Properties

Label 552.4.a.g.1.2
Level $552$
Weight $4$
Character 552.1
Self dual yes
Analytic conductor $32.569$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,4,Mod(1,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 552.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-12,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5690543232\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1623576.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 22x^{2} + 17x + 91 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.94329\) of defining polynomial
Character \(\chi\) \(=\) 552.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -8.67405 q^{5} -19.8035 q^{7} +9.00000 q^{9} +46.0239 q^{11} +61.0443 q^{13} +26.0222 q^{15} -40.1964 q^{17} +96.6739 q^{19} +59.4104 q^{21} +23.0000 q^{23} -49.7608 q^{25} -27.0000 q^{27} +2.45709 q^{29} -98.5456 q^{31} -138.072 q^{33} +171.776 q^{35} -137.979 q^{37} -183.133 q^{39} -366.840 q^{41} -405.130 q^{43} -78.0665 q^{45} +112.205 q^{47} +49.1777 q^{49} +120.589 q^{51} -250.039 q^{53} -399.213 q^{55} -290.022 q^{57} -123.308 q^{59} +643.722 q^{61} -178.231 q^{63} -529.501 q^{65} -12.0270 q^{67} -69.0000 q^{69} +332.539 q^{71} +71.5191 q^{73} +149.282 q^{75} -911.433 q^{77} +1075.74 q^{79} +81.0000 q^{81} -188.768 q^{83} +348.666 q^{85} -7.37128 q^{87} -1228.86 q^{89} -1208.89 q^{91} +295.637 q^{93} -838.555 q^{95} -1048.33 q^{97} +414.215 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} - 14 q^{5} + 14 q^{7} + 36 q^{9} - 16 q^{11} + 4 q^{13} + 42 q^{15} - 22 q^{17} + 134 q^{19} - 42 q^{21} + 92 q^{23} + 24 q^{25} - 108 q^{27} - 180 q^{29} + 276 q^{31} + 48 q^{33} - 96 q^{35}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −8.67405 −0.775831 −0.387915 0.921695i \(-0.626805\pi\)
−0.387915 + 0.921695i \(0.626805\pi\)
\(6\) 0 0
\(7\) −19.8035 −1.06929 −0.534644 0.845078i \(-0.679554\pi\)
−0.534644 + 0.845078i \(0.679554\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 46.0239 1.26152 0.630760 0.775978i \(-0.282743\pi\)
0.630760 + 0.775978i \(0.282743\pi\)
\(12\) 0 0
\(13\) 61.0443 1.30236 0.651178 0.758925i \(-0.274275\pi\)
0.651178 + 0.758925i \(0.274275\pi\)
\(14\) 0 0
\(15\) 26.0222 0.447926
\(16\) 0 0
\(17\) −40.1964 −0.573474 −0.286737 0.958009i \(-0.592571\pi\)
−0.286737 + 0.958009i \(0.592571\pi\)
\(18\) 0 0
\(19\) 96.6739 1.16729 0.583645 0.812009i \(-0.301626\pi\)
0.583645 + 0.812009i \(0.301626\pi\)
\(20\) 0 0
\(21\) 59.4104 0.617353
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −49.7608 −0.398087
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 2.45709 0.0157335 0.00786673 0.999969i \(-0.497496\pi\)
0.00786673 + 0.999969i \(0.497496\pi\)
\(30\) 0 0
\(31\) −98.5456 −0.570946 −0.285473 0.958387i \(-0.592151\pi\)
−0.285473 + 0.958387i \(0.592151\pi\)
\(32\) 0 0
\(33\) −138.072 −0.728339
\(34\) 0 0
\(35\) 171.776 0.829586
\(36\) 0 0
\(37\) −137.979 −0.613072 −0.306536 0.951859i \(-0.599170\pi\)
−0.306536 + 0.951859i \(0.599170\pi\)
\(38\) 0 0
\(39\) −183.133 −0.751916
\(40\) 0 0
\(41\) −366.840 −1.39733 −0.698667 0.715447i \(-0.746223\pi\)
−0.698667 + 0.715447i \(0.746223\pi\)
\(42\) 0 0
\(43\) −405.130 −1.43678 −0.718392 0.695639i \(-0.755121\pi\)
−0.718392 + 0.695639i \(0.755121\pi\)
\(44\) 0 0
\(45\) −78.0665 −0.258610
\(46\) 0 0
\(47\) 112.205 0.348228 0.174114 0.984726i \(-0.444294\pi\)
0.174114 + 0.984726i \(0.444294\pi\)
\(48\) 0 0
\(49\) 49.1777 0.143375
\(50\) 0 0
\(51\) 120.589 0.331095
\(52\) 0 0
\(53\) −250.039 −0.648027 −0.324014 0.946052i \(-0.605032\pi\)
−0.324014 + 0.946052i \(0.605032\pi\)
\(54\) 0 0
\(55\) −399.213 −0.978726
\(56\) 0 0
\(57\) −290.022 −0.673936
\(58\) 0 0
\(59\) −123.308 −0.272090 −0.136045 0.990703i \(-0.543439\pi\)
−0.136045 + 0.990703i \(0.543439\pi\)
\(60\) 0 0
\(61\) 643.722 1.35115 0.675575 0.737291i \(-0.263895\pi\)
0.675575 + 0.737291i \(0.263895\pi\)
\(62\) 0 0
\(63\) −178.231 −0.356429
\(64\) 0 0
\(65\) −529.501 −1.01041
\(66\) 0 0
\(67\) −12.0270 −0.0219303 −0.0109651 0.999940i \(-0.503490\pi\)
−0.0109651 + 0.999940i \(0.503490\pi\)
\(68\) 0 0
\(69\) −69.0000 −0.120386
\(70\) 0 0
\(71\) 332.539 0.555846 0.277923 0.960603i \(-0.410354\pi\)
0.277923 + 0.960603i \(0.410354\pi\)
\(72\) 0 0
\(73\) 71.5191 0.114667 0.0573334 0.998355i \(-0.481740\pi\)
0.0573334 + 0.998355i \(0.481740\pi\)
\(74\) 0 0
\(75\) 149.282 0.229835
\(76\) 0 0
\(77\) −911.433 −1.34893
\(78\) 0 0
\(79\) 1075.74 1.53203 0.766017 0.642821i \(-0.222236\pi\)
0.766017 + 0.642821i \(0.222236\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −188.768 −0.249638 −0.124819 0.992180i \(-0.539835\pi\)
−0.124819 + 0.992180i \(0.539835\pi\)
\(84\) 0 0
\(85\) 348.666 0.444919
\(86\) 0 0
\(87\) −7.37128 −0.00908372
\(88\) 0 0
\(89\) −1228.86 −1.46359 −0.731793 0.681527i \(-0.761316\pi\)
−0.731793 + 0.681527i \(0.761316\pi\)
\(90\) 0 0
\(91\) −1208.89 −1.39259
\(92\) 0 0
\(93\) 295.637 0.329636
\(94\) 0 0
\(95\) −838.555 −0.905620
\(96\) 0 0
\(97\) −1048.33 −1.09734 −0.548670 0.836039i \(-0.684866\pi\)
−0.548670 + 0.836039i \(0.684866\pi\)
\(98\) 0 0
\(99\) 414.215 0.420507
\(100\) 0 0
\(101\) −1629.34 −1.60520 −0.802602 0.596515i \(-0.796551\pi\)
−0.802602 + 0.596515i \(0.796551\pi\)
\(102\) 0 0
\(103\) 1126.13 1.07729 0.538646 0.842532i \(-0.318936\pi\)
0.538646 + 0.842532i \(0.318936\pi\)
\(104\) 0 0
\(105\) −515.329 −0.478962
\(106\) 0 0
\(107\) −1163.68 −1.05137 −0.525687 0.850678i \(-0.676192\pi\)
−0.525687 + 0.850678i \(0.676192\pi\)
\(108\) 0 0
\(109\) −1598.16 −1.40437 −0.702185 0.711995i \(-0.747792\pi\)
−0.702185 + 0.711995i \(0.747792\pi\)
\(110\) 0 0
\(111\) 413.938 0.353958
\(112\) 0 0
\(113\) −177.305 −0.147605 −0.0738027 0.997273i \(-0.523514\pi\)
−0.0738027 + 0.997273i \(0.523514\pi\)
\(114\) 0 0
\(115\) −199.503 −0.161772
\(116\) 0 0
\(117\) 549.398 0.434119
\(118\) 0 0
\(119\) 796.029 0.613209
\(120\) 0 0
\(121\) 787.197 0.591433
\(122\) 0 0
\(123\) 1100.52 0.806751
\(124\) 0 0
\(125\) 1515.88 1.08468
\(126\) 0 0
\(127\) −497.140 −0.347355 −0.173677 0.984803i \(-0.555565\pi\)
−0.173677 + 0.984803i \(0.555565\pi\)
\(128\) 0 0
\(129\) 1215.39 0.829527
\(130\) 0 0
\(131\) −1931.02 −1.28789 −0.643945 0.765071i \(-0.722704\pi\)
−0.643945 + 0.765071i \(0.722704\pi\)
\(132\) 0 0
\(133\) −1914.48 −1.24817
\(134\) 0 0
\(135\) 234.199 0.149309
\(136\) 0 0
\(137\) −2615.29 −1.63095 −0.815473 0.578795i \(-0.803523\pi\)
−0.815473 + 0.578795i \(0.803523\pi\)
\(138\) 0 0
\(139\) 633.621 0.386641 0.193320 0.981136i \(-0.438074\pi\)
0.193320 + 0.981136i \(0.438074\pi\)
\(140\) 0 0
\(141\) −336.614 −0.201050
\(142\) 0 0
\(143\) 2809.49 1.64295
\(144\) 0 0
\(145\) −21.3129 −0.0122065
\(146\) 0 0
\(147\) −147.533 −0.0827777
\(148\) 0 0
\(149\) 1115.41 0.613274 0.306637 0.951826i \(-0.400796\pi\)
0.306637 + 0.951826i \(0.400796\pi\)
\(150\) 0 0
\(151\) 2054.35 1.10716 0.553578 0.832798i \(-0.313262\pi\)
0.553578 + 0.832798i \(0.313262\pi\)
\(152\) 0 0
\(153\) −361.768 −0.191158
\(154\) 0 0
\(155\) 854.790 0.442957
\(156\) 0 0
\(157\) −1656.55 −0.842083 −0.421041 0.907041i \(-0.638335\pi\)
−0.421041 + 0.907041i \(0.638335\pi\)
\(158\) 0 0
\(159\) 750.116 0.374139
\(160\) 0 0
\(161\) −455.480 −0.222962
\(162\) 0 0
\(163\) −441.687 −0.212243 −0.106121 0.994353i \(-0.533843\pi\)
−0.106121 + 0.994353i \(0.533843\pi\)
\(164\) 0 0
\(165\) 1197.64 0.565068
\(166\) 0 0
\(167\) −850.795 −0.394230 −0.197115 0.980380i \(-0.563157\pi\)
−0.197115 + 0.980380i \(0.563157\pi\)
\(168\) 0 0
\(169\) 1529.40 0.696131
\(170\) 0 0
\(171\) 870.065 0.389097
\(172\) 0 0
\(173\) −2187.80 −0.961475 −0.480738 0.876865i \(-0.659631\pi\)
−0.480738 + 0.876865i \(0.659631\pi\)
\(174\) 0 0
\(175\) 985.437 0.425669
\(176\) 0 0
\(177\) 369.924 0.157092
\(178\) 0 0
\(179\) 853.200 0.356264 0.178132 0.984007i \(-0.442995\pi\)
0.178132 + 0.984007i \(0.442995\pi\)
\(180\) 0 0
\(181\) −1476.82 −0.606471 −0.303236 0.952916i \(-0.598067\pi\)
−0.303236 + 0.952916i \(0.598067\pi\)
\(182\) 0 0
\(183\) −1931.17 −0.780087
\(184\) 0 0
\(185\) 1196.84 0.475640
\(186\) 0 0
\(187\) −1849.99 −0.723449
\(188\) 0 0
\(189\) 534.694 0.205784
\(190\) 0 0
\(191\) −545.456 −0.206638 −0.103319 0.994648i \(-0.532946\pi\)
−0.103319 + 0.994648i \(0.532946\pi\)
\(192\) 0 0
\(193\) 3683.88 1.37395 0.686973 0.726683i \(-0.258939\pi\)
0.686973 + 0.726683i \(0.258939\pi\)
\(194\) 0 0
\(195\) 1588.50 0.583359
\(196\) 0 0
\(197\) −999.094 −0.361332 −0.180666 0.983544i \(-0.557825\pi\)
−0.180666 + 0.983544i \(0.557825\pi\)
\(198\) 0 0
\(199\) 4943.50 1.76098 0.880491 0.474063i \(-0.157213\pi\)
0.880491 + 0.474063i \(0.157213\pi\)
\(200\) 0 0
\(201\) 36.0809 0.0126615
\(202\) 0 0
\(203\) −48.6590 −0.0168236
\(204\) 0 0
\(205\) 3181.99 1.08410
\(206\) 0 0
\(207\) 207.000 0.0695048
\(208\) 0 0
\(209\) 4449.31 1.47256
\(210\) 0 0
\(211\) −885.122 −0.288788 −0.144394 0.989520i \(-0.546123\pi\)
−0.144394 + 0.989520i \(0.546123\pi\)
\(212\) 0 0
\(213\) −997.616 −0.320918
\(214\) 0 0
\(215\) 3514.12 1.11470
\(216\) 0 0
\(217\) 1951.55 0.610505
\(218\) 0 0
\(219\) −214.557 −0.0662029
\(220\) 0 0
\(221\) −2453.76 −0.746868
\(222\) 0 0
\(223\) −3715.27 −1.11566 −0.557831 0.829955i \(-0.688366\pi\)
−0.557831 + 0.829955i \(0.688366\pi\)
\(224\) 0 0
\(225\) −447.847 −0.132696
\(226\) 0 0
\(227\) −1088.85 −0.318367 −0.159184 0.987249i \(-0.550886\pi\)
−0.159184 + 0.987249i \(0.550886\pi\)
\(228\) 0 0
\(229\) 2163.74 0.624383 0.312192 0.950019i \(-0.398937\pi\)
0.312192 + 0.950019i \(0.398937\pi\)
\(230\) 0 0
\(231\) 2734.30 0.778804
\(232\) 0 0
\(233\) −3172.39 −0.891976 −0.445988 0.895039i \(-0.647148\pi\)
−0.445988 + 0.895039i \(0.647148\pi\)
\(234\) 0 0
\(235\) −973.268 −0.270166
\(236\) 0 0
\(237\) −3227.23 −0.884520
\(238\) 0 0
\(239\) −6385.22 −1.72814 −0.864071 0.503371i \(-0.832093\pi\)
−0.864071 + 0.503371i \(0.832093\pi\)
\(240\) 0 0
\(241\) 5630.66 1.50499 0.752495 0.658598i \(-0.228850\pi\)
0.752495 + 0.658598i \(0.228850\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −426.570 −0.111235
\(246\) 0 0
\(247\) 5901.39 1.52023
\(248\) 0 0
\(249\) 566.303 0.144128
\(250\) 0 0
\(251\) 180.007 0.0452666 0.0226333 0.999744i \(-0.492795\pi\)
0.0226333 + 0.999744i \(0.492795\pi\)
\(252\) 0 0
\(253\) 1058.55 0.263045
\(254\) 0 0
\(255\) −1046.00 −0.256874
\(256\) 0 0
\(257\) −1261.82 −0.306264 −0.153132 0.988206i \(-0.548936\pi\)
−0.153132 + 0.988206i \(0.548936\pi\)
\(258\) 0 0
\(259\) 2732.47 0.655551
\(260\) 0 0
\(261\) 22.1138 0.00524449
\(262\) 0 0
\(263\) 2168.60 0.508447 0.254223 0.967146i \(-0.418180\pi\)
0.254223 + 0.967146i \(0.418180\pi\)
\(264\) 0 0
\(265\) 2168.85 0.502760
\(266\) 0 0
\(267\) 3686.59 0.845001
\(268\) 0 0
\(269\) 3314.38 0.751232 0.375616 0.926775i \(-0.377431\pi\)
0.375616 + 0.926775i \(0.377431\pi\)
\(270\) 0 0
\(271\) −7146.46 −1.60191 −0.800953 0.598728i \(-0.795673\pi\)
−0.800953 + 0.598728i \(0.795673\pi\)
\(272\) 0 0
\(273\) 3626.67 0.804014
\(274\) 0 0
\(275\) −2290.19 −0.502194
\(276\) 0 0
\(277\) −4381.36 −0.950363 −0.475182 0.879888i \(-0.657618\pi\)
−0.475182 + 0.879888i \(0.657618\pi\)
\(278\) 0 0
\(279\) −886.910 −0.190315
\(280\) 0 0
\(281\) −3484.10 −0.739658 −0.369829 0.929100i \(-0.620584\pi\)
−0.369829 + 0.929100i \(0.620584\pi\)
\(282\) 0 0
\(283\) 7754.76 1.62888 0.814439 0.580249i \(-0.197045\pi\)
0.814439 + 0.580249i \(0.197045\pi\)
\(284\) 0 0
\(285\) 2515.66 0.522860
\(286\) 0 0
\(287\) 7264.70 1.49415
\(288\) 0 0
\(289\) −3297.25 −0.671127
\(290\) 0 0
\(291\) 3144.99 0.633549
\(292\) 0 0
\(293\) −5165.64 −1.02997 −0.514983 0.857200i \(-0.672202\pi\)
−0.514983 + 0.857200i \(0.672202\pi\)
\(294\) 0 0
\(295\) 1069.58 0.211096
\(296\) 0 0
\(297\) −1242.64 −0.242780
\(298\) 0 0
\(299\) 1404.02 0.271560
\(300\) 0 0
\(301\) 8022.98 1.53633
\(302\) 0 0
\(303\) 4888.02 0.926764
\(304\) 0 0
\(305\) −5583.68 −1.04826
\(306\) 0 0
\(307\) 5113.44 0.950617 0.475309 0.879819i \(-0.342336\pi\)
0.475309 + 0.879819i \(0.342336\pi\)
\(308\) 0 0
\(309\) −3378.40 −0.621975
\(310\) 0 0
\(311\) 873.505 0.159267 0.0796333 0.996824i \(-0.474625\pi\)
0.0796333 + 0.996824i \(0.474625\pi\)
\(312\) 0 0
\(313\) −4695.50 −0.847941 −0.423970 0.905676i \(-0.639364\pi\)
−0.423970 + 0.905676i \(0.639364\pi\)
\(314\) 0 0
\(315\) 1545.99 0.276529
\(316\) 0 0
\(317\) −7580.48 −1.34310 −0.671549 0.740960i \(-0.734371\pi\)
−0.671549 + 0.740960i \(0.734371\pi\)
\(318\) 0 0
\(319\) 113.085 0.0198481
\(320\) 0 0
\(321\) 3491.04 0.607011
\(322\) 0 0
\(323\) −3885.95 −0.669411
\(324\) 0 0
\(325\) −3037.61 −0.518451
\(326\) 0 0
\(327\) 4794.49 0.810813
\(328\) 0 0
\(329\) −2222.04 −0.372356
\(330\) 0 0
\(331\) −1816.51 −0.301644 −0.150822 0.988561i \(-0.548192\pi\)
−0.150822 + 0.988561i \(0.548192\pi\)
\(332\) 0 0
\(333\) −1241.82 −0.204357
\(334\) 0 0
\(335\) 104.323 0.0170142
\(336\) 0 0
\(337\) 4946.46 0.799558 0.399779 0.916612i \(-0.369087\pi\)
0.399779 + 0.916612i \(0.369087\pi\)
\(338\) 0 0
\(339\) 531.914 0.0852200
\(340\) 0 0
\(341\) −4535.45 −0.720259
\(342\) 0 0
\(343\) 5818.70 0.915978
\(344\) 0 0
\(345\) 598.510 0.0933990
\(346\) 0 0
\(347\) −8830.59 −1.36614 −0.683071 0.730352i \(-0.739356\pi\)
−0.683071 + 0.730352i \(0.739356\pi\)
\(348\) 0 0
\(349\) 3170.24 0.486244 0.243122 0.969996i \(-0.421828\pi\)
0.243122 + 0.969996i \(0.421828\pi\)
\(350\) 0 0
\(351\) −1648.19 −0.250639
\(352\) 0 0
\(353\) 7498.78 1.13065 0.565325 0.824868i \(-0.308751\pi\)
0.565325 + 0.824868i \(0.308751\pi\)
\(354\) 0 0
\(355\) −2884.46 −0.431242
\(356\) 0 0
\(357\) −2388.09 −0.354036
\(358\) 0 0
\(359\) 5761.34 0.846997 0.423498 0.905897i \(-0.360802\pi\)
0.423498 + 0.905897i \(0.360802\pi\)
\(360\) 0 0
\(361\) 2486.85 0.362567
\(362\) 0 0
\(363\) −2361.59 −0.341464
\(364\) 0 0
\(365\) −620.361 −0.0889621
\(366\) 0 0
\(367\) 3504.14 0.498405 0.249203 0.968451i \(-0.419831\pi\)
0.249203 + 0.968451i \(0.419831\pi\)
\(368\) 0 0
\(369\) −3301.56 −0.465778
\(370\) 0 0
\(371\) 4951.64 0.692927
\(372\) 0 0
\(373\) −8701.82 −1.20794 −0.603972 0.797006i \(-0.706416\pi\)
−0.603972 + 0.797006i \(0.706416\pi\)
\(374\) 0 0
\(375\) −4547.65 −0.626239
\(376\) 0 0
\(377\) 149.991 0.0204906
\(378\) 0 0
\(379\) −10063.2 −1.36388 −0.681940 0.731408i \(-0.738864\pi\)
−0.681940 + 0.731408i \(0.738864\pi\)
\(380\) 0 0
\(381\) 1491.42 0.200545
\(382\) 0 0
\(383\) −13910.3 −1.85582 −0.927912 0.372799i \(-0.878398\pi\)
−0.927912 + 0.372799i \(0.878398\pi\)
\(384\) 0 0
\(385\) 7905.81 1.04654
\(386\) 0 0
\(387\) −3646.17 −0.478928
\(388\) 0 0
\(389\) 11518.6 1.50133 0.750667 0.660681i \(-0.229732\pi\)
0.750667 + 0.660681i \(0.229732\pi\)
\(390\) 0 0
\(391\) −924.517 −0.119578
\(392\) 0 0
\(393\) 5793.05 0.743564
\(394\) 0 0
\(395\) −9331.06 −1.18860
\(396\) 0 0
\(397\) 7851.67 0.992605 0.496302 0.868150i \(-0.334691\pi\)
0.496302 + 0.868150i \(0.334691\pi\)
\(398\) 0 0
\(399\) 5743.44 0.720631
\(400\) 0 0
\(401\) −1145.46 −0.142647 −0.0713236 0.997453i \(-0.522722\pi\)
−0.0713236 + 0.997453i \(0.522722\pi\)
\(402\) 0 0
\(403\) −6015.64 −0.743574
\(404\) 0 0
\(405\) −702.598 −0.0862034
\(406\) 0 0
\(407\) −6350.35 −0.773403
\(408\) 0 0
\(409\) −1521.03 −0.183888 −0.0919441 0.995764i \(-0.529308\pi\)
−0.0919441 + 0.995764i \(0.529308\pi\)
\(410\) 0 0
\(411\) 7845.88 0.941627
\(412\) 0 0
\(413\) 2441.93 0.290943
\(414\) 0 0
\(415\) 1637.38 0.193677
\(416\) 0 0
\(417\) −1900.86 −0.223227
\(418\) 0 0
\(419\) 9961.20 1.16142 0.580712 0.814109i \(-0.302774\pi\)
0.580712 + 0.814109i \(0.302774\pi\)
\(420\) 0 0
\(421\) 16828.4 1.94813 0.974067 0.226260i \(-0.0726499\pi\)
0.974067 + 0.226260i \(0.0726499\pi\)
\(422\) 0 0
\(423\) 1009.84 0.116076
\(424\) 0 0
\(425\) 2000.21 0.228292
\(426\) 0 0
\(427\) −12747.9 −1.44477
\(428\) 0 0
\(429\) −8428.48 −0.948557
\(430\) 0 0
\(431\) −12717.8 −1.42133 −0.710666 0.703530i \(-0.751606\pi\)
−0.710666 + 0.703530i \(0.751606\pi\)
\(432\) 0 0
\(433\) −11248.1 −1.24838 −0.624190 0.781272i \(-0.714571\pi\)
−0.624190 + 0.781272i \(0.714571\pi\)
\(434\) 0 0
\(435\) 63.9388 0.00704743
\(436\) 0 0
\(437\) 2223.50 0.243397
\(438\) 0 0
\(439\) −12938.2 −1.40662 −0.703312 0.710881i \(-0.748296\pi\)
−0.703312 + 0.710881i \(0.748296\pi\)
\(440\) 0 0
\(441\) 442.599 0.0477917
\(442\) 0 0
\(443\) 13580.7 1.45652 0.728258 0.685303i \(-0.240330\pi\)
0.728258 + 0.685303i \(0.240330\pi\)
\(444\) 0 0
\(445\) 10659.2 1.13549
\(446\) 0 0
\(447\) −3346.23 −0.354074
\(448\) 0 0
\(449\) −1491.04 −0.156718 −0.0783592 0.996925i \(-0.524968\pi\)
−0.0783592 + 0.996925i \(0.524968\pi\)
\(450\) 0 0
\(451\) −16883.4 −1.76277
\(452\) 0 0
\(453\) −6163.04 −0.639216
\(454\) 0 0
\(455\) 10486.0 1.08042
\(456\) 0 0
\(457\) 12837.2 1.31400 0.657000 0.753890i \(-0.271825\pi\)
0.657000 + 0.753890i \(0.271825\pi\)
\(458\) 0 0
\(459\) 1085.30 0.110365
\(460\) 0 0
\(461\) 4401.50 0.444682 0.222341 0.974969i \(-0.428630\pi\)
0.222341 + 0.974969i \(0.428630\pi\)
\(462\) 0 0
\(463\) −7008.56 −0.703489 −0.351745 0.936096i \(-0.614411\pi\)
−0.351745 + 0.936096i \(0.614411\pi\)
\(464\) 0 0
\(465\) −2564.37 −0.255741
\(466\) 0 0
\(467\) −11424.2 −1.13201 −0.566004 0.824402i \(-0.691511\pi\)
−0.566004 + 0.824402i \(0.691511\pi\)
\(468\) 0 0
\(469\) 238.176 0.0234498
\(470\) 0 0
\(471\) 4969.65 0.486177
\(472\) 0 0
\(473\) −18645.6 −1.81253
\(474\) 0 0
\(475\) −4810.58 −0.464683
\(476\) 0 0
\(477\) −2250.35 −0.216009
\(478\) 0 0
\(479\) 9251.61 0.882499 0.441249 0.897384i \(-0.354535\pi\)
0.441249 + 0.897384i \(0.354535\pi\)
\(480\) 0 0
\(481\) −8422.85 −0.798439
\(482\) 0 0
\(483\) 1366.44 0.128727
\(484\) 0 0
\(485\) 9093.28 0.851350
\(486\) 0 0
\(487\) 10761.6 1.00135 0.500673 0.865636i \(-0.333086\pi\)
0.500673 + 0.865636i \(0.333086\pi\)
\(488\) 0 0
\(489\) 1325.06 0.122538
\(490\) 0 0
\(491\) −11506.4 −1.05759 −0.528794 0.848750i \(-0.677356\pi\)
−0.528794 + 0.848750i \(0.677356\pi\)
\(492\) 0 0
\(493\) −98.7663 −0.00902274
\(494\) 0 0
\(495\) −3592.92 −0.326242
\(496\) 0 0
\(497\) −6585.42 −0.594359
\(498\) 0 0
\(499\) −21982.2 −1.97206 −0.986029 0.166574i \(-0.946729\pi\)
−0.986029 + 0.166574i \(0.946729\pi\)
\(500\) 0 0
\(501\) 2552.38 0.227609
\(502\) 0 0
\(503\) −4490.69 −0.398071 −0.199036 0.979992i \(-0.563781\pi\)
−0.199036 + 0.979992i \(0.563781\pi\)
\(504\) 0 0
\(505\) 14133.0 1.24537
\(506\) 0 0
\(507\) −4588.20 −0.401912
\(508\) 0 0
\(509\) 18802.4 1.63733 0.818666 0.574270i \(-0.194714\pi\)
0.818666 + 0.574270i \(0.194714\pi\)
\(510\) 0 0
\(511\) −1416.33 −0.122612
\(512\) 0 0
\(513\) −2610.20 −0.224645
\(514\) 0 0
\(515\) −9768.12 −0.835796
\(516\) 0 0
\(517\) 5164.09 0.439297
\(518\) 0 0
\(519\) 6563.39 0.555108
\(520\) 0 0
\(521\) −10094.8 −0.848866 −0.424433 0.905459i \(-0.639527\pi\)
−0.424433 + 0.905459i \(0.639527\pi\)
\(522\) 0 0
\(523\) −14732.3 −1.23174 −0.615870 0.787848i \(-0.711195\pi\)
−0.615870 + 0.787848i \(0.711195\pi\)
\(524\) 0 0
\(525\) −2956.31 −0.245760
\(526\) 0 0
\(527\) 3961.18 0.327423
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −1109.77 −0.0906968
\(532\) 0 0
\(533\) −22393.4 −1.81983
\(534\) 0 0
\(535\) 10093.8 0.815689
\(536\) 0 0
\(537\) −2559.60 −0.205689
\(538\) 0 0
\(539\) 2263.35 0.180871
\(540\) 0 0
\(541\) 2074.91 0.164894 0.0824468 0.996595i \(-0.473727\pi\)
0.0824468 + 0.996595i \(0.473727\pi\)
\(542\) 0 0
\(543\) 4430.47 0.350146
\(544\) 0 0
\(545\) 13862.6 1.08955
\(546\) 0 0
\(547\) −18548.2 −1.44984 −0.724919 0.688834i \(-0.758123\pi\)
−0.724919 + 0.688834i \(0.758123\pi\)
\(548\) 0 0
\(549\) 5793.50 0.450383
\(550\) 0 0
\(551\) 237.537 0.0183655
\(552\) 0 0
\(553\) −21303.5 −1.63818
\(554\) 0 0
\(555\) −3590.52 −0.274611
\(556\) 0 0
\(557\) −2369.39 −0.180241 −0.0901207 0.995931i \(-0.528725\pi\)
−0.0901207 + 0.995931i \(0.528725\pi\)
\(558\) 0 0
\(559\) −24730.8 −1.87120
\(560\) 0 0
\(561\) 5549.98 0.417684
\(562\) 0 0
\(563\) 8946.87 0.669743 0.334872 0.942264i \(-0.391307\pi\)
0.334872 + 0.942264i \(0.391307\pi\)
\(564\) 0 0
\(565\) 1537.95 0.114517
\(566\) 0 0
\(567\) −1604.08 −0.118810
\(568\) 0 0
\(569\) −18755.8 −1.38187 −0.690934 0.722918i \(-0.742800\pi\)
−0.690934 + 0.722918i \(0.742800\pi\)
\(570\) 0 0
\(571\) −16337.1 −1.19735 −0.598674 0.800992i \(-0.704306\pi\)
−0.598674 + 0.800992i \(0.704306\pi\)
\(572\) 0 0
\(573\) 1636.37 0.119302
\(574\) 0 0
\(575\) −1144.50 −0.0830068
\(576\) 0 0
\(577\) −12440.9 −0.897613 −0.448807 0.893629i \(-0.648151\pi\)
−0.448807 + 0.893629i \(0.648151\pi\)
\(578\) 0 0
\(579\) −11051.6 −0.793248
\(580\) 0 0
\(581\) 3738.25 0.266934
\(582\) 0 0
\(583\) −11507.7 −0.817500
\(584\) 0 0
\(585\) −4765.51 −0.336803
\(586\) 0 0
\(587\) 15761.8 1.10828 0.554141 0.832423i \(-0.313047\pi\)
0.554141 + 0.832423i \(0.313047\pi\)
\(588\) 0 0
\(589\) −9526.79 −0.666459
\(590\) 0 0
\(591\) 2997.28 0.208615
\(592\) 0 0
\(593\) 14371.7 0.995233 0.497617 0.867397i \(-0.334209\pi\)
0.497617 + 0.867397i \(0.334209\pi\)
\(594\) 0 0
\(595\) −6904.79 −0.475746
\(596\) 0 0
\(597\) −14830.5 −1.01670
\(598\) 0 0
\(599\) −9596.41 −0.654589 −0.327294 0.944922i \(-0.606137\pi\)
−0.327294 + 0.944922i \(0.606137\pi\)
\(600\) 0 0
\(601\) 26034.3 1.76699 0.883494 0.468443i \(-0.155185\pi\)
0.883494 + 0.468443i \(0.155185\pi\)
\(602\) 0 0
\(603\) −108.243 −0.00731009
\(604\) 0 0
\(605\) −6828.19 −0.458852
\(606\) 0 0
\(607\) −1428.99 −0.0955535 −0.0477767 0.998858i \(-0.515214\pi\)
−0.0477767 + 0.998858i \(0.515214\pi\)
\(608\) 0 0
\(609\) 145.977 0.00971311
\(610\) 0 0
\(611\) 6849.44 0.453517
\(612\) 0 0
\(613\) 6750.66 0.444790 0.222395 0.974957i \(-0.428612\pi\)
0.222395 + 0.974957i \(0.428612\pi\)
\(614\) 0 0
\(615\) −9545.96 −0.625903
\(616\) 0 0
\(617\) 21435.4 1.39863 0.699315 0.714813i \(-0.253488\pi\)
0.699315 + 0.714813i \(0.253488\pi\)
\(618\) 0 0
\(619\) 14378.4 0.933627 0.466813 0.884356i \(-0.345402\pi\)
0.466813 + 0.884356i \(0.345402\pi\)
\(620\) 0 0
\(621\) −621.000 −0.0401286
\(622\) 0 0
\(623\) 24335.7 1.56499
\(624\) 0 0
\(625\) −6928.76 −0.443440
\(626\) 0 0
\(627\) −13347.9 −0.850183
\(628\) 0 0
\(629\) 5546.28 0.351581
\(630\) 0 0
\(631\) −5285.58 −0.333464 −0.166732 0.986002i \(-0.553321\pi\)
−0.166732 + 0.986002i \(0.553321\pi\)
\(632\) 0 0
\(633\) 2655.37 0.166732
\(634\) 0 0
\(635\) 4312.22 0.269488
\(636\) 0 0
\(637\) 3002.02 0.186726
\(638\) 0 0
\(639\) 2992.85 0.185282
\(640\) 0 0
\(641\) 19010.8 1.17142 0.585710 0.810521i \(-0.300816\pi\)
0.585710 + 0.810521i \(0.300816\pi\)
\(642\) 0 0
\(643\) 22018.1 1.35040 0.675202 0.737633i \(-0.264057\pi\)
0.675202 + 0.737633i \(0.264057\pi\)
\(644\) 0 0
\(645\) −10542.3 −0.643573
\(646\) 0 0
\(647\) 4748.99 0.288566 0.144283 0.989536i \(-0.453912\pi\)
0.144283 + 0.989536i \(0.453912\pi\)
\(648\) 0 0
\(649\) −5675.11 −0.343248
\(650\) 0 0
\(651\) −5854.64 −0.352475
\(652\) 0 0
\(653\) −31371.1 −1.88001 −0.940005 0.341161i \(-0.889180\pi\)
−0.940005 + 0.341161i \(0.889180\pi\)
\(654\) 0 0
\(655\) 16749.7 0.999185
\(656\) 0 0
\(657\) 643.672 0.0382223
\(658\) 0 0
\(659\) −10422.1 −0.616065 −0.308032 0.951376i \(-0.599671\pi\)
−0.308032 + 0.951376i \(0.599671\pi\)
\(660\) 0 0
\(661\) 19988.9 1.17621 0.588106 0.808784i \(-0.299874\pi\)
0.588106 + 0.808784i \(0.299874\pi\)
\(662\) 0 0
\(663\) 7361.28 0.431204
\(664\) 0 0
\(665\) 16606.3 0.968368
\(666\) 0 0
\(667\) 56.5131 0.00328065
\(668\) 0 0
\(669\) 11145.8 0.644128
\(670\) 0 0
\(671\) 29626.6 1.70450
\(672\) 0 0
\(673\) −338.677 −0.0193983 −0.00969915 0.999953i \(-0.503087\pi\)
−0.00969915 + 0.999953i \(0.503087\pi\)
\(674\) 0 0
\(675\) 1343.54 0.0766118
\(676\) 0 0
\(677\) 14911.2 0.846507 0.423254 0.906011i \(-0.360888\pi\)
0.423254 + 0.906011i \(0.360888\pi\)
\(678\) 0 0
\(679\) 20760.6 1.17337
\(680\) 0 0
\(681\) 3266.54 0.183809
\(682\) 0 0
\(683\) −18813.5 −1.05399 −0.526997 0.849867i \(-0.676682\pi\)
−0.526997 + 0.849867i \(0.676682\pi\)
\(684\) 0 0
\(685\) 22685.2 1.26534
\(686\) 0 0
\(687\) −6491.21 −0.360488
\(688\) 0 0
\(689\) −15263.4 −0.843962
\(690\) 0 0
\(691\) 5438.39 0.299401 0.149701 0.988731i \(-0.452169\pi\)
0.149701 + 0.988731i \(0.452169\pi\)
\(692\) 0 0
\(693\) −8202.89 −0.449642
\(694\) 0 0
\(695\) −5496.06 −0.299968
\(696\) 0 0
\(697\) 14745.6 0.801335
\(698\) 0 0
\(699\) 9517.18 0.514983
\(700\) 0 0
\(701\) 2569.04 0.138418 0.0692092 0.997602i \(-0.477952\pi\)
0.0692092 + 0.997602i \(0.477952\pi\)
\(702\) 0 0
\(703\) −13339.0 −0.715634
\(704\) 0 0
\(705\) 2919.80 0.155980
\(706\) 0 0
\(707\) 32266.6 1.71642
\(708\) 0 0
\(709\) 11457.4 0.606901 0.303450 0.952847i \(-0.401861\pi\)
0.303450 + 0.952847i \(0.401861\pi\)
\(710\) 0 0
\(711\) 9681.69 0.510678
\(712\) 0 0
\(713\) −2266.55 −0.119050
\(714\) 0 0
\(715\) −24369.7 −1.27465
\(716\) 0 0
\(717\) 19155.7 0.997743
\(718\) 0 0
\(719\) 35811.2 1.85749 0.928743 0.370723i \(-0.120890\pi\)
0.928743 + 0.370723i \(0.120890\pi\)
\(720\) 0 0
\(721\) −22301.3 −1.15193
\(722\) 0 0
\(723\) −16892.0 −0.868906
\(724\) 0 0
\(725\) −122.267 −0.00626328
\(726\) 0 0
\(727\) 27988.9 1.42785 0.713927 0.700220i \(-0.246915\pi\)
0.713927 + 0.700220i \(0.246915\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 16284.8 0.823958
\(732\) 0 0
\(733\) −4337.73 −0.218578 −0.109289 0.994010i \(-0.534857\pi\)
−0.109289 + 0.994010i \(0.534857\pi\)
\(734\) 0 0
\(735\) 1279.71 0.0642215
\(736\) 0 0
\(737\) −553.528 −0.0276655
\(738\) 0 0
\(739\) 21813.4 1.08582 0.542910 0.839791i \(-0.317323\pi\)
0.542910 + 0.839791i \(0.317323\pi\)
\(740\) 0 0
\(741\) −17704.2 −0.877704
\(742\) 0 0
\(743\) 1591.64 0.0785888 0.0392944 0.999228i \(-0.487489\pi\)
0.0392944 + 0.999228i \(0.487489\pi\)
\(744\) 0 0
\(745\) −9675.12 −0.475797
\(746\) 0 0
\(747\) −1698.91 −0.0832126
\(748\) 0 0
\(749\) 23044.9 1.12422
\(750\) 0 0
\(751\) 27206.5 1.32194 0.660971 0.750411i \(-0.270145\pi\)
0.660971 + 0.750411i \(0.270145\pi\)
\(752\) 0 0
\(753\) −540.020 −0.0261347
\(754\) 0 0
\(755\) −17819.5 −0.858965
\(756\) 0 0
\(757\) −14705.7 −0.706062 −0.353031 0.935612i \(-0.614849\pi\)
−0.353031 + 0.935612i \(0.614849\pi\)
\(758\) 0 0
\(759\) −3175.65 −0.151869
\(760\) 0 0
\(761\) −29220.7 −1.39192 −0.695959 0.718081i \(-0.745021\pi\)
−0.695959 + 0.718081i \(0.745021\pi\)
\(762\) 0 0
\(763\) 31649.2 1.50167
\(764\) 0 0
\(765\) 3137.99 0.148306
\(766\) 0 0
\(767\) −7527.25 −0.354359
\(768\) 0 0
\(769\) −18693.9 −0.876617 −0.438309 0.898825i \(-0.644422\pi\)
−0.438309 + 0.898825i \(0.644422\pi\)
\(770\) 0 0
\(771\) 3785.45 0.176822
\(772\) 0 0
\(773\) −9047.60 −0.420983 −0.210491 0.977596i \(-0.567506\pi\)
−0.210491 + 0.977596i \(0.567506\pi\)
\(774\) 0 0
\(775\) 4903.71 0.227286
\(776\) 0 0
\(777\) −8197.42 −0.378482
\(778\) 0 0
\(779\) −35463.8 −1.63110
\(780\) 0 0
\(781\) 15304.7 0.701211
\(782\) 0 0
\(783\) −66.3415 −0.00302791
\(784\) 0 0
\(785\) 14369.0 0.653314
\(786\) 0 0
\(787\) 6860.04 0.310717 0.155358 0.987858i \(-0.450347\pi\)
0.155358 + 0.987858i \(0.450347\pi\)
\(788\) 0 0
\(789\) −6505.79 −0.293552
\(790\) 0 0
\(791\) 3511.25 0.157833
\(792\) 0 0
\(793\) 39295.5 1.75968
\(794\) 0 0
\(795\) −6506.55 −0.290268
\(796\) 0 0
\(797\) 18943.8 0.841936 0.420968 0.907076i \(-0.361690\pi\)
0.420968 + 0.907076i \(0.361690\pi\)
\(798\) 0 0
\(799\) −4510.22 −0.199700
\(800\) 0 0
\(801\) −11059.8 −0.487862
\(802\) 0 0
\(803\) 3291.59 0.144655
\(804\) 0 0
\(805\) 3950.86 0.172981
\(806\) 0 0
\(807\) −9943.14 −0.433724
\(808\) 0 0
\(809\) 21889.6 0.951295 0.475648 0.879636i \(-0.342214\pi\)
0.475648 + 0.879636i \(0.342214\pi\)
\(810\) 0 0
\(811\) −11468.8 −0.496578 −0.248289 0.968686i \(-0.579868\pi\)
−0.248289 + 0.968686i \(0.579868\pi\)
\(812\) 0 0
\(813\) 21439.4 0.924860
\(814\) 0 0
\(815\) 3831.21 0.164664
\(816\) 0 0
\(817\) −39165.5 −1.67714
\(818\) 0 0
\(819\) −10880.0 −0.464198
\(820\) 0 0
\(821\) −26782.7 −1.13852 −0.569258 0.822159i \(-0.692769\pi\)
−0.569258 + 0.822159i \(0.692769\pi\)
\(822\) 0 0
\(823\) −10312.0 −0.436761 −0.218381 0.975864i \(-0.570077\pi\)
−0.218381 + 0.975864i \(0.570077\pi\)
\(824\) 0 0
\(825\) 6870.56 0.289942
\(826\) 0 0
\(827\) 750.162 0.0315425 0.0157713 0.999876i \(-0.494980\pi\)
0.0157713 + 0.999876i \(0.494980\pi\)
\(828\) 0 0
\(829\) −6918.42 −0.289851 −0.144926 0.989443i \(-0.546294\pi\)
−0.144926 + 0.989443i \(0.546294\pi\)
\(830\) 0 0
\(831\) 13144.1 0.548693
\(832\) 0 0
\(833\) −1976.77 −0.0822220
\(834\) 0 0
\(835\) 7379.84 0.305856
\(836\) 0 0
\(837\) 2660.73 0.109879
\(838\) 0 0
\(839\) 38385.2 1.57950 0.789752 0.613427i \(-0.210209\pi\)
0.789752 + 0.613427i \(0.210209\pi\)
\(840\) 0 0
\(841\) −24383.0 −0.999752
\(842\) 0 0
\(843\) 10452.3 0.427042
\(844\) 0 0
\(845\) −13266.1 −0.540080
\(846\) 0 0
\(847\) −15589.2 −0.632411
\(848\) 0 0
\(849\) −23264.3 −0.940433
\(850\) 0 0
\(851\) −3173.53 −0.127834
\(852\) 0 0
\(853\) −9691.88 −0.389031 −0.194516 0.980899i \(-0.562314\pi\)
−0.194516 + 0.980899i \(0.562314\pi\)
\(854\) 0 0
\(855\) −7546.99 −0.301873
\(856\) 0 0
\(857\) 35563.4 1.41753 0.708764 0.705445i \(-0.249253\pi\)
0.708764 + 0.705445i \(0.249253\pi\)
\(858\) 0 0
\(859\) −22900.8 −0.909623 −0.454812 0.890588i \(-0.650293\pi\)
−0.454812 + 0.890588i \(0.650293\pi\)
\(860\) 0 0
\(861\) −21794.1 −0.862649
\(862\) 0 0
\(863\) 6214.81 0.245138 0.122569 0.992460i \(-0.460887\pi\)
0.122569 + 0.992460i \(0.460887\pi\)
\(864\) 0 0
\(865\) 18977.1 0.745942
\(866\) 0 0
\(867\) 9891.75 0.387476
\(868\) 0 0
\(869\) 49509.9 1.93269
\(870\) 0 0
\(871\) −734.178 −0.0285610
\(872\) 0 0
\(873\) −9434.98 −0.365780
\(874\) 0 0
\(875\) −30019.8 −1.15983
\(876\) 0 0
\(877\) −21745.3 −0.837271 −0.418636 0.908154i \(-0.637492\pi\)
−0.418636 + 0.908154i \(0.637492\pi\)
\(878\) 0 0
\(879\) 15496.9 0.594651
\(880\) 0 0
\(881\) −11420.6 −0.436741 −0.218371 0.975866i \(-0.570074\pi\)
−0.218371 + 0.975866i \(0.570074\pi\)
\(882\) 0 0
\(883\) −32830.6 −1.25123 −0.625616 0.780131i \(-0.715152\pi\)
−0.625616 + 0.780131i \(0.715152\pi\)
\(884\) 0 0
\(885\) −3208.74 −0.121876
\(886\) 0 0
\(887\) 43694.4 1.65402 0.827009 0.562189i \(-0.190041\pi\)
0.827009 + 0.562189i \(0.190041\pi\)
\(888\) 0 0
\(889\) 9845.10 0.371422
\(890\) 0 0
\(891\) 3727.93 0.140169
\(892\) 0 0
\(893\) 10847.3 0.406483
\(894\) 0 0
\(895\) −7400.70 −0.276400
\(896\) 0 0
\(897\) −4212.05 −0.156785
\(898\) 0 0
\(899\) −242.136 −0.00898295
\(900\) 0 0
\(901\) 10050.7 0.371627
\(902\) 0 0
\(903\) −24068.9 −0.887003
\(904\) 0 0
\(905\) 12810.0 0.470519
\(906\) 0 0
\(907\) −13315.4 −0.487465 −0.243732 0.969843i \(-0.578372\pi\)
−0.243732 + 0.969843i \(0.578372\pi\)
\(908\) 0 0
\(909\) −14664.1 −0.535068
\(910\) 0 0
\(911\) −329.128 −0.0119698 −0.00598491 0.999982i \(-0.501905\pi\)
−0.00598491 + 0.999982i \(0.501905\pi\)
\(912\) 0 0
\(913\) −8687.82 −0.314923
\(914\) 0 0
\(915\) 16751.0 0.605216
\(916\) 0 0
\(917\) 38240.8 1.37713
\(918\) 0 0
\(919\) −14903.4 −0.534949 −0.267474 0.963565i \(-0.586189\pi\)
−0.267474 + 0.963565i \(0.586189\pi\)
\(920\) 0 0
\(921\) −15340.3 −0.548839
\(922\) 0 0
\(923\) 20299.6 0.723909
\(924\) 0 0
\(925\) 6865.97 0.244056
\(926\) 0 0
\(927\) 10135.2 0.359097
\(928\) 0 0
\(929\) 41848.7 1.47795 0.738973 0.673735i \(-0.235311\pi\)
0.738973 + 0.673735i \(0.235311\pi\)
\(930\) 0 0
\(931\) 4754.20 0.167361
\(932\) 0 0
\(933\) −2620.52 −0.0919526
\(934\) 0 0
\(935\) 16046.9 0.561274
\(936\) 0 0
\(937\) 1604.21 0.0559309 0.0279654 0.999609i \(-0.491097\pi\)
0.0279654 + 0.999609i \(0.491097\pi\)
\(938\) 0 0
\(939\) 14086.5 0.489559
\(940\) 0 0
\(941\) 14998.1 0.519578 0.259789 0.965665i \(-0.416347\pi\)
0.259789 + 0.965665i \(0.416347\pi\)
\(942\) 0 0
\(943\) −8437.31 −0.291364
\(944\) 0 0
\(945\) −4637.96 −0.159654
\(946\) 0 0
\(947\) 44654.6 1.53229 0.766145 0.642668i \(-0.222172\pi\)
0.766145 + 0.642668i \(0.222172\pi\)
\(948\) 0 0
\(949\) 4365.83 0.149337
\(950\) 0 0
\(951\) 22741.4 0.775438
\(952\) 0 0
\(953\) 7443.66 0.253015 0.126508 0.991966i \(-0.459623\pi\)
0.126508 + 0.991966i \(0.459623\pi\)
\(954\) 0 0
\(955\) 4731.31 0.160316
\(956\) 0 0
\(957\) −339.255 −0.0114593
\(958\) 0 0
\(959\) 51791.9 1.74395
\(960\) 0 0
\(961\) −20079.8 −0.674021
\(962\) 0 0
\(963\) −10473.1 −0.350458
\(964\) 0 0
\(965\) −31954.2 −1.06595
\(966\) 0 0
\(967\) 10913.3 0.362926 0.181463 0.983398i \(-0.441917\pi\)
0.181463 + 0.983398i \(0.441917\pi\)
\(968\) 0 0
\(969\) 11657.8 0.386485
\(970\) 0 0
\(971\) 13606.9 0.449706 0.224853 0.974393i \(-0.427810\pi\)
0.224853 + 0.974393i \(0.427810\pi\)
\(972\) 0 0
\(973\) −12547.9 −0.413430
\(974\) 0 0
\(975\) 9112.84 0.299328
\(976\) 0 0
\(977\) −17616.4 −0.576865 −0.288433 0.957500i \(-0.593134\pi\)
−0.288433 + 0.957500i \(0.593134\pi\)
\(978\) 0 0
\(979\) −56557.0 −1.84634
\(980\) 0 0
\(981\) −14383.5 −0.468123
\(982\) 0 0
\(983\) 1411.26 0.0457905 0.0228953 0.999738i \(-0.492712\pi\)
0.0228953 + 0.999738i \(0.492712\pi\)
\(984\) 0 0
\(985\) 8666.19 0.280333
\(986\) 0 0
\(987\) 6666.12 0.214980
\(988\) 0 0
\(989\) −9317.98 −0.299590
\(990\) 0 0
\(991\) 23423.4 0.750827 0.375414 0.926857i \(-0.377501\pi\)
0.375414 + 0.926857i \(0.377501\pi\)
\(992\) 0 0
\(993\) 5449.52 0.174154
\(994\) 0 0
\(995\) −42880.2 −1.36622
\(996\) 0 0
\(997\) −3214.85 −0.102122 −0.0510608 0.998696i \(-0.516260\pi\)
−0.0510608 + 0.998696i \(0.516260\pi\)
\(998\) 0 0
\(999\) 3725.45 0.117986
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.4.a.g.1.2 4
3.2 odd 2 1656.4.a.m.1.3 4
4.3 odd 2 1104.4.a.u.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.4.a.g.1.2 4 1.1 even 1 trivial
1104.4.a.u.1.2 4 4.3 odd 2
1656.4.a.m.1.3 4 3.2 odd 2