Properties

Label 552.4.a.d.1.2
Level $552$
Weight $4$
Character 552.1
Self dual yes
Analytic conductor $32.569$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,4,Mod(1,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 552.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.5690543232\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{93}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 23 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.32183\) of defining polynomial
Character \(\chi\) \(=\) 552.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +10.6437 q^{5} -4.64365 q^{7} +9.00000 q^{9} +30.5746 q^{11} -12.7127 q^{13} -31.9310 q^{15} -38.5056 q^{17} +124.506 q^{19} +13.9310 q^{21} +23.0000 q^{23} -11.7127 q^{25} -27.0000 q^{27} -187.011 q^{29} +222.437 q^{31} -91.7238 q^{33} -49.4254 q^{35} +124.160 q^{37} +38.1381 q^{39} -186.873 q^{41} -32.9198 q^{43} +95.7929 q^{45} +305.425 q^{47} -321.437 q^{49} +115.517 q^{51} +603.655 q^{53} +325.425 q^{55} -373.517 q^{57} +413.702 q^{59} +353.862 q^{61} -41.7929 q^{63} -135.310 q^{65} +598.345 q^{67} -69.0000 q^{69} -412.044 q^{71} +562.276 q^{73} +35.1381 q^{75} -141.978 q^{77} -896.871 q^{79} +81.0000 q^{81} +1043.17 q^{83} -409.840 q^{85} +561.033 q^{87} +1254.55 q^{89} +59.0333 q^{91} -667.310 q^{93} +1325.19 q^{95} +517.033 q^{97} +275.171 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 2 q^{5} + 10 q^{7} + 18 q^{9} - 16 q^{11} - 64 q^{13} - 6 q^{15} + 58 q^{17} + 114 q^{19} - 30 q^{21} + 46 q^{23} - 62 q^{25} - 54 q^{27} - 104 q^{29} + 252 q^{31} + 48 q^{33} - 176 q^{35}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 10.6437 0.951997 0.475999 0.879446i \(-0.342087\pi\)
0.475999 + 0.879446i \(0.342087\pi\)
\(6\) 0 0
\(7\) −4.64365 −0.250734 −0.125367 0.992110i \(-0.540011\pi\)
−0.125367 + 0.992110i \(0.540011\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 30.5746 0.838054 0.419027 0.907974i \(-0.362371\pi\)
0.419027 + 0.907974i \(0.362371\pi\)
\(12\) 0 0
\(13\) −12.7127 −0.271221 −0.135610 0.990762i \(-0.543300\pi\)
−0.135610 + 0.990762i \(0.543300\pi\)
\(14\) 0 0
\(15\) −31.9310 −0.549636
\(16\) 0 0
\(17\) −38.5056 −0.549351 −0.274676 0.961537i \(-0.588570\pi\)
−0.274676 + 0.961537i \(0.588570\pi\)
\(18\) 0 0
\(19\) 124.506 1.50334 0.751672 0.659537i \(-0.229248\pi\)
0.751672 + 0.659537i \(0.229248\pi\)
\(20\) 0 0
\(21\) 13.9310 0.144761
\(22\) 0 0
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −11.7127 −0.0937016
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −187.011 −1.19749 −0.598743 0.800941i \(-0.704333\pi\)
−0.598743 + 0.800941i \(0.704333\pi\)
\(30\) 0 0
\(31\) 222.437 1.28873 0.644367 0.764716i \(-0.277121\pi\)
0.644367 + 0.764716i \(0.277121\pi\)
\(32\) 0 0
\(33\) −91.7238 −0.483850
\(34\) 0 0
\(35\) −49.4254 −0.238698
\(36\) 0 0
\(37\) 124.160 0.551671 0.275836 0.961205i \(-0.411045\pi\)
0.275836 + 0.961205i \(0.411045\pi\)
\(38\) 0 0
\(39\) 38.1381 0.156589
\(40\) 0 0
\(41\) −186.873 −0.711821 −0.355911 0.934520i \(-0.615829\pi\)
−0.355911 + 0.934520i \(0.615829\pi\)
\(42\) 0 0
\(43\) −32.9198 −0.116750 −0.0583748 0.998295i \(-0.518592\pi\)
−0.0583748 + 0.998295i \(0.518592\pi\)
\(44\) 0 0
\(45\) 95.7929 0.317332
\(46\) 0 0
\(47\) 305.425 0.947891 0.473945 0.880554i \(-0.342829\pi\)
0.473945 + 0.880554i \(0.342829\pi\)
\(48\) 0 0
\(49\) −321.437 −0.937133
\(50\) 0 0
\(51\) 115.517 0.317168
\(52\) 0 0
\(53\) 603.655 1.56450 0.782249 0.622966i \(-0.214073\pi\)
0.782249 + 0.622966i \(0.214073\pi\)
\(54\) 0 0
\(55\) 325.425 0.797825
\(56\) 0 0
\(57\) −373.517 −0.867956
\(58\) 0 0
\(59\) 413.702 0.912870 0.456435 0.889757i \(-0.349126\pi\)
0.456435 + 0.889757i \(0.349126\pi\)
\(60\) 0 0
\(61\) 353.862 0.742744 0.371372 0.928484i \(-0.378887\pi\)
0.371372 + 0.928484i \(0.378887\pi\)
\(62\) 0 0
\(63\) −41.7929 −0.0835779
\(64\) 0 0
\(65\) −135.310 −0.258201
\(66\) 0 0
\(67\) 598.345 1.09104 0.545519 0.838099i \(-0.316333\pi\)
0.545519 + 0.838099i \(0.316333\pi\)
\(68\) 0 0
\(69\) −69.0000 −0.120386
\(70\) 0 0
\(71\) −412.044 −0.688742 −0.344371 0.938834i \(-0.611908\pi\)
−0.344371 + 0.938834i \(0.611908\pi\)
\(72\) 0 0
\(73\) 562.276 0.901499 0.450750 0.892650i \(-0.351157\pi\)
0.450750 + 0.892650i \(0.351157\pi\)
\(74\) 0 0
\(75\) 35.1381 0.0540986
\(76\) 0 0
\(77\) −141.978 −0.210128
\(78\) 0 0
\(79\) −896.871 −1.27729 −0.638644 0.769502i \(-0.720505\pi\)
−0.638644 + 0.769502i \(0.720505\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1043.17 1.37955 0.689777 0.724022i \(-0.257709\pi\)
0.689777 + 0.724022i \(0.257709\pi\)
\(84\) 0 0
\(85\) −409.840 −0.522981
\(86\) 0 0
\(87\) 561.033 0.691369
\(88\) 0 0
\(89\) 1254.55 1.49418 0.747090 0.664723i \(-0.231450\pi\)
0.747090 + 0.664723i \(0.231450\pi\)
\(90\) 0 0
\(91\) 59.0333 0.0680041
\(92\) 0 0
\(93\) −667.310 −0.744051
\(94\) 0 0
\(95\) 1325.19 1.43118
\(96\) 0 0
\(97\) 517.033 0.541204 0.270602 0.962691i \(-0.412777\pi\)
0.270602 + 0.962691i \(0.412777\pi\)
\(98\) 0 0
\(99\) 275.171 0.279351
\(100\) 0 0
\(101\) 1351.56 1.33154 0.665768 0.746159i \(-0.268104\pi\)
0.665768 + 0.746159i \(0.268104\pi\)
\(102\) 0 0
\(103\) 1206.39 1.15407 0.577035 0.816720i \(-0.304210\pi\)
0.577035 + 0.816720i \(0.304210\pi\)
\(104\) 0 0
\(105\) 148.276 0.137812
\(106\) 0 0
\(107\) 572.552 0.517297 0.258648 0.965972i \(-0.416723\pi\)
0.258648 + 0.965972i \(0.416723\pi\)
\(108\) 0 0
\(109\) 96.8508 0.0851066 0.0425533 0.999094i \(-0.486451\pi\)
0.0425533 + 0.999094i \(0.486451\pi\)
\(110\) 0 0
\(111\) −372.481 −0.318507
\(112\) 0 0
\(113\) 923.423 0.768746 0.384373 0.923178i \(-0.374418\pi\)
0.384373 + 0.923178i \(0.374418\pi\)
\(114\) 0 0
\(115\) 244.804 0.198505
\(116\) 0 0
\(117\) −114.414 −0.0904069
\(118\) 0 0
\(119\) 178.806 0.137741
\(120\) 0 0
\(121\) −396.194 −0.297666
\(122\) 0 0
\(123\) 560.619 0.410970
\(124\) 0 0
\(125\) −1455.12 −1.04120
\(126\) 0 0
\(127\) 1853.97 1.29538 0.647691 0.761903i \(-0.275735\pi\)
0.647691 + 0.761903i \(0.275735\pi\)
\(128\) 0 0
\(129\) 98.7595 0.0674054
\(130\) 0 0
\(131\) −1879.86 −1.25377 −0.626885 0.779112i \(-0.715670\pi\)
−0.626885 + 0.779112i \(0.715670\pi\)
\(132\) 0 0
\(133\) −578.160 −0.376939
\(134\) 0 0
\(135\) −287.379 −0.183212
\(136\) 0 0
\(137\) 1192.94 0.743938 0.371969 0.928245i \(-0.378683\pi\)
0.371969 + 0.928245i \(0.378683\pi\)
\(138\) 0 0
\(139\) −1986.71 −1.21230 −0.606152 0.795349i \(-0.707288\pi\)
−0.606152 + 0.795349i \(0.707288\pi\)
\(140\) 0 0
\(141\) −916.276 −0.547265
\(142\) 0 0
\(143\) −388.686 −0.227297
\(144\) 0 0
\(145\) −1990.48 −1.14000
\(146\) 0 0
\(147\) 964.310 0.541054
\(148\) 0 0
\(149\) −729.766 −0.401240 −0.200620 0.979669i \(-0.564296\pi\)
−0.200620 + 0.979669i \(0.564296\pi\)
\(150\) 0 0
\(151\) −1675.40 −0.902930 −0.451465 0.892289i \(-0.649098\pi\)
−0.451465 + 0.892289i \(0.649098\pi\)
\(152\) 0 0
\(153\) −346.550 −0.183117
\(154\) 0 0
\(155\) 2367.54 1.22687
\(156\) 0 0
\(157\) −1025.72 −0.521409 −0.260705 0.965419i \(-0.583955\pi\)
−0.260705 + 0.965419i \(0.583955\pi\)
\(158\) 0 0
\(159\) −1810.96 −0.903263
\(160\) 0 0
\(161\) −106.804 −0.0522816
\(162\) 0 0
\(163\) 989.376 0.475423 0.237711 0.971336i \(-0.423603\pi\)
0.237711 + 0.971336i \(0.423603\pi\)
\(164\) 0 0
\(165\) −976.276 −0.460624
\(166\) 0 0
\(167\) 1139.30 0.527916 0.263958 0.964534i \(-0.414972\pi\)
0.263958 + 0.964534i \(0.414972\pi\)
\(168\) 0 0
\(169\) −2035.39 −0.926439
\(170\) 0 0
\(171\) 1120.55 0.501115
\(172\) 0 0
\(173\) −2542.50 −1.11736 −0.558679 0.829384i \(-0.688692\pi\)
−0.558679 + 0.829384i \(0.688692\pi\)
\(174\) 0 0
\(175\) 54.3897 0.0234941
\(176\) 0 0
\(177\) −1241.10 −0.527046
\(178\) 0 0
\(179\) 1230.25 0.513707 0.256853 0.966450i \(-0.417314\pi\)
0.256853 + 0.966450i \(0.417314\pi\)
\(180\) 0 0
\(181\) −1858.28 −0.763119 −0.381560 0.924344i \(-0.624613\pi\)
−0.381560 + 0.924344i \(0.624613\pi\)
\(182\) 0 0
\(183\) −1061.59 −0.428823
\(184\) 0 0
\(185\) 1321.52 0.525189
\(186\) 0 0
\(187\) −1177.29 −0.460386
\(188\) 0 0
\(189\) 125.379 0.0482537
\(190\) 0 0
\(191\) 3272.27 1.23965 0.619825 0.784740i \(-0.287203\pi\)
0.619825 + 0.784740i \(0.287203\pi\)
\(192\) 0 0
\(193\) 198.183 0.0739145 0.0369572 0.999317i \(-0.488233\pi\)
0.0369572 + 0.999317i \(0.488233\pi\)
\(194\) 0 0
\(195\) 405.929 0.149073
\(196\) 0 0
\(197\) −38.2270 −0.0138252 −0.00691259 0.999976i \(-0.502200\pi\)
−0.00691259 + 0.999976i \(0.502200\pi\)
\(198\) 0 0
\(199\) −2771.81 −0.987379 −0.493690 0.869638i \(-0.664352\pi\)
−0.493690 + 0.869638i \(0.664352\pi\)
\(200\) 0 0
\(201\) −1795.04 −0.629911
\(202\) 0 0
\(203\) 868.414 0.300250
\(204\) 0 0
\(205\) −1989.01 −0.677652
\(206\) 0 0
\(207\) 207.000 0.0695048
\(208\) 0 0
\(209\) 3806.71 1.25988
\(210\) 0 0
\(211\) −3597.83 −1.17386 −0.586931 0.809637i \(-0.699664\pi\)
−0.586931 + 0.809637i \(0.699664\pi\)
\(212\) 0 0
\(213\) 1236.13 0.397645
\(214\) 0 0
\(215\) −350.387 −0.111145
\(216\) 0 0
\(217\) −1032.92 −0.323129
\(218\) 0 0
\(219\) −1686.83 −0.520481
\(220\) 0 0
\(221\) 489.510 0.148995
\(222\) 0 0
\(223\) −1565.97 −0.470247 −0.235123 0.971966i \(-0.575549\pi\)
−0.235123 + 0.971966i \(0.575549\pi\)
\(224\) 0 0
\(225\) −105.414 −0.0312339
\(226\) 0 0
\(227\) −477.386 −0.139582 −0.0697912 0.997562i \(-0.522233\pi\)
−0.0697912 + 0.997562i \(0.522233\pi\)
\(228\) 0 0
\(229\) 3910.27 1.12837 0.564187 0.825647i \(-0.309190\pi\)
0.564187 + 0.825647i \(0.309190\pi\)
\(230\) 0 0
\(231\) 425.933 0.121318
\(232\) 0 0
\(233\) −3391.83 −0.953676 −0.476838 0.878991i \(-0.658217\pi\)
−0.476838 + 0.878991i \(0.658217\pi\)
\(234\) 0 0
\(235\) 3250.84 0.902389
\(236\) 0 0
\(237\) 2690.61 0.737443
\(238\) 0 0
\(239\) 1108.70 0.300065 0.150032 0.988681i \(-0.452062\pi\)
0.150032 + 0.988681i \(0.452062\pi\)
\(240\) 0 0
\(241\) −3612.90 −0.965674 −0.482837 0.875710i \(-0.660394\pi\)
−0.482837 + 0.875710i \(0.660394\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −3421.26 −0.892148
\(246\) 0 0
\(247\) −1582.80 −0.407738
\(248\) 0 0
\(249\) −3129.51 −0.796486
\(250\) 0 0
\(251\) 3388.00 0.851986 0.425993 0.904727i \(-0.359925\pi\)
0.425993 + 0.904727i \(0.359925\pi\)
\(252\) 0 0
\(253\) 703.216 0.174746
\(254\) 0 0
\(255\) 1229.52 0.301943
\(256\) 0 0
\(257\) 1201.16 0.291542 0.145771 0.989318i \(-0.453434\pi\)
0.145771 + 0.989318i \(0.453434\pi\)
\(258\) 0 0
\(259\) −576.557 −0.138322
\(260\) 0 0
\(261\) −1683.10 −0.399162
\(262\) 0 0
\(263\) 4770.85 1.11857 0.559283 0.828977i \(-0.311076\pi\)
0.559283 + 0.828977i \(0.311076\pi\)
\(264\) 0 0
\(265\) 6425.09 1.48940
\(266\) 0 0
\(267\) −3763.65 −0.862665
\(268\) 0 0
\(269\) −6389.94 −1.44833 −0.724167 0.689625i \(-0.757775\pi\)
−0.724167 + 0.689625i \(0.757775\pi\)
\(270\) 0 0
\(271\) −951.916 −0.213376 −0.106688 0.994293i \(-0.534025\pi\)
−0.106688 + 0.994293i \(0.534025\pi\)
\(272\) 0 0
\(273\) −177.100 −0.0392622
\(274\) 0 0
\(275\) −358.111 −0.0785270
\(276\) 0 0
\(277\) 7.01588 0.00152182 0.000760908 1.00000i \(-0.499758\pi\)
0.000760908 1.00000i \(0.499758\pi\)
\(278\) 0 0
\(279\) 2001.93 0.429578
\(280\) 0 0
\(281\) −3166.40 −0.672213 −0.336106 0.941824i \(-0.609110\pi\)
−0.336106 + 0.941824i \(0.609110\pi\)
\(282\) 0 0
\(283\) 1761.47 0.369995 0.184998 0.982739i \(-0.440772\pi\)
0.184998 + 0.982739i \(0.440772\pi\)
\(284\) 0 0
\(285\) −3975.58 −0.826292
\(286\) 0 0
\(287\) 867.773 0.178477
\(288\) 0 0
\(289\) −3430.32 −0.698213
\(290\) 0 0
\(291\) −1551.10 −0.312464
\(292\) 0 0
\(293\) −4875.69 −0.972154 −0.486077 0.873916i \(-0.661573\pi\)
−0.486077 + 0.873916i \(0.661573\pi\)
\(294\) 0 0
\(295\) 4403.30 0.869050
\(296\) 0 0
\(297\) −825.514 −0.161283
\(298\) 0 0
\(299\) −292.392 −0.0565534
\(300\) 0 0
\(301\) 152.868 0.0292730
\(302\) 0 0
\(303\) −4054.68 −0.768763
\(304\) 0 0
\(305\) 3766.38 0.707090
\(306\) 0 0
\(307\) −9238.57 −1.71750 −0.858751 0.512393i \(-0.828759\pi\)
−0.858751 + 0.512393i \(0.828759\pi\)
\(308\) 0 0
\(309\) −3619.17 −0.666302
\(310\) 0 0
\(311\) 4549.75 0.829558 0.414779 0.909922i \(-0.363859\pi\)
0.414779 + 0.909922i \(0.363859\pi\)
\(312\) 0 0
\(313\) 9651.45 1.74291 0.871457 0.490471i \(-0.163175\pi\)
0.871457 + 0.490471i \(0.163175\pi\)
\(314\) 0 0
\(315\) −444.829 −0.0795659
\(316\) 0 0
\(317\) −2043.28 −0.362025 −0.181012 0.983481i \(-0.557937\pi\)
−0.181012 + 0.983481i \(0.557937\pi\)
\(318\) 0 0
\(319\) −5717.79 −1.00356
\(320\) 0 0
\(321\) −1717.66 −0.298661
\(322\) 0 0
\(323\) −4794.16 −0.825864
\(324\) 0 0
\(325\) 148.900 0.0254138
\(326\) 0 0
\(327\) −290.552 −0.0491363
\(328\) 0 0
\(329\) −1418.29 −0.237668
\(330\) 0 0
\(331\) −8914.78 −1.48036 −0.740182 0.672406i \(-0.765261\pi\)
−0.740182 + 0.672406i \(0.765261\pi\)
\(332\) 0 0
\(333\) 1117.44 0.183890
\(334\) 0 0
\(335\) 6368.58 1.03866
\(336\) 0 0
\(337\) −8497.74 −1.37360 −0.686798 0.726849i \(-0.740984\pi\)
−0.686798 + 0.726849i \(0.740984\pi\)
\(338\) 0 0
\(339\) −2770.27 −0.443836
\(340\) 0 0
\(341\) 6800.91 1.08003
\(342\) 0 0
\(343\) 3085.41 0.485704
\(344\) 0 0
\(345\) −734.412 −0.114607
\(346\) 0 0
\(347\) −109.781 −0.0169837 −0.00849186 0.999964i \(-0.502703\pi\)
−0.00849186 + 0.999964i \(0.502703\pi\)
\(348\) 0 0
\(349\) 3883.37 0.595621 0.297811 0.954625i \(-0.403744\pi\)
0.297811 + 0.954625i \(0.403744\pi\)
\(350\) 0 0
\(351\) 343.243 0.0521964
\(352\) 0 0
\(353\) 3298.47 0.497336 0.248668 0.968589i \(-0.420007\pi\)
0.248668 + 0.968589i \(0.420007\pi\)
\(354\) 0 0
\(355\) −4385.66 −0.655680
\(356\) 0 0
\(357\) −536.419 −0.0795247
\(358\) 0 0
\(359\) 7435.67 1.09315 0.546573 0.837411i \(-0.315932\pi\)
0.546573 + 0.837411i \(0.315932\pi\)
\(360\) 0 0
\(361\) 8642.63 1.26004
\(362\) 0 0
\(363\) 1188.58 0.171858
\(364\) 0 0
\(365\) 5984.67 0.858225
\(366\) 0 0
\(367\) −5618.69 −0.799164 −0.399582 0.916698i \(-0.630845\pi\)
−0.399582 + 0.916698i \(0.630845\pi\)
\(368\) 0 0
\(369\) −1681.86 −0.237274
\(370\) 0 0
\(371\) −2803.16 −0.392272
\(372\) 0 0
\(373\) −502.405 −0.0697414 −0.0348707 0.999392i \(-0.511102\pi\)
−0.0348707 + 0.999392i \(0.511102\pi\)
\(374\) 0 0
\(375\) 4365.37 0.601138
\(376\) 0 0
\(377\) 2377.42 0.324783
\(378\) 0 0
\(379\) −432.190 −0.0585754 −0.0292877 0.999571i \(-0.509324\pi\)
−0.0292877 + 0.999571i \(0.509324\pi\)
\(380\) 0 0
\(381\) −5561.92 −0.747889
\(382\) 0 0
\(383\) −4051.40 −0.540514 −0.270257 0.962788i \(-0.587109\pi\)
−0.270257 + 0.962788i \(0.587109\pi\)
\(384\) 0 0
\(385\) −1511.16 −0.200041
\(386\) 0 0
\(387\) −296.279 −0.0389165
\(388\) 0 0
\(389\) 1358.95 0.177125 0.0885623 0.996071i \(-0.471773\pi\)
0.0885623 + 0.996071i \(0.471773\pi\)
\(390\) 0 0
\(391\) −885.628 −0.114548
\(392\) 0 0
\(393\) 5639.57 0.723864
\(394\) 0 0
\(395\) −9545.98 −1.21598
\(396\) 0 0
\(397\) −8722.62 −1.10271 −0.551355 0.834271i \(-0.685889\pi\)
−0.551355 + 0.834271i \(0.685889\pi\)
\(398\) 0 0
\(399\) 1734.48 0.217626
\(400\) 0 0
\(401\) −62.7817 −0.00781838 −0.00390919 0.999992i \(-0.501244\pi\)
−0.00390919 + 0.999992i \(0.501244\pi\)
\(402\) 0 0
\(403\) −2827.77 −0.349531
\(404\) 0 0
\(405\) 862.136 0.105777
\(406\) 0 0
\(407\) 3796.15 0.462330
\(408\) 0 0
\(409\) −1025.00 −0.123919 −0.0619595 0.998079i \(-0.519735\pi\)
−0.0619595 + 0.998079i \(0.519735\pi\)
\(410\) 0 0
\(411\) −3578.81 −0.429513
\(412\) 0 0
\(413\) −1921.09 −0.228887
\(414\) 0 0
\(415\) 11103.2 1.31333
\(416\) 0 0
\(417\) 5960.12 0.699925
\(418\) 0 0
\(419\) −7162.60 −0.835121 −0.417561 0.908649i \(-0.637115\pi\)
−0.417561 + 0.908649i \(0.637115\pi\)
\(420\) 0 0
\(421\) 17091.8 1.97863 0.989314 0.145804i \(-0.0465769\pi\)
0.989314 + 0.145804i \(0.0465769\pi\)
\(422\) 0 0
\(423\) 2748.83 0.315964
\(424\) 0 0
\(425\) 451.004 0.0514751
\(426\) 0 0
\(427\) −1643.21 −0.186231
\(428\) 0 0
\(429\) 1166.06 0.131230
\(430\) 0 0
\(431\) 11740.0 1.31206 0.656029 0.754736i \(-0.272235\pi\)
0.656029 + 0.754736i \(0.272235\pi\)
\(432\) 0 0
\(433\) 5440.54 0.603824 0.301912 0.953336i \(-0.402375\pi\)
0.301912 + 0.953336i \(0.402375\pi\)
\(434\) 0 0
\(435\) 5971.44 0.658181
\(436\) 0 0
\(437\) 2863.63 0.313469
\(438\) 0 0
\(439\) 8576.16 0.932387 0.466193 0.884683i \(-0.345625\pi\)
0.466193 + 0.884683i \(0.345625\pi\)
\(440\) 0 0
\(441\) −2892.93 −0.312378
\(442\) 0 0
\(443\) 14185.6 1.52139 0.760696 0.649108i \(-0.224858\pi\)
0.760696 + 0.649108i \(0.224858\pi\)
\(444\) 0 0
\(445\) 13353.0 1.42246
\(446\) 0 0
\(447\) 2189.30 0.231656
\(448\) 0 0
\(449\) −455.203 −0.0478449 −0.0239225 0.999714i \(-0.507615\pi\)
−0.0239225 + 0.999714i \(0.507615\pi\)
\(450\) 0 0
\(451\) −5713.57 −0.596544
\(452\) 0 0
\(453\) 5026.21 0.521307
\(454\) 0 0
\(455\) 628.330 0.0647397
\(456\) 0 0
\(457\) −4388.32 −0.449184 −0.224592 0.974453i \(-0.572105\pi\)
−0.224592 + 0.974453i \(0.572105\pi\)
\(458\) 0 0
\(459\) 1039.65 0.105723
\(460\) 0 0
\(461\) 6335.11 0.640034 0.320017 0.947412i \(-0.396311\pi\)
0.320017 + 0.947412i \(0.396311\pi\)
\(462\) 0 0
\(463\) −18364.5 −1.84335 −0.921674 0.387966i \(-0.873178\pi\)
−0.921674 + 0.387966i \(0.873178\pi\)
\(464\) 0 0
\(465\) −7102.61 −0.708335
\(466\) 0 0
\(467\) 11326.3 1.12231 0.561153 0.827712i \(-0.310358\pi\)
0.561153 + 0.827712i \(0.310358\pi\)
\(468\) 0 0
\(469\) −2778.51 −0.273560
\(470\) 0 0
\(471\) 3077.16 0.301036
\(472\) 0 0
\(473\) −1006.51 −0.0978423
\(474\) 0 0
\(475\) −1458.30 −0.140866
\(476\) 0 0
\(477\) 5432.89 0.521499
\(478\) 0 0
\(479\) −2283.85 −0.217853 −0.108927 0.994050i \(-0.534741\pi\)
−0.108927 + 0.994050i \(0.534741\pi\)
\(480\) 0 0
\(481\) −1578.41 −0.149625
\(482\) 0 0
\(483\) 320.412 0.0301848
\(484\) 0 0
\(485\) 5503.12 0.515225
\(486\) 0 0
\(487\) 1845.24 0.171696 0.0858478 0.996308i \(-0.472640\pi\)
0.0858478 + 0.996308i \(0.472640\pi\)
\(488\) 0 0
\(489\) −2968.13 −0.274486
\(490\) 0 0
\(491\) −16279.4 −1.49629 −0.748147 0.663534i \(-0.769056\pi\)
−0.748147 + 0.663534i \(0.769056\pi\)
\(492\) 0 0
\(493\) 7200.97 0.657840
\(494\) 0 0
\(495\) 2928.83 0.265942
\(496\) 0 0
\(497\) 1913.39 0.172691
\(498\) 0 0
\(499\) −12925.5 −1.15956 −0.579782 0.814771i \(-0.696862\pi\)
−0.579782 + 0.814771i \(0.696862\pi\)
\(500\) 0 0
\(501\) −3417.91 −0.304793
\(502\) 0 0
\(503\) 12898.0 1.14333 0.571664 0.820488i \(-0.306298\pi\)
0.571664 + 0.820488i \(0.306298\pi\)
\(504\) 0 0
\(505\) 14385.5 1.26762
\(506\) 0 0
\(507\) 6106.16 0.534880
\(508\) 0 0
\(509\) −20960.9 −1.82530 −0.912649 0.408744i \(-0.865967\pi\)
−0.912649 + 0.408744i \(0.865967\pi\)
\(510\) 0 0
\(511\) −2611.01 −0.226036
\(512\) 0 0
\(513\) −3361.65 −0.289319
\(514\) 0 0
\(515\) 12840.4 1.09867
\(516\) 0 0
\(517\) 9338.26 0.794383
\(518\) 0 0
\(519\) 7627.51 0.645107
\(520\) 0 0
\(521\) 15683.9 1.31886 0.659429 0.751767i \(-0.270798\pi\)
0.659429 + 0.751767i \(0.270798\pi\)
\(522\) 0 0
\(523\) −5107.30 −0.427011 −0.213505 0.976942i \(-0.568488\pi\)
−0.213505 + 0.976942i \(0.568488\pi\)
\(524\) 0 0
\(525\) −163.169 −0.0135643
\(526\) 0 0
\(527\) −8565.04 −0.707968
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 3723.31 0.304290
\(532\) 0 0
\(533\) 2375.66 0.193061
\(534\) 0 0
\(535\) 6094.05 0.492465
\(536\) 0 0
\(537\) −3690.76 −0.296589
\(538\) 0 0
\(539\) −9827.79 −0.785367
\(540\) 0 0
\(541\) 4135.63 0.328659 0.164329 0.986406i \(-0.447454\pi\)
0.164329 + 0.986406i \(0.447454\pi\)
\(542\) 0 0
\(543\) 5574.83 0.440587
\(544\) 0 0
\(545\) 1030.85 0.0810213
\(546\) 0 0
\(547\) −15256.1 −1.19251 −0.596257 0.802794i \(-0.703346\pi\)
−0.596257 + 0.802794i \(0.703346\pi\)
\(548\) 0 0
\(549\) 3184.76 0.247581
\(550\) 0 0
\(551\) −23283.9 −1.80023
\(552\) 0 0
\(553\) 4164.75 0.320259
\(554\) 0 0
\(555\) −3964.56 −0.303218
\(556\) 0 0
\(557\) 17303.7 1.31630 0.658152 0.752885i \(-0.271339\pi\)
0.658152 + 0.752885i \(0.271339\pi\)
\(558\) 0 0
\(559\) 418.500 0.0316649
\(560\) 0 0
\(561\) 3531.88 0.265804
\(562\) 0 0
\(563\) −14821.8 −1.10953 −0.554766 0.832006i \(-0.687192\pi\)
−0.554766 + 0.832006i \(0.687192\pi\)
\(564\) 0 0
\(565\) 9828.59 0.731844
\(566\) 0 0
\(567\) −376.136 −0.0278593
\(568\) 0 0
\(569\) 25352.3 1.86788 0.933939 0.357433i \(-0.116348\pi\)
0.933939 + 0.357433i \(0.116348\pi\)
\(570\) 0 0
\(571\) −3674.00 −0.269268 −0.134634 0.990895i \(-0.542986\pi\)
−0.134634 + 0.990895i \(0.542986\pi\)
\(572\) 0 0
\(573\) −9816.81 −0.715713
\(574\) 0 0
\(575\) −269.392 −0.0195381
\(576\) 0 0
\(577\) 10442.8 0.753445 0.376723 0.926326i \(-0.377051\pi\)
0.376723 + 0.926326i \(0.377051\pi\)
\(578\) 0 0
\(579\) −594.548 −0.0426745
\(580\) 0 0
\(581\) −4844.12 −0.345900
\(582\) 0 0
\(583\) 18456.5 1.31113
\(584\) 0 0
\(585\) −1217.79 −0.0860671
\(586\) 0 0
\(587\) −12505.2 −0.879293 −0.439647 0.898171i \(-0.644896\pi\)
−0.439647 + 0.898171i \(0.644896\pi\)
\(588\) 0 0
\(589\) 27694.6 1.93741
\(590\) 0 0
\(591\) 114.681 0.00798197
\(592\) 0 0
\(593\) −2119.35 −0.146765 −0.0733823 0.997304i \(-0.523379\pi\)
−0.0733823 + 0.997304i \(0.523379\pi\)
\(594\) 0 0
\(595\) 1903.15 0.131129
\(596\) 0 0
\(597\) 8315.43 0.570064
\(598\) 0 0
\(599\) 5667.32 0.386579 0.193289 0.981142i \(-0.438084\pi\)
0.193289 + 0.981142i \(0.438084\pi\)
\(600\) 0 0
\(601\) −6485.13 −0.440156 −0.220078 0.975482i \(-0.570631\pi\)
−0.220078 + 0.975482i \(0.570631\pi\)
\(602\) 0 0
\(603\) 5385.11 0.363679
\(604\) 0 0
\(605\) −4216.95 −0.283377
\(606\) 0 0
\(607\) 23917.8 1.59933 0.799666 0.600445i \(-0.205010\pi\)
0.799666 + 0.600445i \(0.205010\pi\)
\(608\) 0 0
\(609\) −2605.24 −0.173349
\(610\) 0 0
\(611\) −3882.78 −0.257088
\(612\) 0 0
\(613\) −13727.9 −0.904513 −0.452256 0.891888i \(-0.649381\pi\)
−0.452256 + 0.891888i \(0.649381\pi\)
\(614\) 0 0
\(615\) 5967.03 0.391242
\(616\) 0 0
\(617\) −6433.75 −0.419794 −0.209897 0.977724i \(-0.567313\pi\)
−0.209897 + 0.977724i \(0.567313\pi\)
\(618\) 0 0
\(619\) −16614.0 −1.07879 −0.539396 0.842053i \(-0.681347\pi\)
−0.539396 + 0.842053i \(0.681347\pi\)
\(620\) 0 0
\(621\) −621.000 −0.0401286
\(622\) 0 0
\(623\) −5825.69 −0.374641
\(624\) 0 0
\(625\) −14023.7 −0.897518
\(626\) 0 0
\(627\) −11420.1 −0.727394
\(628\) 0 0
\(629\) −4780.86 −0.303061
\(630\) 0 0
\(631\) 13976.7 0.881781 0.440890 0.897561i \(-0.354663\pi\)
0.440890 + 0.897561i \(0.354663\pi\)
\(632\) 0 0
\(633\) 10793.5 0.677729
\(634\) 0 0
\(635\) 19733.0 1.23320
\(636\) 0 0
\(637\) 4086.33 0.254170
\(638\) 0 0
\(639\) −3708.40 −0.229581
\(640\) 0 0
\(641\) −19465.5 −1.19944 −0.599719 0.800211i \(-0.704721\pi\)
−0.599719 + 0.800211i \(0.704721\pi\)
\(642\) 0 0
\(643\) 6166.13 0.378178 0.189089 0.981960i \(-0.439446\pi\)
0.189089 + 0.981960i \(0.439446\pi\)
\(644\) 0 0
\(645\) 1051.16 0.0641697
\(646\) 0 0
\(647\) −21911.9 −1.33145 −0.665723 0.746199i \(-0.731877\pi\)
−0.665723 + 0.746199i \(0.731877\pi\)
\(648\) 0 0
\(649\) 12648.8 0.765034
\(650\) 0 0
\(651\) 3098.75 0.186559
\(652\) 0 0
\(653\) −14627.8 −0.876615 −0.438307 0.898825i \(-0.644422\pi\)
−0.438307 + 0.898825i \(0.644422\pi\)
\(654\) 0 0
\(655\) −20008.5 −1.19359
\(656\) 0 0
\(657\) 5060.49 0.300500
\(658\) 0 0
\(659\) 2846.84 0.168281 0.0841404 0.996454i \(-0.473186\pi\)
0.0841404 + 0.996454i \(0.473186\pi\)
\(660\) 0 0
\(661\) 15798.8 0.929657 0.464829 0.885401i \(-0.346116\pi\)
0.464829 + 0.885401i \(0.346116\pi\)
\(662\) 0 0
\(663\) −1468.53 −0.0860225
\(664\) 0 0
\(665\) −6153.74 −0.358845
\(666\) 0 0
\(667\) −4301.26 −0.249693
\(668\) 0 0
\(669\) 4697.90 0.271497
\(670\) 0 0
\(671\) 10819.2 0.622459
\(672\) 0 0
\(673\) −10461.9 −0.599222 −0.299611 0.954061i \(-0.596857\pi\)
−0.299611 + 0.954061i \(0.596857\pi\)
\(674\) 0 0
\(675\) 316.243 0.0180329
\(676\) 0 0
\(677\) −3689.41 −0.209447 −0.104723 0.994501i \(-0.533396\pi\)
−0.104723 + 0.994501i \(0.533396\pi\)
\(678\) 0 0
\(679\) −2400.92 −0.135698
\(680\) 0 0
\(681\) 1432.16 0.0805879
\(682\) 0 0
\(683\) −14454.8 −0.809808 −0.404904 0.914359i \(-0.632695\pi\)
−0.404904 + 0.914359i \(0.632695\pi\)
\(684\) 0 0
\(685\) 12697.2 0.708227
\(686\) 0 0
\(687\) −11730.8 −0.651467
\(688\) 0 0
\(689\) −7674.08 −0.424324
\(690\) 0 0
\(691\) −34363.1 −1.89180 −0.945899 0.324460i \(-0.894817\pi\)
−0.945899 + 0.324460i \(0.894817\pi\)
\(692\) 0 0
\(693\) −1277.80 −0.0700427
\(694\) 0 0
\(695\) −21145.8 −1.15411
\(696\) 0 0
\(697\) 7195.65 0.391040
\(698\) 0 0
\(699\) 10175.5 0.550605
\(700\) 0 0
\(701\) −31456.5 −1.69486 −0.847428 0.530911i \(-0.821850\pi\)
−0.847428 + 0.530911i \(0.821850\pi\)
\(702\) 0 0
\(703\) 15458.6 0.829351
\(704\) 0 0
\(705\) −9752.52 −0.520995
\(706\) 0 0
\(707\) −6276.17 −0.333861
\(708\) 0 0
\(709\) −5721.57 −0.303072 −0.151536 0.988452i \(-0.548422\pi\)
−0.151536 + 0.988452i \(0.548422\pi\)
\(710\) 0 0
\(711\) −8071.84 −0.425763
\(712\) 0 0
\(713\) 5116.04 0.268720
\(714\) 0 0
\(715\) −4137.03 −0.216386
\(716\) 0 0
\(717\) −3326.09 −0.173243
\(718\) 0 0
\(719\) 405.540 0.0210349 0.0105174 0.999945i \(-0.496652\pi\)
0.0105174 + 0.999945i \(0.496652\pi\)
\(720\) 0 0
\(721\) −5602.05 −0.289364
\(722\) 0 0
\(723\) 10838.7 0.557532
\(724\) 0 0
\(725\) 2190.40 0.112206
\(726\) 0 0
\(727\) −13075.6 −0.667051 −0.333525 0.942741i \(-0.608238\pi\)
−0.333525 + 0.942741i \(0.608238\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 1267.60 0.0641365
\(732\) 0 0
\(733\) 10812.4 0.544834 0.272417 0.962179i \(-0.412177\pi\)
0.272417 + 0.962179i \(0.412177\pi\)
\(734\) 0 0
\(735\) 10263.8 0.515082
\(736\) 0 0
\(737\) 18294.2 0.914348
\(738\) 0 0
\(739\) 37507.4 1.86702 0.933512 0.358545i \(-0.116727\pi\)
0.933512 + 0.358545i \(0.116727\pi\)
\(740\) 0 0
\(741\) 4748.40 0.235408
\(742\) 0 0
\(743\) 16188.5 0.799327 0.399663 0.916662i \(-0.369127\pi\)
0.399663 + 0.916662i \(0.369127\pi\)
\(744\) 0 0
\(745\) −7767.37 −0.381979
\(746\) 0 0
\(747\) 9388.54 0.459851
\(748\) 0 0
\(749\) −2658.73 −0.129704
\(750\) 0 0
\(751\) 17911.2 0.870292 0.435146 0.900360i \(-0.356697\pi\)
0.435146 + 0.900360i \(0.356697\pi\)
\(752\) 0 0
\(753\) −10164.0 −0.491894
\(754\) 0 0
\(755\) −17832.4 −0.859586
\(756\) 0 0
\(757\) −6837.02 −0.328264 −0.164132 0.986438i \(-0.552482\pi\)
−0.164132 + 0.986438i \(0.552482\pi\)
\(758\) 0 0
\(759\) −2109.65 −0.100890
\(760\) 0 0
\(761\) −31986.3 −1.52366 −0.761829 0.647779i \(-0.775698\pi\)
−0.761829 + 0.647779i \(0.775698\pi\)
\(762\) 0 0
\(763\) −449.741 −0.0213391
\(764\) 0 0
\(765\) −3688.56 −0.174327
\(766\) 0 0
\(767\) −5259.26 −0.247589
\(768\) 0 0
\(769\) −32722.9 −1.53448 −0.767241 0.641359i \(-0.778371\pi\)
−0.767241 + 0.641359i \(0.778371\pi\)
\(770\) 0 0
\(771\) −3603.49 −0.168322
\(772\) 0 0
\(773\) −18354.2 −0.854018 −0.427009 0.904247i \(-0.640433\pi\)
−0.427009 + 0.904247i \(0.640433\pi\)
\(774\) 0 0
\(775\) −2605.33 −0.120756
\(776\) 0 0
\(777\) 1729.67 0.0798605
\(778\) 0 0
\(779\) −23266.7 −1.07011
\(780\) 0 0
\(781\) −12598.1 −0.577203
\(782\) 0 0
\(783\) 5049.30 0.230456
\(784\) 0 0
\(785\) −10917.4 −0.496380
\(786\) 0 0
\(787\) −7921.56 −0.358797 −0.179398 0.983776i \(-0.557415\pi\)
−0.179398 + 0.983776i \(0.557415\pi\)
\(788\) 0 0
\(789\) −14312.5 −0.645805
\(790\) 0 0
\(791\) −4288.05 −0.192751
\(792\) 0 0
\(793\) −4498.54 −0.201447
\(794\) 0 0
\(795\) −19275.3 −0.859904
\(796\) 0 0
\(797\) −26374.7 −1.17219 −0.586097 0.810241i \(-0.699336\pi\)
−0.586097 + 0.810241i \(0.699336\pi\)
\(798\) 0 0
\(799\) −11760.6 −0.520725
\(800\) 0 0
\(801\) 11290.9 0.498060
\(802\) 0 0
\(803\) 17191.4 0.755505
\(804\) 0 0
\(805\) −1136.78 −0.0497719
\(806\) 0 0
\(807\) 19169.8 0.836195
\(808\) 0 0
\(809\) −24337.2 −1.05766 −0.528832 0.848726i \(-0.677370\pi\)
−0.528832 + 0.848726i \(0.677370\pi\)
\(810\) 0 0
\(811\) −6501.11 −0.281486 −0.140743 0.990046i \(-0.544949\pi\)
−0.140743 + 0.990046i \(0.544949\pi\)
\(812\) 0 0
\(813\) 2855.75 0.123192
\(814\) 0 0
\(815\) 10530.6 0.452601
\(816\) 0 0
\(817\) −4098.70 −0.175515
\(818\) 0 0
\(819\) 531.300 0.0226680
\(820\) 0 0
\(821\) 6448.21 0.274110 0.137055 0.990563i \(-0.456236\pi\)
0.137055 + 0.990563i \(0.456236\pi\)
\(822\) 0 0
\(823\) −20647.9 −0.874534 −0.437267 0.899332i \(-0.644054\pi\)
−0.437267 + 0.899332i \(0.644054\pi\)
\(824\) 0 0
\(825\) 1074.33 0.0453376
\(826\) 0 0
\(827\) −4547.07 −0.191194 −0.0955968 0.995420i \(-0.530476\pi\)
−0.0955968 + 0.995420i \(0.530476\pi\)
\(828\) 0 0
\(829\) 24013.9 1.00608 0.503038 0.864264i \(-0.332216\pi\)
0.503038 + 0.864264i \(0.332216\pi\)
\(830\) 0 0
\(831\) −21.0476 −0.000878621 0
\(832\) 0 0
\(833\) 12377.1 0.514815
\(834\) 0 0
\(835\) 12126.4 0.502575
\(836\) 0 0
\(837\) −6005.79 −0.248017
\(838\) 0 0
\(839\) 906.392 0.0372969 0.0186485 0.999826i \(-0.494064\pi\)
0.0186485 + 0.999826i \(0.494064\pi\)
\(840\) 0 0
\(841\) 10584.2 0.433973
\(842\) 0 0
\(843\) 9499.21 0.388102
\(844\) 0 0
\(845\) −21664.0 −0.881968
\(846\) 0 0
\(847\) 1839.78 0.0746349
\(848\) 0 0
\(849\) −5284.42 −0.213617
\(850\) 0 0
\(851\) 2855.69 0.115031
\(852\) 0 0
\(853\) 18820.4 0.755450 0.377725 0.925918i \(-0.376707\pi\)
0.377725 + 0.925918i \(0.376707\pi\)
\(854\) 0 0
\(855\) 11926.7 0.477060
\(856\) 0 0
\(857\) −39314.2 −1.56703 −0.783516 0.621371i \(-0.786576\pi\)
−0.783516 + 0.621371i \(0.786576\pi\)
\(858\) 0 0
\(859\) −6387.76 −0.253722 −0.126861 0.991920i \(-0.540490\pi\)
−0.126861 + 0.991920i \(0.540490\pi\)
\(860\) 0 0
\(861\) −2603.32 −0.103044
\(862\) 0 0
\(863\) 23555.1 0.929113 0.464556 0.885544i \(-0.346214\pi\)
0.464556 + 0.885544i \(0.346214\pi\)
\(864\) 0 0
\(865\) −27061.5 −1.06372
\(866\) 0 0
\(867\) 10291.0 0.403114
\(868\) 0 0
\(869\) −27421.5 −1.07044
\(870\) 0 0
\(871\) −7606.58 −0.295912
\(872\) 0 0
\(873\) 4653.30 0.180401
\(874\) 0 0
\(875\) 6757.08 0.261064
\(876\) 0 0
\(877\) −8537.95 −0.328741 −0.164371 0.986399i \(-0.552559\pi\)
−0.164371 + 0.986399i \(0.552559\pi\)
\(878\) 0 0
\(879\) 14627.1 0.561273
\(880\) 0 0
\(881\) −23574.5 −0.901528 −0.450764 0.892643i \(-0.648848\pi\)
−0.450764 + 0.892643i \(0.648848\pi\)
\(882\) 0 0
\(883\) 40392.6 1.53943 0.769717 0.638385i \(-0.220397\pi\)
0.769717 + 0.638385i \(0.220397\pi\)
\(884\) 0 0
\(885\) −13209.9 −0.501746
\(886\) 0 0
\(887\) 26612.4 1.00739 0.503696 0.863881i \(-0.331973\pi\)
0.503696 + 0.863881i \(0.331973\pi\)
\(888\) 0 0
\(889\) −8609.20 −0.324796
\(890\) 0 0
\(891\) 2476.54 0.0931171
\(892\) 0 0
\(893\) 38027.2 1.42501
\(894\) 0 0
\(895\) 13094.4 0.489047
\(896\) 0 0
\(897\) 877.176 0.0326511
\(898\) 0 0
\(899\) −41598.1 −1.54324
\(900\) 0 0
\(901\) −23244.1 −0.859458
\(902\) 0 0
\(903\) −458.605 −0.0169008
\(904\) 0 0
\(905\) −19778.8 −0.726487
\(906\) 0 0
\(907\) 25937.5 0.949547 0.474774 0.880108i \(-0.342530\pi\)
0.474774 + 0.880108i \(0.342530\pi\)
\(908\) 0 0
\(909\) 12164.0 0.443845
\(910\) 0 0
\(911\) 3170.66 0.115311 0.0576557 0.998337i \(-0.481637\pi\)
0.0576557 + 0.998337i \(0.481637\pi\)
\(912\) 0 0
\(913\) 31894.6 1.15614
\(914\) 0 0
\(915\) −11299.1 −0.408239
\(916\) 0 0
\(917\) 8729.40 0.314362
\(918\) 0 0
\(919\) −41315.7 −1.48300 −0.741502 0.670951i \(-0.765886\pi\)
−0.741502 + 0.670951i \(0.765886\pi\)
\(920\) 0 0
\(921\) 27715.7 0.991600
\(922\) 0 0
\(923\) 5238.20 0.186801
\(924\) 0 0
\(925\) −1454.25 −0.0516925
\(926\) 0 0
\(927\) 10857.5 0.384690
\(928\) 0 0
\(929\) −6554.73 −0.231489 −0.115745 0.993279i \(-0.536925\pi\)
−0.115745 + 0.993279i \(0.536925\pi\)
\(930\) 0 0
\(931\) −40020.6 −1.40883
\(932\) 0 0
\(933\) −13649.2 −0.478945
\(934\) 0 0
\(935\) −12530.7 −0.438286
\(936\) 0 0
\(937\) −26127.5 −0.910939 −0.455469 0.890251i \(-0.650529\pi\)
−0.455469 + 0.890251i \(0.650529\pi\)
\(938\) 0 0
\(939\) −28954.4 −1.00627
\(940\) 0 0
\(941\) 15701.7 0.543954 0.271977 0.962304i \(-0.412323\pi\)
0.271977 + 0.962304i \(0.412323\pi\)
\(942\) 0 0
\(943\) −4298.08 −0.148425
\(944\) 0 0
\(945\) 1334.49 0.0459374
\(946\) 0 0
\(947\) −45373.2 −1.55695 −0.778474 0.627676i \(-0.784006\pi\)
−0.778474 + 0.627676i \(0.784006\pi\)
\(948\) 0 0
\(949\) −7148.05 −0.244505
\(950\) 0 0
\(951\) 6129.83 0.209015
\(952\) 0 0
\(953\) 47332.6 1.60887 0.804435 0.594041i \(-0.202468\pi\)
0.804435 + 0.594041i \(0.202468\pi\)
\(954\) 0 0
\(955\) 34828.9 1.18014
\(956\) 0 0
\(957\) 17153.4 0.579404
\(958\) 0 0
\(959\) −5539.58 −0.186530
\(960\) 0 0
\(961\) 19687.0 0.660837
\(962\) 0 0
\(963\) 5152.97 0.172432
\(964\) 0 0
\(965\) 2109.39 0.0703664
\(966\) 0 0
\(967\) 49811.5 1.65649 0.828247 0.560363i \(-0.189339\pi\)
0.828247 + 0.560363i \(0.189339\pi\)
\(968\) 0 0
\(969\) 14382.5 0.476813
\(970\) 0 0
\(971\) 31020.6 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(972\) 0 0
\(973\) 9225.58 0.303966
\(974\) 0 0
\(975\) −446.700 −0.0146727
\(976\) 0 0
\(977\) −39196.4 −1.28353 −0.641763 0.766903i \(-0.721797\pi\)
−0.641763 + 0.766903i \(0.721797\pi\)
\(978\) 0 0
\(979\) 38357.4 1.25220
\(980\) 0 0
\(981\) 871.657 0.0283689
\(982\) 0 0
\(983\) 10579.5 0.343268 0.171634 0.985161i \(-0.445095\pi\)
0.171634 + 0.985161i \(0.445095\pi\)
\(984\) 0 0
\(985\) −406.875 −0.0131615
\(986\) 0 0
\(987\) 4254.87 0.137218
\(988\) 0 0
\(989\) −757.156 −0.0243440
\(990\) 0 0
\(991\) 37854.1 1.21340 0.606698 0.794932i \(-0.292494\pi\)
0.606698 + 0.794932i \(0.292494\pi\)
\(992\) 0 0
\(993\) 26744.3 0.854689
\(994\) 0 0
\(995\) −29502.2 −0.939982
\(996\) 0 0
\(997\) −37876.2 −1.20316 −0.601580 0.798813i \(-0.705462\pi\)
−0.601580 + 0.798813i \(0.705462\pi\)
\(998\) 0 0
\(999\) −3352.33 −0.106169
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.4.a.d.1.2 2
3.2 odd 2 1656.4.a.e.1.1 2
4.3 odd 2 1104.4.a.o.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.4.a.d.1.2 2 1.1 even 1 trivial
1104.4.a.o.1.2 2 4.3 odd 2
1656.4.a.e.1.1 2 3.2 odd 2