181.1 0.329337
\(986\) 0 0
\(987\) 1222.72 0.0394323
\(988\) 0 0
\(989\) 2766.47 0.0889470
\(990\) 0 0
\(991\) 12338.5 0.395505 0.197752 0.980252i \(-0.436636\pi\)
0.197752 + 0.980252i \(0.436636\pi\)
\(992\) 0 0
\(993\) 4259.94 0.136138
\(994\) 0 0
\(995\) −4432.01 −0.141210
\(996\) 0 0
\(997\) 624.989 0.0198532 0.00992658 0.999951i \(-0.496840\pi\)
0.00992658 + 0.999951i \(0.496840\pi\)
\(998\) 0 0
\(999\) 2319.47 0.0734581
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.4.a.g.1.3 4
3.2 odd 2 1656.4.a.m.1.2 4
4.3 odd 2 1104.4.a.u.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.4.a.g.1.3 4 1.1 even 1 trivial
1104.4.a.u.1.3 4 4.3 odd 2
1656.4.a.m.1.2 4 3.2 odd 2