Properties

Label 552.4.a.f.1.1
Level $552$
Weight $4$
Character 552.1
Self dual yes
Analytic conductor $32.569$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,4,Mod(1,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 552.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,6,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5690543232\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 552.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -6.24264 q^{5} -16.7279 q^{7} +9.00000 q^{9} -15.0294 q^{11} +66.9117 q^{13} -18.7279 q^{15} +86.1249 q^{17} -25.3310 q^{19} -50.1838 q^{21} +23.0000 q^{23} -86.0294 q^{25} +27.0000 q^{27} -253.161 q^{29} -242.309 q^{31} -45.0883 q^{33} +104.426 q^{35} -211.338 q^{37} +200.735 q^{39} -297.765 q^{41} -147.522 q^{43} -56.1838 q^{45} -440.191 q^{47} -63.1766 q^{49} +258.375 q^{51} +293.522 q^{53} +93.8234 q^{55} -75.9929 q^{57} -359.338 q^{59} -304.073 q^{61} -150.551 q^{63} -417.706 q^{65} -493.963 q^{67} +69.0000 q^{69} +688.528 q^{71} +1159.50 q^{73} -258.088 q^{75} +251.411 q^{77} -409.934 q^{79} +81.0000 q^{81} +230.912 q^{83} -537.647 q^{85} -759.484 q^{87} -867.991 q^{89} -1119.29 q^{91} -726.926 q^{93} +158.132 q^{95} +1716.95 q^{97} -135.265 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 4 q^{5} - 8 q^{7} + 18 q^{9} - 64 q^{11} + 32 q^{13} - 12 q^{15} + 28 q^{17} - 144 q^{19} - 24 q^{21} + 46 q^{23} - 206 q^{25} + 54 q^{27} - 116 q^{29} - 264 q^{31} - 192 q^{33} + 124 q^{35}+ \cdots - 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) −6.24264 −0.558359 −0.279179 0.960239i \(-0.590062\pi\)
−0.279179 + 0.960239i \(0.590062\pi\)
\(6\) 0 0
\(7\) −16.7279 −0.903223 −0.451611 0.892215i \(-0.649151\pi\)
−0.451611 + 0.892215i \(0.649151\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −15.0294 −0.411959 −0.205979 0.978556i \(-0.566038\pi\)
−0.205979 + 0.978556i \(0.566038\pi\)
\(12\) 0 0
\(13\) 66.9117 1.42754 0.713768 0.700382i \(-0.246987\pi\)
0.713768 + 0.700382i \(0.246987\pi\)
\(14\) 0 0
\(15\) −18.7279 −0.322369
\(16\) 0 0
\(17\) 86.1249 1.22873 0.614363 0.789023i \(-0.289413\pi\)
0.614363 + 0.789023i \(0.289413\pi\)
\(18\) 0 0
\(19\) −25.3310 −0.305859 −0.152929 0.988237i \(-0.548871\pi\)
−0.152929 + 0.988237i \(0.548871\pi\)
\(20\) 0 0
\(21\) −50.1838 −0.521476
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −86.0294 −0.688235
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −253.161 −1.62107 −0.810533 0.585693i \(-0.800822\pi\)
−0.810533 + 0.585693i \(0.800822\pi\)
\(30\) 0 0
\(31\) −242.309 −1.40387 −0.701934 0.712242i \(-0.747680\pi\)
−0.701934 + 0.712242i \(0.747680\pi\)
\(32\) 0 0
\(33\) −45.0883 −0.237844
\(34\) 0 0
\(35\) 104.426 0.504322
\(36\) 0 0
\(37\) −211.338 −0.939021 −0.469510 0.882927i \(-0.655570\pi\)
−0.469510 + 0.882927i \(0.655570\pi\)
\(38\) 0 0
\(39\) 200.735 0.824188
\(40\) 0 0
\(41\) −297.765 −1.13422 −0.567110 0.823642i \(-0.691938\pi\)
−0.567110 + 0.823642i \(0.691938\pi\)
\(42\) 0 0
\(43\) −147.522 −0.523183 −0.261592 0.965179i \(-0.584247\pi\)
−0.261592 + 0.965179i \(0.584247\pi\)
\(44\) 0 0
\(45\) −56.1838 −0.186120
\(46\) 0 0
\(47\) −440.191 −1.36614 −0.683069 0.730354i \(-0.739355\pi\)
−0.683069 + 0.730354i \(0.739355\pi\)
\(48\) 0 0
\(49\) −63.1766 −0.184188
\(50\) 0 0
\(51\) 258.375 0.709406
\(52\) 0 0
\(53\) 293.522 0.760723 0.380362 0.924838i \(-0.375800\pi\)
0.380362 + 0.924838i \(0.375800\pi\)
\(54\) 0 0
\(55\) 93.8234 0.230021
\(56\) 0 0
\(57\) −75.9929 −0.176588
\(58\) 0 0
\(59\) −359.338 −0.792912 −0.396456 0.918054i \(-0.629760\pi\)
−0.396456 + 0.918054i \(0.629760\pi\)
\(60\) 0 0
\(61\) −304.073 −0.638239 −0.319119 0.947714i \(-0.603387\pi\)
−0.319119 + 0.947714i \(0.603387\pi\)
\(62\) 0 0
\(63\) −150.551 −0.301074
\(64\) 0 0
\(65\) −417.706 −0.797077
\(66\) 0 0
\(67\) −493.963 −0.900703 −0.450352 0.892851i \(-0.648701\pi\)
−0.450352 + 0.892851i \(0.648701\pi\)
\(68\) 0 0
\(69\) 69.0000 0.120386
\(70\) 0 0
\(71\) 688.528 1.15089 0.575445 0.817840i \(-0.304829\pi\)
0.575445 + 0.817840i \(0.304829\pi\)
\(72\) 0 0
\(73\) 1159.50 1.85903 0.929514 0.368787i \(-0.120227\pi\)
0.929514 + 0.368787i \(0.120227\pi\)
\(74\) 0 0
\(75\) −258.088 −0.397353
\(76\) 0 0
\(77\) 251.411 0.372091
\(78\) 0 0
\(79\) −409.934 −0.583812 −0.291906 0.956447i \(-0.594290\pi\)
−0.291906 + 0.956447i \(0.594290\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 230.912 0.305372 0.152686 0.988275i \(-0.451208\pi\)
0.152686 + 0.988275i \(0.451208\pi\)
\(84\) 0 0
\(85\) −537.647 −0.686070
\(86\) 0 0
\(87\) −759.484 −0.935923
\(88\) 0 0
\(89\) −867.991 −1.03379 −0.516893 0.856050i \(-0.672911\pi\)
−0.516893 + 0.856050i \(0.672911\pi\)
\(90\) 0 0
\(91\) −1119.29 −1.28938
\(92\) 0 0
\(93\) −726.926 −0.810524
\(94\) 0 0
\(95\) 158.132 0.170779
\(96\) 0 0
\(97\) 1716.95 1.79722 0.898610 0.438748i \(-0.144578\pi\)
0.898610 + 0.438748i \(0.144578\pi\)
\(98\) 0 0
\(99\) −135.265 −0.137320
\(100\) 0 0
\(101\) 328.177 0.323315 0.161657 0.986847i \(-0.448316\pi\)
0.161657 + 0.986847i \(0.448316\pi\)
\(102\) 0 0
\(103\) −303.258 −0.290106 −0.145053 0.989424i \(-0.546335\pi\)
−0.145053 + 0.989424i \(0.546335\pi\)
\(104\) 0 0
\(105\) 313.279 0.291171
\(106\) 0 0
\(107\) 2091.20 1.88939 0.944693 0.327955i \(-0.106360\pi\)
0.944693 + 0.327955i \(0.106360\pi\)
\(108\) 0 0
\(109\) −1644.97 −1.44550 −0.722750 0.691110i \(-0.757122\pi\)
−0.722750 + 0.691110i \(0.757122\pi\)
\(110\) 0 0
\(111\) −634.014 −0.542144
\(112\) 0 0
\(113\) 770.860 0.641738 0.320869 0.947124i \(-0.396025\pi\)
0.320869 + 0.947124i \(0.396025\pi\)
\(114\) 0 0
\(115\) −143.581 −0.116426
\(116\) 0 0
\(117\) 602.205 0.475845
\(118\) 0 0
\(119\) −1440.69 −1.10981
\(120\) 0 0
\(121\) −1105.12 −0.830290
\(122\) 0 0
\(123\) −893.294 −0.654842
\(124\) 0 0
\(125\) 1317.38 0.942641
\(126\) 0 0
\(127\) −2023.51 −1.41384 −0.706921 0.707293i \(-0.749916\pi\)
−0.706921 + 0.707293i \(0.749916\pi\)
\(128\) 0 0
\(129\) −442.566 −0.302060
\(130\) 0 0
\(131\) −1307.79 −0.872232 −0.436116 0.899890i \(-0.643646\pi\)
−0.436116 + 0.899890i \(0.643646\pi\)
\(132\) 0 0
\(133\) 423.734 0.276259
\(134\) 0 0
\(135\) −168.551 −0.107456
\(136\) 0 0
\(137\) 1837.17 1.14569 0.572846 0.819663i \(-0.305839\pi\)
0.572846 + 0.819663i \(0.305839\pi\)
\(138\) 0 0
\(139\) −1733.91 −1.05805 −0.529024 0.848607i \(-0.677442\pi\)
−0.529024 + 0.848607i \(0.677442\pi\)
\(140\) 0 0
\(141\) −1320.57 −0.788740
\(142\) 0 0
\(143\) −1005.65 −0.588086
\(144\) 0 0
\(145\) 1580.40 0.905136
\(146\) 0 0
\(147\) −189.530 −0.106341
\(148\) 0 0
\(149\) 2180.92 1.19911 0.599556 0.800333i \(-0.295344\pi\)
0.599556 + 0.800333i \(0.295344\pi\)
\(150\) 0 0
\(151\) −2041.03 −1.09998 −0.549988 0.835172i \(-0.685368\pi\)
−0.549988 + 0.835172i \(0.685368\pi\)
\(152\) 0 0
\(153\) 775.124 0.409576
\(154\) 0 0
\(155\) 1512.65 0.783862
\(156\) 0 0
\(157\) −2645.84 −1.34497 −0.672486 0.740110i \(-0.734774\pi\)
−0.672486 + 0.740110i \(0.734774\pi\)
\(158\) 0 0
\(159\) 880.566 0.439204
\(160\) 0 0
\(161\) −384.742 −0.188335
\(162\) 0 0
\(163\) 2530.80 1.21612 0.608061 0.793890i \(-0.291948\pi\)
0.608061 + 0.793890i \(0.291948\pi\)
\(164\) 0 0
\(165\) 281.470 0.132803
\(166\) 0 0
\(167\) −3501.97 −1.62270 −0.811348 0.584563i \(-0.801266\pi\)
−0.811348 + 0.584563i \(0.801266\pi\)
\(168\) 0 0
\(169\) 2280.17 1.03786
\(170\) 0 0
\(171\) −227.979 −0.101953
\(172\) 0 0
\(173\) −1272.19 −0.559090 −0.279545 0.960133i \(-0.590184\pi\)
−0.279545 + 0.960133i \(0.590184\pi\)
\(174\) 0 0
\(175\) 1439.09 0.621630
\(176\) 0 0
\(177\) −1078.01 −0.457788
\(178\) 0 0
\(179\) 523.634 0.218649 0.109325 0.994006i \(-0.465131\pi\)
0.109325 + 0.994006i \(0.465131\pi\)
\(180\) 0 0
\(181\) 3757.18 1.54292 0.771460 0.636277i \(-0.219527\pi\)
0.771460 + 0.636277i \(0.219527\pi\)
\(182\) 0 0
\(183\) −912.219 −0.368487
\(184\) 0 0
\(185\) 1319.31 0.524310
\(186\) 0 0
\(187\) −1294.41 −0.506185
\(188\) 0 0
\(189\) −451.654 −0.173825
\(190\) 0 0
\(191\) 392.425 0.148664 0.0743321 0.997234i \(-0.476318\pi\)
0.0743321 + 0.997234i \(0.476318\pi\)
\(192\) 0 0
\(193\) 763.532 0.284768 0.142384 0.989811i \(-0.454523\pi\)
0.142384 + 0.989811i \(0.454523\pi\)
\(194\) 0 0
\(195\) −1253.12 −0.460193
\(196\) 0 0
\(197\) −1826.92 −0.660726 −0.330363 0.943854i \(-0.607171\pi\)
−0.330363 + 0.943854i \(0.607171\pi\)
\(198\) 0 0
\(199\) 618.519 0.220330 0.110165 0.993913i \(-0.464862\pi\)
0.110165 + 0.993913i \(0.464862\pi\)
\(200\) 0 0
\(201\) −1481.89 −0.520021
\(202\) 0 0
\(203\) 4234.87 1.46418
\(204\) 0 0
\(205\) 1858.84 0.633301
\(206\) 0 0
\(207\) 207.000 0.0695048
\(208\) 0 0
\(209\) 380.710 0.126001
\(210\) 0 0
\(211\) −2841.93 −0.927234 −0.463617 0.886036i \(-0.653449\pi\)
−0.463617 + 0.886036i \(0.653449\pi\)
\(212\) 0 0
\(213\) 2065.58 0.664467
\(214\) 0 0
\(215\) 920.926 0.292124
\(216\) 0 0
\(217\) 4053.32 1.26801
\(218\) 0 0
\(219\) 3478.50 1.07331
\(220\) 0 0
\(221\) 5762.76 1.75405
\(222\) 0 0
\(223\) −1264.35 −0.379674 −0.189837 0.981816i \(-0.560796\pi\)
−0.189837 + 0.981816i \(0.560796\pi\)
\(224\) 0 0
\(225\) −774.265 −0.229412
\(226\) 0 0
\(227\) −2767.81 −0.809277 −0.404638 0.914477i \(-0.632603\pi\)
−0.404638 + 0.914477i \(0.632603\pi\)
\(228\) 0 0
\(229\) −2155.85 −0.622107 −0.311053 0.950392i \(-0.600682\pi\)
−0.311053 + 0.950392i \(0.600682\pi\)
\(230\) 0 0
\(231\) 754.234 0.214827
\(232\) 0 0
\(233\) 3688.85 1.03719 0.518594 0.855021i \(-0.326456\pi\)
0.518594 + 0.855021i \(0.326456\pi\)
\(234\) 0 0
\(235\) 2747.95 0.762795
\(236\) 0 0
\(237\) −1229.80 −0.337064
\(238\) 0 0
\(239\) 2656.67 0.719020 0.359510 0.933141i \(-0.382944\pi\)
0.359510 + 0.933141i \(0.382944\pi\)
\(240\) 0 0
\(241\) −2916.54 −0.779547 −0.389774 0.920911i \(-0.627447\pi\)
−0.389774 + 0.920911i \(0.627447\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 394.389 0.102843
\(246\) 0 0
\(247\) −1694.94 −0.436624
\(248\) 0 0
\(249\) 692.735 0.176306
\(250\) 0 0
\(251\) 6264.90 1.57545 0.787723 0.616030i \(-0.211260\pi\)
0.787723 + 0.616030i \(0.211260\pi\)
\(252\) 0 0
\(253\) −345.677 −0.0858993
\(254\) 0 0
\(255\) −1612.94 −0.396103
\(256\) 0 0
\(257\) −1349.94 −0.327653 −0.163827 0.986489i \(-0.552384\pi\)
−0.163827 + 0.986489i \(0.552384\pi\)
\(258\) 0 0
\(259\) 3535.25 0.848145
\(260\) 0 0
\(261\) −2278.45 −0.540355
\(262\) 0 0
\(263\) 3890.78 0.912227 0.456114 0.889922i \(-0.349241\pi\)
0.456114 + 0.889922i \(0.349241\pi\)
\(264\) 0 0
\(265\) −1832.35 −0.424756
\(266\) 0 0
\(267\) −2603.97 −0.596856
\(268\) 0 0
\(269\) 1585.90 0.359457 0.179729 0.983716i \(-0.442478\pi\)
0.179729 + 0.983716i \(0.442478\pi\)
\(270\) 0 0
\(271\) −5414.04 −1.21358 −0.606788 0.794863i \(-0.707543\pi\)
−0.606788 + 0.794863i \(0.707543\pi\)
\(272\) 0 0
\(273\) −3357.88 −0.744426
\(274\) 0 0
\(275\) 1292.97 0.283525
\(276\) 0 0
\(277\) 6493.76 1.40856 0.704282 0.709921i \(-0.251269\pi\)
0.704282 + 0.709921i \(0.251269\pi\)
\(278\) 0 0
\(279\) −2180.78 −0.467956
\(280\) 0 0
\(281\) 7344.93 1.55929 0.779647 0.626219i \(-0.215398\pi\)
0.779647 + 0.626219i \(0.215398\pi\)
\(282\) 0 0
\(283\) −4398.28 −0.923853 −0.461927 0.886918i \(-0.652842\pi\)
−0.461927 + 0.886918i \(0.652842\pi\)
\(284\) 0 0
\(285\) 474.396 0.0985993
\(286\) 0 0
\(287\) 4980.98 1.02445
\(288\) 0 0
\(289\) 2504.50 0.509769
\(290\) 0 0
\(291\) 5150.86 1.03763
\(292\) 0 0
\(293\) 4812.44 0.959542 0.479771 0.877394i \(-0.340720\pi\)
0.479771 + 0.877394i \(0.340720\pi\)
\(294\) 0 0
\(295\) 2243.22 0.442730
\(296\) 0 0
\(297\) −405.795 −0.0792815
\(298\) 0 0
\(299\) 1538.97 0.297662
\(300\) 0 0
\(301\) 2467.73 0.472551
\(302\) 0 0
\(303\) 984.530 0.186666
\(304\) 0 0
\(305\) 1898.22 0.356366
\(306\) 0 0
\(307\) −5481.16 −1.01898 −0.509489 0.860477i \(-0.670166\pi\)
−0.509489 + 0.860477i \(0.670166\pi\)
\(308\) 0 0
\(309\) −909.773 −0.167493
\(310\) 0 0
\(311\) 3224.60 0.587943 0.293972 0.955814i \(-0.405023\pi\)
0.293972 + 0.955814i \(0.405023\pi\)
\(312\) 0 0
\(313\) 1119.38 0.202144 0.101072 0.994879i \(-0.467773\pi\)
0.101072 + 0.994879i \(0.467773\pi\)
\(314\) 0 0
\(315\) 939.838 0.168107
\(316\) 0 0
\(317\) −6647.39 −1.17778 −0.588888 0.808215i \(-0.700434\pi\)
−0.588888 + 0.808215i \(0.700434\pi\)
\(318\) 0 0
\(319\) 3804.87 0.667812
\(320\) 0 0
\(321\) 6273.61 1.09084
\(322\) 0 0
\(323\) −2181.63 −0.375817
\(324\) 0 0
\(325\) −5756.37 −0.982481
\(326\) 0 0
\(327\) −4934.91 −0.834559
\(328\) 0 0
\(329\) 7363.48 1.23393
\(330\) 0 0
\(331\) −3471.22 −0.576421 −0.288211 0.957567i \(-0.593060\pi\)
−0.288211 + 0.957567i \(0.593060\pi\)
\(332\) 0 0
\(333\) −1902.04 −0.313007
\(334\) 0 0
\(335\) 3083.63 0.502916
\(336\) 0 0
\(337\) −8157.68 −1.31863 −0.659313 0.751868i \(-0.729153\pi\)
−0.659313 + 0.751868i \(0.729153\pi\)
\(338\) 0 0
\(339\) 2312.58 0.370508
\(340\) 0 0
\(341\) 3641.76 0.578336
\(342\) 0 0
\(343\) 6794.49 1.06959
\(344\) 0 0
\(345\) −430.742 −0.0672185
\(346\) 0 0
\(347\) 10809.4 1.67227 0.836134 0.548525i \(-0.184810\pi\)
0.836134 + 0.548525i \(0.184810\pi\)
\(348\) 0 0
\(349\) −3674.47 −0.563581 −0.281791 0.959476i \(-0.590928\pi\)
−0.281791 + 0.959476i \(0.590928\pi\)
\(350\) 0 0
\(351\) 1806.62 0.274729
\(352\) 0 0
\(353\) 7055.50 1.06381 0.531907 0.846803i \(-0.321475\pi\)
0.531907 + 0.846803i \(0.321475\pi\)
\(354\) 0 0
\(355\) −4298.23 −0.642610
\(356\) 0 0
\(357\) −4322.07 −0.640751
\(358\) 0 0
\(359\) −12759.1 −1.87576 −0.937882 0.346955i \(-0.887216\pi\)
−0.937882 + 0.346955i \(0.887216\pi\)
\(360\) 0 0
\(361\) −6217.34 −0.906450
\(362\) 0 0
\(363\) −3315.35 −0.479368
\(364\) 0 0
\(365\) −7238.33 −1.03800
\(366\) 0 0
\(367\) −9532.35 −1.35582 −0.677908 0.735147i \(-0.737113\pi\)
−0.677908 + 0.735147i \(0.737113\pi\)
\(368\) 0 0
\(369\) −2679.88 −0.378073
\(370\) 0 0
\(371\) −4910.01 −0.687103
\(372\) 0 0
\(373\) 7953.59 1.10408 0.552039 0.833818i \(-0.313850\pi\)
0.552039 + 0.833818i \(0.313850\pi\)
\(374\) 0 0
\(375\) 3952.14 0.544234
\(376\) 0 0
\(377\) −16939.5 −2.31413
\(378\) 0 0
\(379\) 3599.35 0.487827 0.243913 0.969797i \(-0.421569\pi\)
0.243913 + 0.969797i \(0.421569\pi\)
\(380\) 0 0
\(381\) −6070.54 −0.816282
\(382\) 0 0
\(383\) −9334.89 −1.24541 −0.622703 0.782458i \(-0.713965\pi\)
−0.622703 + 0.782458i \(0.713965\pi\)
\(384\) 0 0
\(385\) −1569.47 −0.207760
\(386\) 0 0
\(387\) −1327.70 −0.174394
\(388\) 0 0
\(389\) 1355.94 0.176733 0.0883663 0.996088i \(-0.471835\pi\)
0.0883663 + 0.996088i \(0.471835\pi\)
\(390\) 0 0
\(391\) 1980.87 0.256207
\(392\) 0 0
\(393\) −3923.38 −0.503583
\(394\) 0 0
\(395\) 2559.07 0.325977
\(396\) 0 0
\(397\) 11441.2 1.44639 0.723194 0.690645i \(-0.242673\pi\)
0.723194 + 0.690645i \(0.242673\pi\)
\(398\) 0 0
\(399\) 1271.20 0.159498
\(400\) 0 0
\(401\) −14903.0 −1.85591 −0.927953 0.372698i \(-0.878433\pi\)
−0.927953 + 0.372698i \(0.878433\pi\)
\(402\) 0 0
\(403\) −16213.3 −2.00407
\(404\) 0 0
\(405\) −505.654 −0.0620399
\(406\) 0 0
\(407\) 3176.29 0.386838
\(408\) 0 0
\(409\) 2793.90 0.337774 0.168887 0.985635i \(-0.445983\pi\)
0.168887 + 0.985635i \(0.445983\pi\)
\(410\) 0 0
\(411\) 5511.51 0.661466
\(412\) 0 0
\(413\) 6010.98 0.716177
\(414\) 0 0
\(415\) −1441.50 −0.170507
\(416\) 0 0
\(417\) −5201.74 −0.610864
\(418\) 0 0
\(419\) 5099.89 0.594620 0.297310 0.954781i \(-0.403911\pi\)
0.297310 + 0.954781i \(0.403911\pi\)
\(420\) 0 0
\(421\) −9540.93 −1.10450 −0.552252 0.833677i \(-0.686232\pi\)
−0.552252 + 0.833677i \(0.686232\pi\)
\(422\) 0 0
\(423\) −3961.72 −0.455379
\(424\) 0 0
\(425\) −7409.28 −0.845653
\(426\) 0 0
\(427\) 5086.51 0.576472
\(428\) 0 0
\(429\) −3016.94 −0.339531
\(430\) 0 0
\(431\) 6837.04 0.764104 0.382052 0.924141i \(-0.375218\pi\)
0.382052 + 0.924141i \(0.375218\pi\)
\(432\) 0 0
\(433\) 8428.43 0.935438 0.467719 0.883877i \(-0.345076\pi\)
0.467719 + 0.883877i \(0.345076\pi\)
\(434\) 0 0
\(435\) 4741.19 0.522581
\(436\) 0 0
\(437\) −582.612 −0.0637760
\(438\) 0 0
\(439\) 6386.90 0.694374 0.347187 0.937796i \(-0.387137\pi\)
0.347187 + 0.937796i \(0.387137\pi\)
\(440\) 0 0
\(441\) −568.590 −0.0613961
\(442\) 0 0
\(443\) 11042.2 1.18427 0.592134 0.805839i \(-0.298286\pi\)
0.592134 + 0.805839i \(0.298286\pi\)
\(444\) 0 0
\(445\) 5418.56 0.577223
\(446\) 0 0
\(447\) 6542.75 0.692307
\(448\) 0 0
\(449\) −9301.96 −0.977699 −0.488849 0.872368i \(-0.662583\pi\)
−0.488849 + 0.872368i \(0.662583\pi\)
\(450\) 0 0
\(451\) 4475.23 0.467252
\(452\) 0 0
\(453\) −6123.08 −0.635072
\(454\) 0 0
\(455\) 6987.35 0.719938
\(456\) 0 0
\(457\) 2481.48 0.254002 0.127001 0.991903i \(-0.459465\pi\)
0.127001 + 0.991903i \(0.459465\pi\)
\(458\) 0 0
\(459\) 2325.37 0.236469
\(460\) 0 0
\(461\) −5204.22 −0.525780 −0.262890 0.964826i \(-0.584676\pi\)
−0.262890 + 0.964826i \(0.584676\pi\)
\(462\) 0 0
\(463\) −2965.33 −0.297647 −0.148824 0.988864i \(-0.547549\pi\)
−0.148824 + 0.988864i \(0.547549\pi\)
\(464\) 0 0
\(465\) 4537.94 0.452563
\(466\) 0 0
\(467\) 10281.5 1.01878 0.509392 0.860534i \(-0.329870\pi\)
0.509392 + 0.860534i \(0.329870\pi\)
\(468\) 0 0
\(469\) 8262.97 0.813536
\(470\) 0 0
\(471\) −7937.51 −0.776520
\(472\) 0 0
\(473\) 2217.17 0.215530
\(474\) 0 0
\(475\) 2179.21 0.210503
\(476\) 0 0
\(477\) 2641.70 0.253574
\(478\) 0 0
\(479\) −8370.34 −0.798435 −0.399218 0.916856i \(-0.630718\pi\)
−0.399218 + 0.916856i \(0.630718\pi\)
\(480\) 0 0
\(481\) −14141.0 −1.34049
\(482\) 0 0
\(483\) −1154.23 −0.108735
\(484\) 0 0
\(485\) −10718.3 −1.00349
\(486\) 0 0
\(487\) −15786.6 −1.46891 −0.734455 0.678657i \(-0.762562\pi\)
−0.734455 + 0.678657i \(0.762562\pi\)
\(488\) 0 0
\(489\) 7592.41 0.702129
\(490\) 0 0
\(491\) 1223.74 0.112478 0.0562390 0.998417i \(-0.482089\pi\)
0.0562390 + 0.998417i \(0.482089\pi\)
\(492\) 0 0
\(493\) −21803.5 −1.99185
\(494\) 0 0
\(495\) 844.410 0.0766736
\(496\) 0 0
\(497\) −11517.6 −1.03951
\(498\) 0 0
\(499\) 14900.5 1.33675 0.668375 0.743825i \(-0.266990\pi\)
0.668375 + 0.743825i \(0.266990\pi\)
\(500\) 0 0
\(501\) −10505.9 −0.936864
\(502\) 0 0
\(503\) −4105.12 −0.363893 −0.181946 0.983308i \(-0.558240\pi\)
−0.181946 + 0.983308i \(0.558240\pi\)
\(504\) 0 0
\(505\) −2048.69 −0.180526
\(506\) 0 0
\(507\) 6840.52 0.599208
\(508\) 0 0
\(509\) −9815.68 −0.854759 −0.427380 0.904072i \(-0.640563\pi\)
−0.427380 + 0.904072i \(0.640563\pi\)
\(510\) 0 0
\(511\) −19396.0 −1.67912
\(512\) 0 0
\(513\) −683.936 −0.0588626
\(514\) 0 0
\(515\) 1893.13 0.161983
\(516\) 0 0
\(517\) 6615.82 0.562792
\(518\) 0 0
\(519\) −3816.56 −0.322791
\(520\) 0 0
\(521\) 12019.0 1.01067 0.505337 0.862922i \(-0.331368\pi\)
0.505337 + 0.862922i \(0.331368\pi\)
\(522\) 0 0
\(523\) −10319.3 −0.862773 −0.431386 0.902167i \(-0.641975\pi\)
−0.431386 + 0.902167i \(0.641975\pi\)
\(524\) 0 0
\(525\) 4317.28 0.358898
\(526\) 0 0
\(527\) −20868.8 −1.72497
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −3234.04 −0.264304
\(532\) 0 0
\(533\) −19923.9 −1.61914
\(534\) 0 0
\(535\) −13054.6 −1.05496
\(536\) 0 0
\(537\) 1570.90 0.126237
\(538\) 0 0
\(539\) 949.509 0.0758780
\(540\) 0 0
\(541\) 18497.4 1.46999 0.734994 0.678074i \(-0.237185\pi\)
0.734994 + 0.678074i \(0.237185\pi\)
\(542\) 0 0
\(543\) 11271.5 0.890806
\(544\) 0 0
\(545\) 10268.9 0.807107
\(546\) 0 0
\(547\) 16432.9 1.28449 0.642247 0.766498i \(-0.278002\pi\)
0.642247 + 0.766498i \(0.278002\pi\)
\(548\) 0 0
\(549\) −2736.66 −0.212746
\(550\) 0 0
\(551\) 6412.82 0.495817
\(552\) 0 0
\(553\) 6857.34 0.527313
\(554\) 0 0
\(555\) 3957.92 0.302711
\(556\) 0 0
\(557\) −2545.03 −0.193602 −0.0968009 0.995304i \(-0.530861\pi\)
−0.0968009 + 0.995304i \(0.530861\pi\)
\(558\) 0 0
\(559\) −9870.94 −0.746863
\(560\) 0 0
\(561\) −3883.23 −0.292246
\(562\) 0 0
\(563\) 1771.93 0.132643 0.0663213 0.997798i \(-0.478874\pi\)
0.0663213 + 0.997798i \(0.478874\pi\)
\(564\) 0 0
\(565\) −4812.20 −0.358320
\(566\) 0 0
\(567\) −1354.96 −0.100358
\(568\) 0 0
\(569\) −17820.3 −1.31294 −0.656472 0.754351i \(-0.727952\pi\)
−0.656472 + 0.754351i \(0.727952\pi\)
\(570\) 0 0
\(571\) 3208.29 0.235136 0.117568 0.993065i \(-0.462490\pi\)
0.117568 + 0.993065i \(0.462490\pi\)
\(572\) 0 0
\(573\) 1177.27 0.0858313
\(574\) 0 0
\(575\) −1978.68 −0.143507
\(576\) 0 0
\(577\) 24532.6 1.77003 0.885015 0.465563i \(-0.154148\pi\)
0.885015 + 0.465563i \(0.154148\pi\)
\(578\) 0 0
\(579\) 2290.60 0.164411
\(580\) 0 0
\(581\) −3862.67 −0.275819
\(582\) 0 0
\(583\) −4411.47 −0.313387
\(584\) 0 0
\(585\) −3759.35 −0.265692
\(586\) 0 0
\(587\) 2684.90 0.188786 0.0943932 0.995535i \(-0.469909\pi\)
0.0943932 + 0.995535i \(0.469909\pi\)
\(588\) 0 0
\(589\) 6137.91 0.429386
\(590\) 0 0
\(591\) −5480.77 −0.381470
\(592\) 0 0
\(593\) −4003.67 −0.277253 −0.138627 0.990345i \(-0.544269\pi\)
−0.138627 + 0.990345i \(0.544269\pi\)
\(594\) 0 0
\(595\) 8993.71 0.619674
\(596\) 0 0
\(597\) 1855.56 0.127208
\(598\) 0 0
\(599\) −5702.89 −0.389005 −0.194502 0.980902i \(-0.562309\pi\)
−0.194502 + 0.980902i \(0.562309\pi\)
\(600\) 0 0
\(601\) 1015.27 0.0689082 0.0344541 0.999406i \(-0.489031\pi\)
0.0344541 + 0.999406i \(0.489031\pi\)
\(602\) 0 0
\(603\) −4445.66 −0.300234
\(604\) 0 0
\(605\) 6898.84 0.463600
\(606\) 0 0
\(607\) 7260.55 0.485497 0.242748 0.970089i \(-0.421951\pi\)
0.242748 + 0.970089i \(0.421951\pi\)
\(608\) 0 0
\(609\) 12704.6 0.845347
\(610\) 0 0
\(611\) −29453.9 −1.95021
\(612\) 0 0
\(613\) −8696.58 −0.573004 −0.286502 0.958080i \(-0.592493\pi\)
−0.286502 + 0.958080i \(0.592493\pi\)
\(614\) 0 0
\(615\) 5576.51 0.365637
\(616\) 0 0
\(617\) −12353.0 −0.806018 −0.403009 0.915196i \(-0.632036\pi\)
−0.403009 + 0.915196i \(0.632036\pi\)
\(618\) 0 0
\(619\) 15797.8 1.02579 0.512897 0.858450i \(-0.328572\pi\)
0.512897 + 0.858450i \(0.328572\pi\)
\(620\) 0 0
\(621\) 621.000 0.0401286
\(622\) 0 0
\(623\) 14519.7 0.933738
\(624\) 0 0
\(625\) 2529.74 0.161904
\(626\) 0 0
\(627\) 1142.13 0.0727468
\(628\) 0 0
\(629\) −18201.5 −1.15380
\(630\) 0 0
\(631\) −12275.8 −0.774475 −0.387237 0.921980i \(-0.626571\pi\)
−0.387237 + 0.921980i \(0.626571\pi\)
\(632\) 0 0
\(633\) −8525.78 −0.535339
\(634\) 0 0
\(635\) 12632.1 0.789431
\(636\) 0 0
\(637\) −4227.25 −0.262936
\(638\) 0 0
\(639\) 6196.75 0.383630
\(640\) 0 0
\(641\) −3829.83 −0.235989 −0.117995 0.993014i \(-0.537647\pi\)
−0.117995 + 0.993014i \(0.537647\pi\)
\(642\) 0 0
\(643\) 2859.19 0.175358 0.0876791 0.996149i \(-0.472055\pi\)
0.0876791 + 0.996149i \(0.472055\pi\)
\(644\) 0 0
\(645\) 2762.78 0.168658
\(646\) 0 0
\(647\) −13101.5 −0.796095 −0.398048 0.917365i \(-0.630312\pi\)
−0.398048 + 0.917365i \(0.630312\pi\)
\(648\) 0 0
\(649\) 5400.65 0.326647
\(650\) 0 0
\(651\) 12160.0 0.732084
\(652\) 0 0
\(653\) 7193.19 0.431074 0.215537 0.976496i \(-0.430850\pi\)
0.215537 + 0.976496i \(0.430850\pi\)
\(654\) 0 0
\(655\) 8164.08 0.487018
\(656\) 0 0
\(657\) 10435.5 0.619676
\(658\) 0 0
\(659\) 21910.6 1.29517 0.647585 0.761993i \(-0.275779\pi\)
0.647585 + 0.761993i \(0.275779\pi\)
\(660\) 0 0
\(661\) 28372.2 1.66952 0.834758 0.550616i \(-0.185607\pi\)
0.834758 + 0.550616i \(0.185607\pi\)
\(662\) 0 0
\(663\) 17288.3 1.01270
\(664\) 0 0
\(665\) −2645.22 −0.154251
\(666\) 0 0
\(667\) −5822.71 −0.338016
\(668\) 0 0
\(669\) −3793.06 −0.219205
\(670\) 0 0
\(671\) 4570.05 0.262928
\(672\) 0 0
\(673\) −17915.4 −1.02613 −0.513066 0.858349i \(-0.671490\pi\)
−0.513066 + 0.858349i \(0.671490\pi\)
\(674\) 0 0
\(675\) −2322.79 −0.132451
\(676\) 0 0
\(677\) −16473.8 −0.935216 −0.467608 0.883936i \(-0.654884\pi\)
−0.467608 + 0.883936i \(0.654884\pi\)
\(678\) 0 0
\(679\) −28721.1 −1.62329
\(680\) 0 0
\(681\) −8303.42 −0.467236
\(682\) 0 0
\(683\) −15021.3 −0.841543 −0.420771 0.907167i \(-0.638241\pi\)
−0.420771 + 0.907167i \(0.638241\pi\)
\(684\) 0 0
\(685\) −11468.8 −0.639708
\(686\) 0 0
\(687\) −6467.55 −0.359174
\(688\) 0 0
\(689\) 19640.0 1.08596
\(690\) 0 0
\(691\) −19095.2 −1.05125 −0.525626 0.850716i \(-0.676169\pi\)
−0.525626 + 0.850716i \(0.676169\pi\)
\(692\) 0 0
\(693\) 2262.70 0.124030
\(694\) 0 0
\(695\) 10824.2 0.590770
\(696\) 0 0
\(697\) −25644.9 −1.39365
\(698\) 0 0
\(699\) 11066.6 0.598821
\(700\) 0 0
\(701\) 33274.0 1.79279 0.896393 0.443261i \(-0.146178\pi\)
0.896393 + 0.443261i \(0.146178\pi\)
\(702\) 0 0
\(703\) 5353.40 0.287208
\(704\) 0 0
\(705\) 8243.86 0.440400
\(706\) 0 0
\(707\) −5489.71 −0.292025
\(708\) 0 0
\(709\) 29929.3 1.58536 0.792678 0.609640i \(-0.208686\pi\)
0.792678 + 0.609640i \(0.208686\pi\)
\(710\) 0 0
\(711\) −3689.41 −0.194604
\(712\) 0 0
\(713\) −5573.10 −0.292727
\(714\) 0 0
\(715\) 6277.88 0.328363
\(716\) 0 0
\(717\) 7970.01 0.415126
\(718\) 0 0
\(719\) 16408.9 0.851110 0.425555 0.904933i \(-0.360079\pi\)
0.425555 + 0.904933i \(0.360079\pi\)
\(720\) 0 0
\(721\) 5072.87 0.262030
\(722\) 0 0
\(723\) −8749.62 −0.450072
\(724\) 0 0
\(725\) 21779.3 1.11567
\(726\) 0 0
\(727\) 19328.4 0.986037 0.493019 0.870019i \(-0.335893\pi\)
0.493019 + 0.870019i \(0.335893\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −12705.3 −0.642849
\(732\) 0 0
\(733\) 4889.32 0.246373 0.123186 0.992384i \(-0.460689\pi\)
0.123186 + 0.992384i \(0.460689\pi\)
\(734\) 0 0
\(735\) 1183.17 0.0593766
\(736\) 0 0
\(737\) 7423.98 0.371053
\(738\) 0 0
\(739\) 9774.43 0.486547 0.243273 0.969958i \(-0.421779\pi\)
0.243273 + 0.969958i \(0.421779\pi\)
\(740\) 0 0
\(741\) −5084.81 −0.252085
\(742\) 0 0
\(743\) 17144.9 0.846546 0.423273 0.906002i \(-0.360881\pi\)
0.423273 + 0.906002i \(0.360881\pi\)
\(744\) 0 0
\(745\) −13614.7 −0.669534
\(746\) 0 0
\(747\) 2078.21 0.101791
\(748\) 0 0
\(749\) −34981.5 −1.70654
\(750\) 0 0
\(751\) 1879.13 0.0913055 0.0456527 0.998957i \(-0.485463\pi\)
0.0456527 + 0.998957i \(0.485463\pi\)
\(752\) 0 0
\(753\) 18794.7 0.909584
\(754\) 0 0
\(755\) 12741.4 0.614182
\(756\) 0 0
\(757\) 36180.8 1.73714 0.868569 0.495568i \(-0.165040\pi\)
0.868569 + 0.495568i \(0.165040\pi\)
\(758\) 0 0
\(759\) −1037.03 −0.0495940
\(760\) 0 0
\(761\) −18211.9 −0.867518 −0.433759 0.901029i \(-0.642813\pi\)
−0.433759 + 0.901029i \(0.642813\pi\)
\(762\) 0 0
\(763\) 27516.9 1.30561
\(764\) 0 0
\(765\) −4838.82 −0.228690
\(766\) 0 0
\(767\) −24043.9 −1.13191
\(768\) 0 0
\(769\) −17563.2 −0.823598 −0.411799 0.911275i \(-0.635099\pi\)
−0.411799 + 0.911275i \(0.635099\pi\)
\(770\) 0 0
\(771\) −4049.82 −0.189171
\(772\) 0 0
\(773\) 8310.20 0.386672 0.193336 0.981133i \(-0.438069\pi\)
0.193336 + 0.981133i \(0.438069\pi\)
\(774\) 0 0
\(775\) 20845.7 0.966192
\(776\) 0 0
\(777\) 10605.7 0.489677
\(778\) 0 0
\(779\) 7542.66 0.346911
\(780\) 0 0
\(781\) −10348.2 −0.474120
\(782\) 0 0
\(783\) −6835.36 −0.311974
\(784\) 0 0
\(785\) 16517.0 0.750977
\(786\) 0 0
\(787\) 19931.3 0.902763 0.451381 0.892331i \(-0.350931\pi\)
0.451381 + 0.892331i \(0.350931\pi\)
\(788\) 0 0
\(789\) 11672.3 0.526675
\(790\) 0 0
\(791\) −12894.9 −0.579633
\(792\) 0 0
\(793\) −20346.0 −0.911109
\(794\) 0 0
\(795\) −5497.05 −0.245233
\(796\) 0 0
\(797\) 227.752 0.0101222 0.00506110 0.999987i \(-0.498389\pi\)
0.00506110 + 0.999987i \(0.498389\pi\)
\(798\) 0 0
\(799\) −37911.4 −1.67861
\(800\) 0 0
\(801\) −7811.92 −0.344595
\(802\) 0 0
\(803\) −17426.6 −0.765843
\(804\) 0 0
\(805\) 2401.81 0.105158
\(806\) 0 0
\(807\) 4757.70 0.207533
\(808\) 0 0
\(809\) 17759.9 0.771824 0.385912 0.922536i \(-0.373887\pi\)
0.385912 + 0.922536i \(0.373887\pi\)
\(810\) 0 0
\(811\) 15077.3 0.652818 0.326409 0.945229i \(-0.394161\pi\)
0.326409 + 0.945229i \(0.394161\pi\)
\(812\) 0 0
\(813\) −16242.1 −0.700659
\(814\) 0 0
\(815\) −15798.9 −0.679033
\(816\) 0 0
\(817\) 3736.87 0.160020
\(818\) 0 0
\(819\) −10073.6 −0.429794
\(820\) 0 0
\(821\) 11686.6 0.496792 0.248396 0.968659i \(-0.420096\pi\)
0.248396 + 0.968659i \(0.420096\pi\)
\(822\) 0 0
\(823\) 29233.5 1.23817 0.619087 0.785322i \(-0.287503\pi\)
0.619087 + 0.785322i \(0.287503\pi\)
\(824\) 0 0
\(825\) 3878.92 0.163693
\(826\) 0 0
\(827\) 3637.65 0.152955 0.0764773 0.997071i \(-0.475633\pi\)
0.0764773 + 0.997071i \(0.475633\pi\)
\(828\) 0 0
\(829\) −41264.3 −1.72879 −0.864395 0.502813i \(-0.832298\pi\)
−0.864395 + 0.502813i \(0.832298\pi\)
\(830\) 0 0
\(831\) 19481.3 0.813234
\(832\) 0 0
\(833\) −5441.08 −0.226317
\(834\) 0 0
\(835\) 21861.5 0.906047
\(836\) 0 0
\(837\) −6542.33 −0.270175
\(838\) 0 0
\(839\) −19245.1 −0.791913 −0.395956 0.918269i \(-0.629587\pi\)
−0.395956 + 0.918269i \(0.629587\pi\)
\(840\) 0 0
\(841\) 39701.7 1.62785
\(842\) 0 0
\(843\) 22034.8 0.900259
\(844\) 0 0
\(845\) −14234.3 −0.579497
\(846\) 0 0
\(847\) 18486.3 0.749937
\(848\) 0 0
\(849\) −13194.8 −0.533387
\(850\) 0 0
\(851\) −4860.78 −0.195799
\(852\) 0 0
\(853\) 16254.5 0.652455 0.326227 0.945291i \(-0.394223\pi\)
0.326227 + 0.945291i \(0.394223\pi\)
\(854\) 0 0
\(855\) 1423.19 0.0569263
\(856\) 0 0
\(857\) −2228.95 −0.0888441 −0.0444221 0.999013i \(-0.514145\pi\)
−0.0444221 + 0.999013i \(0.514145\pi\)
\(858\) 0 0
\(859\) −4415.65 −0.175390 −0.0876950 0.996147i \(-0.527950\pi\)
−0.0876950 + 0.996147i \(0.527950\pi\)
\(860\) 0 0
\(861\) 14942.9 0.591468
\(862\) 0 0
\(863\) −50409.9 −1.98838 −0.994191 0.107628i \(-0.965674\pi\)
−0.994191 + 0.107628i \(0.965674\pi\)
\(864\) 0 0
\(865\) 7941.81 0.312173
\(866\) 0 0
\(867\) 7513.49 0.294315
\(868\) 0 0
\(869\) 6161.08 0.240507
\(870\) 0 0
\(871\) −33051.9 −1.28579
\(872\) 0 0
\(873\) 15452.6 0.599073
\(874\) 0 0
\(875\) −22037.0 −0.851415
\(876\) 0 0
\(877\) 8893.98 0.342450 0.171225 0.985232i \(-0.445228\pi\)
0.171225 + 0.985232i \(0.445228\pi\)
\(878\) 0 0
\(879\) 14437.3 0.553992
\(880\) 0 0
\(881\) −40971.8 −1.56683 −0.783414 0.621500i \(-0.786524\pi\)
−0.783414 + 0.621500i \(0.786524\pi\)
\(882\) 0 0
\(883\) −9426.35 −0.359255 −0.179627 0.983735i \(-0.557489\pi\)
−0.179627 + 0.983735i \(0.557489\pi\)
\(884\) 0 0
\(885\) 6729.66 0.255610
\(886\) 0 0
\(887\) 9819.37 0.371705 0.185852 0.982578i \(-0.440495\pi\)
0.185852 + 0.982578i \(0.440495\pi\)
\(888\) 0 0
\(889\) 33849.2 1.27701
\(890\) 0 0
\(891\) −1217.38 −0.0457732
\(892\) 0 0
\(893\) 11150.5 0.417845
\(894\) 0 0
\(895\) −3268.86 −0.122085
\(896\) 0 0
\(897\) 4616.91 0.171855
\(898\) 0 0
\(899\) 61343.2 2.27576
\(900\) 0 0
\(901\) 25279.5 0.934721
\(902\) 0 0
\(903\) 7403.20 0.272827
\(904\) 0 0
\(905\) −23454.7 −0.861503
\(906\) 0 0
\(907\) 17605.9 0.644535 0.322268 0.946649i \(-0.395555\pi\)
0.322268 + 0.946649i \(0.395555\pi\)
\(908\) 0 0
\(909\) 2953.59 0.107772
\(910\) 0 0
\(911\) −11290.4 −0.410613 −0.205306 0.978698i \(-0.565819\pi\)
−0.205306 + 0.978698i \(0.565819\pi\)
\(912\) 0 0
\(913\) −3470.47 −0.125801
\(914\) 0 0
\(915\) 5694.66 0.205748
\(916\) 0 0
\(917\) 21876.7 0.787820
\(918\) 0 0
\(919\) −17552.0 −0.630017 −0.315009 0.949089i \(-0.602007\pi\)
−0.315009 + 0.949089i \(0.602007\pi\)
\(920\) 0 0
\(921\) −16443.5 −0.588307
\(922\) 0 0
\(923\) 46070.6 1.64294
\(924\) 0 0
\(925\) 18181.3 0.646267
\(926\) 0 0
\(927\) −2729.32 −0.0967019
\(928\) 0 0
\(929\) 16159.9 0.570709 0.285354 0.958422i \(-0.407889\pi\)
0.285354 + 0.958422i \(0.407889\pi\)
\(930\) 0 0
\(931\) 1600.32 0.0563357
\(932\) 0 0
\(933\) 9673.80 0.339449
\(934\) 0 0
\(935\) 8080.53 0.282633
\(936\) 0 0
\(937\) 11990.1 0.418036 0.209018 0.977912i \(-0.432973\pi\)
0.209018 + 0.977912i \(0.432973\pi\)
\(938\) 0 0
\(939\) 3358.13 0.116708
\(940\) 0 0
\(941\) −267.117 −0.00925374 −0.00462687 0.999989i \(-0.501473\pi\)
−0.00462687 + 0.999989i \(0.501473\pi\)
\(942\) 0 0
\(943\) −6848.58 −0.236501
\(944\) 0 0
\(945\) 2819.51 0.0970569
\(946\) 0 0
\(947\) 27046.2 0.928072 0.464036 0.885816i \(-0.346401\pi\)
0.464036 + 0.885816i \(0.346401\pi\)
\(948\) 0 0
\(949\) 77584.0 2.65383
\(950\) 0 0
\(951\) −19942.2 −0.679989
\(952\) 0 0
\(953\) −26262.7 −0.892689 −0.446345 0.894861i \(-0.647274\pi\)
−0.446345 + 0.894861i \(0.647274\pi\)
\(954\) 0 0
\(955\) −2449.77 −0.0830079
\(956\) 0 0
\(957\) 11414.6 0.385562
\(958\) 0 0
\(959\) −30732.0 −1.03482
\(960\) 0 0
\(961\) 28922.5 0.970846
\(962\) 0 0
\(963\) 18820.8 0.629795
\(964\) 0 0
\(965\) −4766.46 −0.159003
\(966\) 0 0
\(967\) −24422.1 −0.812163 −0.406081 0.913837i \(-0.633105\pi\)
−0.406081 + 0.913837i \(0.633105\pi\)
\(968\) 0 0
\(969\) −6544.88 −0.216978
\(970\) 0 0
\(971\) −25253.2 −0.834617 −0.417308 0.908765i \(-0.637026\pi\)
−0.417308 + 0.908765i \(0.637026\pi\)
\(972\) 0 0
\(973\) 29004.8 0.955652
\(974\) 0 0
\(975\) −17269.1 −0.567235
\(976\) 0 0
\(977\) −22675.5 −0.742531 −0.371265 0.928527i \(-0.621076\pi\)
−0.371265 + 0.928527i \(0.621076\pi\)
\(978\) 0 0
\(979\) 13045.4 0.425877
\(980\) 0 0
\(981\) −14804.7 −0.481833
\(982\) 0 0
\(983\) −11015.2 −0.357407 −0.178703 0.983903i \(-0.557190\pi\)
−0.178703 + 0.983903i \(0.557190\pi\)
\(984\) 0 0
\(985\) 11404.8 0.368922
\(986\) 0 0
\(987\) 22090.4 0.712408
\(988\) 0 0
\(989\) −3393.00 −0.109091
\(990\) 0 0
\(991\) −43162.3 −1.38355 −0.691774 0.722114i \(-0.743170\pi\)
−0.691774 + 0.722114i \(0.743170\pi\)
\(992\) 0 0
\(993\) −10413.7 −0.332797
\(994\) 0 0
\(995\) −3861.19 −0.123023
\(996\) 0 0
\(997\) −9251.64 −0.293884 −0.146942 0.989145i \(-0.546943\pi\)
−0.146942 + 0.989145i \(0.546943\pi\)
\(998\) 0 0
\(999\) −5706.13 −0.180715
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.4.a.f.1.1 2
3.2 odd 2 1656.4.a.f.1.2 2
4.3 odd 2 1104.4.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.4.a.f.1.1 2 1.1 even 1 trivial
1104.4.a.j.1.1 2 4.3 odd 2
1656.4.a.f.1.2 2 3.2 odd 2