Properties

Label 552.2.q.c.73.1
Level $552$
Weight $2$
Character 552.73
Analytic conductor $4.408$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,2,Mod(25,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,3,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 73.1
Character \(\chi\) \(=\) 552.73
Dual form 552.2.q.c.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.959493 - 0.281733i) q^{3} +(-2.87348 - 1.84667i) q^{5} +(0.703532 + 4.89317i) q^{7} +(0.841254 - 0.540641i) q^{9} +(-2.09062 + 4.57781i) q^{11} +(-0.491915 + 3.42134i) q^{13} +(-3.27735 - 0.962317i) q^{15} +(-1.38428 - 1.59755i) q^{17} +(3.06735 - 3.53991i) q^{19} +(2.05360 + 4.49676i) q^{21} +(-2.82684 + 3.87414i) q^{23} +(2.76960 + 6.06458i) q^{25} +(0.654861 - 0.755750i) q^{27} +(2.07622 + 2.39609i) q^{29} +(9.36162 + 2.74882i) q^{31} +(-0.716213 + 4.98137i) q^{33} +(7.01450 - 15.3596i) q^{35} +(-2.85280 + 1.83338i) q^{37} +(0.491915 + 3.42134i) q^{39} +(4.76510 + 3.06234i) q^{41} +(-4.85852 + 1.42659i) q^{43} -3.41571 q^{45} -4.92712 q^{47} +(-16.7317 + 4.91288i) q^{49} +(-1.77829 - 1.14284i) q^{51} +(-0.490126 - 3.40890i) q^{53} +(14.4611 - 9.29356i) q^{55} +(1.94579 - 4.26070i) q^{57} +(0.914938 - 6.36353i) q^{59} +(-10.2199 - 3.00085i) q^{61} +(3.23730 + 3.73604i) q^{63} +(7.73161 - 8.92275i) q^{65} +(-4.16641 - 9.12316i) q^{67} +(-1.62087 + 4.51362i) q^{69} +(4.60850 + 10.0912i) q^{71} +(0.668400 - 0.771374i) q^{73} +(4.36600 + 5.03864i) q^{75} +(-23.8708 - 7.00911i) q^{77} +(-0.398732 + 2.77324i) q^{79} +(0.415415 - 0.909632i) q^{81} +(10.5503 - 6.78028i) q^{83} +(1.02756 + 7.14684i) q^{85} +(2.66718 + 1.71409i) q^{87} +(-3.64562 + 1.07045i) q^{89} -17.0873 q^{91} +9.75684 q^{93} +(-15.3510 + 4.50747i) q^{95} +(8.50849 + 5.46808i) q^{97} +(0.716213 + 4.98137i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 3 q^{3} - 2 q^{5} - 2 q^{7} - 3 q^{9} + 13 q^{11} - 13 q^{13} + 2 q^{15} - 11 q^{17} + 11 q^{19} - 9 q^{21} - 12 q^{23} + 17 q^{25} + 3 q^{27} + 9 q^{29} + 33 q^{31} + 9 q^{33} + 62 q^{35} + 11 q^{37}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(e\left(\frac{2}{11}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.959493 0.281733i 0.553964 0.162658i
\(4\) 0 0
\(5\) −2.87348 1.84667i −1.28506 0.825857i −0.293556 0.955942i \(-0.594839\pi\)
−0.991503 + 0.130085i \(0.958475\pi\)
\(6\) 0 0
\(7\) 0.703532 + 4.89317i 0.265910 + 1.84945i 0.485991 + 0.873964i \(0.338459\pi\)
−0.220080 + 0.975482i \(0.570632\pi\)
\(8\) 0 0
\(9\) 0.841254 0.540641i 0.280418 0.180214i
\(10\) 0 0
\(11\) −2.09062 + 4.57781i −0.630344 + 1.38026i 0.277407 + 0.960753i \(0.410525\pi\)
−0.907751 + 0.419509i \(0.862202\pi\)
\(12\) 0 0
\(13\) −0.491915 + 3.42134i −0.136433 + 0.948910i 0.800483 + 0.599355i \(0.204576\pi\)
−0.936916 + 0.349555i \(0.886333\pi\)
\(14\) 0 0
\(15\) −3.27735 0.962317i −0.846208 0.248469i
\(16\) 0 0
\(17\) −1.38428 1.59755i −0.335738 0.387462i 0.562628 0.826710i \(-0.309790\pi\)
−0.898366 + 0.439248i \(0.855245\pi\)
\(18\) 0 0
\(19\) 3.06735 3.53991i 0.703699 0.812112i −0.285548 0.958364i \(-0.592176\pi\)
0.989247 + 0.146252i \(0.0467212\pi\)
\(20\) 0 0
\(21\) 2.05360 + 4.49676i 0.448132 + 0.981273i
\(22\) 0 0
\(23\) −2.82684 + 3.87414i −0.589438 + 0.807814i
\(24\) 0 0
\(25\) 2.76960 + 6.06458i 0.553920 + 1.21292i
\(26\) 0 0
\(27\) 0.654861 0.755750i 0.126028 0.145444i
\(28\) 0 0
\(29\) 2.07622 + 2.39609i 0.385545 + 0.444943i 0.915036 0.403373i \(-0.132162\pi\)
−0.529491 + 0.848316i \(0.677617\pi\)
\(30\) 0 0
\(31\) 9.36162 + 2.74882i 1.68140 + 0.493703i 0.976484 0.215592i \(-0.0691680\pi\)
0.704913 + 0.709294i \(0.250986\pi\)
\(32\) 0 0
\(33\) −0.716213 + 4.98137i −0.124677 + 0.867146i
\(34\) 0 0
\(35\) 7.01450 15.3596i 1.18567 2.59625i
\(36\) 0 0
\(37\) −2.85280 + 1.83338i −0.468997 + 0.301406i −0.753710 0.657207i \(-0.771738\pi\)
0.284713 + 0.958613i \(0.408102\pi\)
\(38\) 0 0
\(39\) 0.491915 + 3.42134i 0.0787695 + 0.547854i
\(40\) 0 0
\(41\) 4.76510 + 3.06234i 0.744183 + 0.478257i 0.856973 0.515362i \(-0.172342\pi\)
−0.112790 + 0.993619i \(0.535979\pi\)
\(42\) 0 0
\(43\) −4.85852 + 1.42659i −0.740918 + 0.217553i −0.630345 0.776315i \(-0.717087\pi\)
−0.110572 + 0.993868i \(0.535268\pi\)
\(44\) 0 0
\(45\) −3.41571 −0.509184
\(46\) 0 0
\(47\) −4.92712 −0.718694 −0.359347 0.933204i \(-0.617001\pi\)
−0.359347 + 0.933204i \(0.617001\pi\)
\(48\) 0 0
\(49\) −16.7317 + 4.91288i −2.39025 + 0.701840i
\(50\) 0 0
\(51\) −1.77829 1.14284i −0.249011 0.160029i
\(52\) 0 0
\(53\) −0.490126 3.40890i −0.0673240 0.468249i −0.995396 0.0958480i \(-0.969444\pi\)
0.928072 0.372401i \(-0.121465\pi\)
\(54\) 0 0
\(55\) 14.4611 9.29356i 1.94993 1.25314i
\(56\) 0 0
\(57\) 1.94579 4.26070i 0.257727 0.564343i
\(58\) 0 0
\(59\) 0.914938 6.36353i 0.119115 0.828461i −0.839419 0.543484i \(-0.817105\pi\)
0.958534 0.284977i \(-0.0919861\pi\)
\(60\) 0 0
\(61\) −10.2199 3.00085i −1.30853 0.384219i −0.448189 0.893939i \(-0.647931\pi\)
−0.860340 + 0.509720i \(0.829749\pi\)
\(62\) 0 0
\(63\) 3.23730 + 3.73604i 0.407861 + 0.470697i
\(64\) 0 0
\(65\) 7.73161 8.92275i 0.958988 1.10673i
\(66\) 0 0
\(67\) −4.16641 9.12316i −0.509008 1.11457i −0.973436 0.228961i \(-0.926467\pi\)
0.464428 0.885611i \(-0.346260\pi\)
\(68\) 0 0
\(69\) −1.62087 + 4.51362i −0.195129 + 0.543376i
\(70\) 0 0
\(71\) 4.60850 + 10.0912i 0.546928 + 1.19760i 0.958202 + 0.286093i \(0.0923567\pi\)
−0.411274 + 0.911512i \(0.634916\pi\)
\(72\) 0 0
\(73\) 0.668400 0.771374i 0.0782302 0.0902825i −0.715285 0.698833i \(-0.753703\pi\)
0.793515 + 0.608550i \(0.208249\pi\)
\(74\) 0 0
\(75\) 4.36600 + 5.03864i 0.504143 + 0.581812i
\(76\) 0 0
\(77\) −23.8708 7.00911i −2.72033 0.798762i
\(78\) 0 0
\(79\) −0.398732 + 2.77324i −0.0448608 + 0.312014i 0.955020 + 0.296543i \(0.0958338\pi\)
−0.999880 + 0.0154708i \(0.995075\pi\)
\(80\) 0 0
\(81\) 0.415415 0.909632i 0.0461572 0.101070i
\(82\) 0 0
\(83\) 10.5503 6.78028i 1.15805 0.744232i 0.186822 0.982394i \(-0.440181\pi\)
0.971226 + 0.238162i \(0.0765448\pi\)
\(84\) 0 0
\(85\) 1.02756 + 7.14684i 0.111455 + 0.775183i
\(86\) 0 0
\(87\) 2.66718 + 1.71409i 0.285952 + 0.183770i
\(88\) 0 0
\(89\) −3.64562 + 1.07045i −0.386435 + 0.113467i −0.469178 0.883103i \(-0.655450\pi\)
0.0827437 + 0.996571i \(0.473632\pi\)
\(90\) 0 0
\(91\) −17.0873 −1.79124
\(92\) 0 0
\(93\) 9.75684 1.01174
\(94\) 0 0
\(95\) −15.3510 + 4.50747i −1.57498 + 0.462457i
\(96\) 0 0
\(97\) 8.50849 + 5.46808i 0.863907 + 0.555199i 0.895883 0.444290i \(-0.146544\pi\)
−0.0319767 + 0.999489i \(0.510180\pi\)
\(98\) 0 0
\(99\) 0.716213 + 4.98137i 0.0719821 + 0.500647i
\(100\) 0 0
\(101\) 9.49342 6.10105i 0.944630 0.607077i 0.0249262 0.999689i \(-0.492065\pi\)
0.919704 + 0.392612i \(0.128429\pi\)
\(102\) 0 0
\(103\) −3.25514 + 7.12775i −0.320738 + 0.702318i −0.999486 0.0320528i \(-0.989796\pi\)
0.678748 + 0.734371i \(0.262523\pi\)
\(104\) 0 0
\(105\) 2.40306 16.7137i 0.234515 1.63109i
\(106\) 0 0
\(107\) −1.31048 0.384792i −0.126689 0.0371993i 0.217773 0.975999i \(-0.430121\pi\)
−0.344462 + 0.938800i \(0.611939\pi\)
\(108\) 0 0
\(109\) 4.97531 + 5.74182i 0.476548 + 0.549966i 0.942221 0.334991i \(-0.108733\pi\)
−0.465673 + 0.884957i \(0.654188\pi\)
\(110\) 0 0
\(111\) −2.22072 + 2.56284i −0.210781 + 0.243254i
\(112\) 0 0
\(113\) −0.631856 1.38357i −0.0594400 0.130155i 0.877581 0.479428i \(-0.159156\pi\)
−0.937021 + 0.349273i \(0.886429\pi\)
\(114\) 0 0
\(115\) 15.2771 5.91200i 1.42460 0.551297i
\(116\) 0 0
\(117\) 1.43589 + 3.14417i 0.132748 + 0.290678i
\(118\) 0 0
\(119\) 6.84319 7.89747i 0.627315 0.723960i
\(120\) 0 0
\(121\) −9.38221 10.8276i −0.852928 0.984331i
\(122\) 0 0
\(123\) 5.43484 + 1.59581i 0.490043 + 0.143890i
\(124\) 0 0
\(125\) 0.810375 5.63628i 0.0724821 0.504124i
\(126\) 0 0
\(127\) 8.80451 19.2792i 0.781274 1.71075i 0.0811813 0.996699i \(-0.474131\pi\)
0.700093 0.714052i \(-0.253142\pi\)
\(128\) 0 0
\(129\) −4.25980 + 2.73761i −0.375054 + 0.241033i
\(130\) 0 0
\(131\) 1.16636 + 8.11218i 0.101905 + 0.708764i 0.975160 + 0.221501i \(0.0710956\pi\)
−0.873255 + 0.487263i \(0.837995\pi\)
\(132\) 0 0
\(133\) 19.4794 + 12.5186i 1.68908 + 1.08550i
\(134\) 0 0
\(135\) −3.27735 + 0.962317i −0.282069 + 0.0828230i
\(136\) 0 0
\(137\) 4.99660 0.426888 0.213444 0.976955i \(-0.431532\pi\)
0.213444 + 0.976955i \(0.431532\pi\)
\(138\) 0 0
\(139\) 14.2857 1.21170 0.605850 0.795579i \(-0.292833\pi\)
0.605850 + 0.795579i \(0.292833\pi\)
\(140\) 0 0
\(141\) −4.72753 + 1.38813i −0.398130 + 0.116902i
\(142\) 0 0
\(143\) −14.6339 9.40461i −1.22375 0.786453i
\(144\) 0 0
\(145\) −1.54119 10.7192i −0.127989 0.890182i
\(146\) 0 0
\(147\) −14.6699 + 9.42775i −1.20995 + 0.777588i
\(148\) 0 0
\(149\) 0.513006 1.12333i 0.0420271 0.0920266i −0.887454 0.460896i \(-0.847528\pi\)
0.929481 + 0.368870i \(0.120255\pi\)
\(150\) 0 0
\(151\) −0.696590 + 4.84489i −0.0566877 + 0.394272i 0.941648 + 0.336600i \(0.109277\pi\)
−0.998336 + 0.0576721i \(0.981632\pi\)
\(152\) 0 0
\(153\) −2.02823 0.595543i −0.163973 0.0481468i
\(154\) 0 0
\(155\) −21.8242 25.1865i −1.75296 2.02303i
\(156\) 0 0
\(157\) 8.95207 10.3312i 0.714453 0.824522i −0.276176 0.961107i \(-0.589067\pi\)
0.990628 + 0.136585i \(0.0436126\pi\)
\(158\) 0 0
\(159\) −1.43067 3.13273i −0.113460 0.248442i
\(160\) 0 0
\(161\) −20.9456 11.1067i −1.65075 0.875327i
\(162\) 0 0
\(163\) −6.49793 14.2285i −0.508957 1.11446i −0.973453 0.228885i \(-0.926492\pi\)
0.464496 0.885575i \(-0.346235\pi\)
\(164\) 0 0
\(165\) 11.2570 12.9913i 0.876355 1.01137i
\(166\) 0 0
\(167\) −9.46263 10.9205i −0.732241 0.845051i 0.260481 0.965479i \(-0.416119\pi\)
−0.992722 + 0.120428i \(0.961573\pi\)
\(168\) 0 0
\(169\) 1.00979 + 0.296501i 0.0776760 + 0.0228077i
\(170\) 0 0
\(171\) 0.666599 4.63630i 0.0509761 0.354547i
\(172\) 0 0
\(173\) −7.27320 + 15.9261i −0.552971 + 1.21084i 0.402409 + 0.915460i \(0.368173\pi\)
−0.955380 + 0.295378i \(0.904554\pi\)
\(174\) 0 0
\(175\) −27.7266 + 17.8188i −2.09593 + 1.34697i
\(176\) 0 0
\(177\) −0.914938 6.36353i −0.0687709 0.478312i
\(178\) 0 0
\(179\) 19.4108 + 12.4746i 1.45083 + 0.932395i 0.999192 + 0.0401964i \(0.0127984\pi\)
0.451643 + 0.892199i \(0.350838\pi\)
\(180\) 0 0
\(181\) −7.93691 + 2.33049i −0.589946 + 0.173224i −0.563062 0.826415i \(-0.690377\pi\)
−0.0268842 + 0.999639i \(0.508559\pi\)
\(182\) 0 0
\(183\) −10.6514 −0.787374
\(184\) 0 0
\(185\) 11.5831 0.851607
\(186\) 0 0
\(187\) 10.2073 2.99713i 0.746430 0.219172i
\(188\) 0 0
\(189\) 4.15873 + 2.67265i 0.302503 + 0.194407i
\(190\) 0 0
\(191\) 1.19467 + 8.30908i 0.0864430 + 0.601224i 0.986290 + 0.165019i \(0.0527686\pi\)
−0.899847 + 0.436205i \(0.856322\pi\)
\(192\) 0 0
\(193\) −0.762780 + 0.490209i −0.0549061 + 0.0352860i −0.567806 0.823162i \(-0.692208\pi\)
0.512900 + 0.858448i \(0.328571\pi\)
\(194\) 0 0
\(195\) 4.90460 10.7396i 0.351225 0.769076i
\(196\) 0 0
\(197\) 2.37751 16.5359i 0.169390 1.17814i −0.710758 0.703437i \(-0.751648\pi\)
0.880148 0.474699i \(-0.157443\pi\)
\(198\) 0 0
\(199\) 4.96618 + 1.45820i 0.352044 + 0.103369i 0.452973 0.891524i \(-0.350363\pi\)
−0.100929 + 0.994894i \(0.532182\pi\)
\(200\) 0 0
\(201\) −6.56793 7.57980i −0.463266 0.534638i
\(202\) 0 0
\(203\) −10.2638 + 11.8450i −0.720377 + 0.831359i
\(204\) 0 0
\(205\) −8.03726 17.5991i −0.561346 1.22918i
\(206\) 0 0
\(207\) −0.283575 + 4.78744i −0.0197098 + 0.332750i
\(208\) 0 0
\(209\) 9.79240 + 21.4424i 0.677354 + 1.48320i
\(210\) 0 0
\(211\) −0.399271 + 0.460783i −0.0274869 + 0.0317216i −0.769327 0.638856i \(-0.779408\pi\)
0.741840 + 0.670577i \(0.233954\pi\)
\(212\) 0 0
\(213\) 7.26484 + 8.38407i 0.497779 + 0.574467i
\(214\) 0 0
\(215\) 16.5953 + 4.87282i 1.13179 + 0.332324i
\(216\) 0 0
\(217\) −6.86425 + 47.7419i −0.465976 + 3.24093i
\(218\) 0 0
\(219\) 0.424003 0.928438i 0.0286515 0.0627380i
\(220\) 0 0
\(221\) 6.14671 3.95025i 0.413473 0.265723i
\(222\) 0 0
\(223\) 1.51682 + 10.5497i 0.101574 + 0.706463i 0.975435 + 0.220287i \(0.0706994\pi\)
−0.873861 + 0.486176i \(0.838392\pi\)
\(224\) 0 0
\(225\) 5.60870 + 3.60449i 0.373913 + 0.240299i
\(226\) 0 0
\(227\) −5.94430 + 1.74540i −0.394537 + 0.115846i −0.472982 0.881072i \(-0.656823\pi\)
0.0784455 + 0.996918i \(0.475004\pi\)
\(228\) 0 0
\(229\) 11.9929 0.792515 0.396257 0.918139i \(-0.370309\pi\)
0.396257 + 0.918139i \(0.370309\pi\)
\(230\) 0 0
\(231\) −24.8786 −1.63689
\(232\) 0 0
\(233\) 1.27154 0.373357i 0.0833012 0.0244594i −0.239816 0.970818i \(-0.577087\pi\)
0.323118 + 0.946359i \(0.395269\pi\)
\(234\) 0 0
\(235\) 14.1580 + 9.09877i 0.923564 + 0.593538i
\(236\) 0 0
\(237\) 0.398732 + 2.77324i 0.0259004 + 0.180141i
\(238\) 0 0
\(239\) 22.0817 14.1910i 1.42835 0.917942i 0.428449 0.903566i \(-0.359060\pi\)
0.999897 0.0143758i \(-0.00457612\pi\)
\(240\) 0 0
\(241\) 1.14712 2.51184i 0.0738925 0.161802i −0.869081 0.494670i \(-0.835289\pi\)
0.942974 + 0.332868i \(0.108016\pi\)
\(242\) 0 0
\(243\) 0.142315 0.989821i 0.00912950 0.0634971i
\(244\) 0 0
\(245\) 57.1508 + 16.7810i 3.65123 + 1.07210i
\(246\) 0 0
\(247\) 10.6024 + 12.2358i 0.674614 + 0.778546i
\(248\) 0 0
\(249\) 8.21273 9.47800i 0.520461 0.600644i
\(250\) 0 0
\(251\) 12.0159 + 26.3111i 0.758436 + 1.66074i 0.750585 + 0.660774i \(0.229772\pi\)
0.00785143 + 0.999969i \(0.497501\pi\)
\(252\) 0 0
\(253\) −11.8252 21.0401i −0.743446 1.32278i
\(254\) 0 0
\(255\) 2.99943 + 6.56784i 0.187832 + 0.411294i
\(256\) 0 0
\(257\) 3.38822 3.91022i 0.211351 0.243913i −0.640169 0.768234i \(-0.721136\pi\)
0.851520 + 0.524322i \(0.175681\pi\)
\(258\) 0 0
\(259\) −10.9781 12.6694i −0.682145 0.787238i
\(260\) 0 0
\(261\) 3.04205 + 0.893228i 0.188298 + 0.0552894i
\(262\) 0 0
\(263\) −2.16806 + 15.0792i −0.133688 + 0.929824i 0.807000 + 0.590552i \(0.201090\pi\)
−0.940688 + 0.339272i \(0.889819\pi\)
\(264\) 0 0
\(265\) −4.88676 + 10.7005i −0.300191 + 0.657327i
\(266\) 0 0
\(267\) −3.19636 + 2.05418i −0.195614 + 0.125714i
\(268\) 0 0
\(269\) 0.681017 + 4.73658i 0.0415223 + 0.288794i 0.999994 + 0.00360468i \(0.00114741\pi\)
−0.958471 + 0.285189i \(0.907944\pi\)
\(270\) 0 0
\(271\) −8.92505 5.73578i −0.542158 0.348424i 0.240724 0.970594i \(-0.422615\pi\)
−0.782882 + 0.622170i \(0.786251\pi\)
\(272\) 0 0
\(273\) −16.3952 + 4.81405i −0.992280 + 0.291360i
\(274\) 0 0
\(275\) −33.5527 −2.02330
\(276\) 0 0
\(277\) −23.5085 −1.41249 −0.706244 0.707968i \(-0.749612\pi\)
−0.706244 + 0.707968i \(0.749612\pi\)
\(278\) 0 0
\(279\) 9.36162 2.74882i 0.560465 0.164568i
\(280\) 0 0
\(281\) 4.14304 + 2.66257i 0.247153 + 0.158835i 0.658352 0.752710i \(-0.271254\pi\)
−0.411200 + 0.911545i \(0.634890\pi\)
\(282\) 0 0
\(283\) 4.00486 + 27.8544i 0.238064 + 1.65577i 0.661573 + 0.749881i \(0.269889\pi\)
−0.423509 + 0.905892i \(0.639202\pi\)
\(284\) 0 0
\(285\) −13.4593 + 8.64977i −0.797260 + 0.512368i
\(286\) 0 0
\(287\) −11.6322 + 25.4709i −0.686625 + 1.50350i
\(288\) 0 0
\(289\) 1.78343 12.4040i 0.104908 0.729650i
\(290\) 0 0
\(291\) 9.70437 + 2.84946i 0.568881 + 0.167038i
\(292\) 0 0
\(293\) −0.662689 0.764784i −0.0387147 0.0446791i 0.736062 0.676914i \(-0.236683\pi\)
−0.774777 + 0.632235i \(0.782138\pi\)
\(294\) 0 0
\(295\) −14.3804 + 16.5959i −0.837260 + 0.966250i
\(296\) 0 0
\(297\) 2.09062 + 4.57781i 0.121310 + 0.265632i
\(298\) 0 0
\(299\) −11.8642 11.5774i −0.686124 0.669536i
\(300\) 0 0
\(301\) −10.3987 22.7699i −0.599370 1.31244i
\(302\) 0 0
\(303\) 7.39000 8.52852i 0.424545 0.489951i
\(304\) 0 0
\(305\) 23.8252 + 27.4957i 1.36423 + 1.57440i
\(306\) 0 0
\(307\) −5.61007 1.64726i −0.320183 0.0940143i 0.117692 0.993050i \(-0.462451\pi\)
−0.437875 + 0.899036i \(0.644269\pi\)
\(308\) 0 0
\(309\) −1.11516 + 7.75611i −0.0634392 + 0.441229i
\(310\) 0 0
\(311\) −9.67440 + 21.1840i −0.548585 + 1.20123i 0.408855 + 0.912599i \(0.365928\pi\)
−0.957440 + 0.288633i \(0.906799\pi\)
\(312\) 0 0
\(313\) 13.0872 8.41063i 0.739732 0.475397i −0.115718 0.993282i \(-0.536917\pi\)
0.855450 + 0.517885i \(0.173281\pi\)
\(314\) 0 0
\(315\) −2.40306 16.7137i −0.135397 0.941708i
\(316\) 0 0
\(317\) −14.8692 9.55583i −0.835135 0.536709i 0.0517707 0.998659i \(-0.483514\pi\)
−0.886906 + 0.461950i \(0.847150\pi\)
\(318\) 0 0
\(319\) −15.3094 + 4.49525i −0.857164 + 0.251686i
\(320\) 0 0
\(321\) −1.36581 −0.0762319
\(322\) 0 0
\(323\) −9.90127 −0.550921
\(324\) 0 0
\(325\) −22.1114 + 6.49250i −1.22652 + 0.360139i
\(326\) 0 0
\(327\) 6.39143 + 4.10752i 0.353447 + 0.227147i
\(328\) 0 0
\(329\) −3.46639 24.1092i −0.191108 1.32919i
\(330\) 0 0
\(331\) 19.9332 12.8103i 1.09563 0.704119i 0.137514 0.990500i \(-0.456089\pi\)
0.958116 + 0.286381i \(0.0924523\pi\)
\(332\) 0 0
\(333\) −1.40872 + 3.08468i −0.0771977 + 0.169039i
\(334\) 0 0
\(335\) −4.87541 + 33.9092i −0.266372 + 1.85266i
\(336\) 0 0
\(337\) 22.2400 + 6.53024i 1.21149 + 0.355725i 0.824235 0.566248i \(-0.191606\pi\)
0.387253 + 0.921973i \(0.373424\pi\)
\(338\) 0 0
\(339\) −0.996059 1.14951i −0.0540985 0.0624330i
\(340\) 0 0
\(341\) −32.1551 + 37.1090i −1.74130 + 2.00956i
\(342\) 0 0
\(343\) −21.4357 46.9376i −1.15742 2.53439i
\(344\) 0 0
\(345\) 12.9927 9.97659i 0.699504 0.537121i
\(346\) 0 0
\(347\) 10.1681 + 22.2651i 0.545853 + 1.19525i 0.958692 + 0.284448i \(0.0918102\pi\)
−0.412838 + 0.910804i \(0.635462\pi\)
\(348\) 0 0
\(349\) 18.2748 21.0903i 0.978230 1.12894i −0.0134107 0.999910i \(-0.504269\pi\)
0.991641 0.129028i \(-0.0411857\pi\)
\(350\) 0 0
\(351\) 2.26354 + 2.61227i 0.120819 + 0.139433i
\(352\) 0 0
\(353\) −10.3842 3.04908i −0.552696 0.162286i −0.00655351 0.999979i \(-0.502086\pi\)
−0.546142 + 0.837692i \(0.683904\pi\)
\(354\) 0 0
\(355\) 5.39272 37.5072i 0.286216 1.99068i
\(356\) 0 0
\(357\) 4.34102 9.50552i 0.229751 0.503085i
\(358\) 0 0
\(359\) 2.51927 1.61904i 0.132962 0.0854496i −0.472469 0.881347i \(-0.656637\pi\)
0.605431 + 0.795898i \(0.293001\pi\)
\(360\) 0 0
\(361\) −0.418355 2.90972i −0.0220187 0.153143i
\(362\) 0 0
\(363\) −12.0527 7.74577i −0.632601 0.406548i
\(364\) 0 0
\(365\) −3.34511 + 0.982212i −0.175091 + 0.0514113i
\(366\) 0 0
\(367\) 34.4089 1.79613 0.898066 0.439861i \(-0.144972\pi\)
0.898066 + 0.439861i \(0.144972\pi\)
\(368\) 0 0
\(369\) 5.66428 0.294871
\(370\) 0 0
\(371\) 16.3355 4.79655i 0.848099 0.249024i
\(372\) 0 0
\(373\) −25.5434 16.4157i −1.32259 0.849975i −0.327110 0.944986i \(-0.606075\pi\)
−0.995476 + 0.0950116i \(0.969711\pi\)
\(374\) 0 0
\(375\) −0.810375 5.63628i −0.0418476 0.291056i
\(376\) 0 0
\(377\) −9.21918 + 5.92480i −0.474812 + 0.305143i
\(378\) 0 0
\(379\) 1.36679 2.99284i 0.0702071 0.153732i −0.871275 0.490795i \(-0.836706\pi\)
0.941482 + 0.337063i \(0.109434\pi\)
\(380\) 0 0
\(381\) 3.01629 20.9788i 0.154529 1.07477i
\(382\) 0 0
\(383\) 22.1545 + 6.50515i 1.13204 + 0.332398i 0.793510 0.608557i \(-0.208251\pi\)
0.338533 + 0.940955i \(0.390069\pi\)
\(384\) 0 0
\(385\) 55.6488 + 64.2221i 2.83613 + 3.27306i
\(386\) 0 0
\(387\) −3.31598 + 3.82684i −0.168560 + 0.194529i
\(388\) 0 0
\(389\) 0.512542 + 1.12231i 0.0259869 + 0.0569034i 0.922180 0.386760i \(-0.126406\pi\)
−0.896193 + 0.443663i \(0.853679\pi\)
\(390\) 0 0
\(391\) 10.1023 0.846887i 0.510894 0.0428289i
\(392\) 0 0
\(393\) 3.40457 + 7.45498i 0.171738 + 0.376054i
\(394\) 0 0
\(395\) 6.26701 7.23252i 0.315328 0.363907i
\(396\) 0 0
\(397\) 4.59445 + 5.30228i 0.230589 + 0.266114i 0.859239 0.511575i \(-0.170938\pi\)
−0.628650 + 0.777688i \(0.716392\pi\)
\(398\) 0 0
\(399\) 22.2173 + 6.52357i 1.11225 + 0.326587i
\(400\) 0 0
\(401\) 3.95747 27.5248i 0.197627 1.37452i −0.613520 0.789680i \(-0.710247\pi\)
0.811146 0.584844i \(-0.198844\pi\)
\(402\) 0 0
\(403\) −14.0098 + 30.6771i −0.697877 + 1.52814i
\(404\) 0 0
\(405\) −2.87348 + 1.84667i −0.142784 + 0.0917619i
\(406\) 0 0
\(407\) −2.42877 16.8925i −0.120390 0.837328i
\(408\) 0 0
\(409\) −27.3570 17.5813i −1.35272 0.869340i −0.354871 0.934915i \(-0.615475\pi\)
−0.997848 + 0.0655754i \(0.979112\pi\)
\(410\) 0 0
\(411\) 4.79420 1.40770i 0.236480 0.0694369i
\(412\) 0 0
\(413\) 31.7816 1.56387
\(414\) 0 0
\(415\) −42.8371 −2.10279
\(416\) 0 0
\(417\) 13.7071 4.02476i 0.671238 0.197093i
\(418\) 0 0
\(419\) 7.98704 + 5.13296i 0.390192 + 0.250761i 0.720998 0.692938i \(-0.243684\pi\)
−0.330805 + 0.943699i \(0.607320\pi\)
\(420\) 0 0
\(421\) 4.54775 + 31.6303i 0.221644 + 1.54157i 0.731821 + 0.681497i \(0.238671\pi\)
−0.510178 + 0.860069i \(0.670420\pi\)
\(422\) 0 0
\(423\) −4.14495 + 2.66380i −0.201535 + 0.129518i
\(424\) 0 0
\(425\) 5.85455 12.8197i 0.283987 0.621846i
\(426\) 0 0
\(427\) 7.49360 52.1191i 0.362641 2.52222i
\(428\) 0 0
\(429\) −16.6907 4.90082i −0.805833 0.236614i
\(430\) 0 0
\(431\) −6.73878 7.77697i −0.324596 0.374604i 0.569874 0.821732i \(-0.306992\pi\)
−0.894470 + 0.447129i \(0.852447\pi\)
\(432\) 0 0
\(433\) −9.82576 + 11.3395i −0.472196 + 0.544943i −0.941021 0.338348i \(-0.890132\pi\)
0.468825 + 0.883291i \(0.344677\pi\)
\(434\) 0 0
\(435\) −4.49871 9.85081i −0.215697 0.472310i
\(436\) 0 0
\(437\) 5.04319 + 21.8901i 0.241248 + 1.04715i
\(438\) 0 0
\(439\) −3.74886 8.20886i −0.178923 0.391787i 0.798827 0.601561i \(-0.205454\pi\)
−0.977750 + 0.209774i \(0.932727\pi\)
\(440\) 0 0
\(441\) −11.4195 + 13.1788i −0.543787 + 0.627564i
\(442\) 0 0
\(443\) −10.9300 12.6139i −0.519298 0.599302i 0.434157 0.900837i \(-0.357046\pi\)
−0.953455 + 0.301535i \(0.902501\pi\)
\(444\) 0 0
\(445\) 12.4524 + 3.65635i 0.590299 + 0.173327i
\(446\) 0 0
\(447\) 0.175748 1.22236i 0.00831260 0.0578154i
\(448\) 0 0
\(449\) −5.05854 + 11.0767i −0.238727 + 0.522740i −0.990636 0.136527i \(-0.956406\pi\)
0.751909 + 0.659267i \(0.229133\pi\)
\(450\) 0 0
\(451\) −23.9808 + 15.4115i −1.12921 + 0.725700i
\(452\) 0 0
\(453\) 0.696590 + 4.84489i 0.0327287 + 0.227633i
\(454\) 0 0
\(455\) 49.1000 + 31.5547i 2.30184 + 1.47931i
\(456\) 0 0
\(457\) −14.2626 + 4.18787i −0.667175 + 0.195900i −0.597745 0.801686i \(-0.703936\pi\)
−0.0694306 + 0.997587i \(0.522118\pi\)
\(458\) 0 0
\(459\) −2.11386 −0.0986665
\(460\) 0 0
\(461\) −39.7608 −1.85185 −0.925924 0.377711i \(-0.876711\pi\)
−0.925924 + 0.377711i \(0.876711\pi\)
\(462\) 0 0
\(463\) 18.2214 5.35028i 0.846819 0.248649i 0.170592 0.985342i \(-0.445432\pi\)
0.676227 + 0.736693i \(0.263614\pi\)
\(464\) 0 0
\(465\) −28.0361 18.0177i −1.30014 0.835550i
\(466\) 0 0
\(467\) 2.04411 + 14.2171i 0.0945899 + 0.657887i 0.980859 + 0.194717i \(0.0623790\pi\)
−0.886269 + 0.463170i \(0.846712\pi\)
\(468\) 0 0
\(469\) 41.7100 26.8054i 1.92599 1.23776i
\(470\) 0 0
\(471\) 5.67880 12.4348i 0.261665 0.572967i
\(472\) 0 0
\(473\) 3.62664 25.2238i 0.166753 1.15979i
\(474\) 0 0
\(475\) 29.9634 + 8.79806i 1.37482 + 0.403683i
\(476\) 0 0
\(477\) −2.25531 2.60277i −0.103264 0.119173i
\(478\) 0 0
\(479\) 15.9907 18.4542i 0.730632 0.843194i −0.261911 0.965092i \(-0.584353\pi\)
0.992543 + 0.121898i \(0.0388981\pi\)
\(480\) 0 0
\(481\) −4.86930 10.6623i −0.222021 0.486158i
\(482\) 0 0
\(483\) −23.2263 4.75570i −1.05683 0.216392i
\(484\) 0 0
\(485\) −14.3512 31.4248i −0.651655 1.42693i
\(486\) 0 0
\(487\) −25.3548 + 29.2610i −1.14894 + 1.32594i −0.211666 + 0.977342i \(0.567889\pi\)
−0.937271 + 0.348602i \(0.886657\pi\)
\(488\) 0 0
\(489\) −10.2433 11.8214i −0.463220 0.534584i
\(490\) 0 0
\(491\) 2.83917 + 0.833654i 0.128130 + 0.0376223i 0.345169 0.938541i \(-0.387822\pi\)
−0.217039 + 0.976163i \(0.569640\pi\)
\(492\) 0 0
\(493\) 0.953787 6.63374i 0.0429564 0.298768i
\(494\) 0 0
\(495\) 7.14094 15.6365i 0.320961 0.702807i
\(496\) 0 0
\(497\) −46.1358 + 29.6497i −2.06947 + 1.32997i
\(498\) 0 0
\(499\) 1.62160 + 11.2785i 0.0725929 + 0.504895i 0.993384 + 0.114839i \(0.0366352\pi\)
−0.920791 + 0.390056i \(0.872456\pi\)
\(500\) 0 0
\(501\) −12.1560 7.81217i −0.543089 0.349022i
\(502\) 0 0
\(503\) −5.84300 + 1.71566i −0.260526 + 0.0764975i −0.409387 0.912361i \(-0.634258\pi\)
0.148861 + 0.988858i \(0.452439\pi\)
\(504\) 0 0
\(505\) −38.5458 −1.71526
\(506\) 0 0
\(507\) 1.05242 0.0467395
\(508\) 0 0
\(509\) 15.7927 4.63716i 0.699999 0.205538i 0.0876798 0.996149i \(-0.472055\pi\)
0.612320 + 0.790610i \(0.290237\pi\)
\(510\) 0 0
\(511\) 4.24471 + 2.72791i 0.187775 + 0.120676i
\(512\) 0 0
\(513\) −0.666599 4.63630i −0.0294311 0.204698i
\(514\) 0 0
\(515\) 22.5162 14.4703i 0.992182 0.637636i
\(516\) 0 0
\(517\) 10.3007 22.5554i 0.453025 0.991986i
\(518\) 0 0
\(519\) −2.49169 + 17.3301i −0.109373 + 0.760706i
\(520\) 0 0
\(521\) −4.15206 1.21915i −0.181905 0.0534121i 0.189511 0.981879i \(-0.439310\pi\)
−0.371416 + 0.928466i \(0.621128\pi\)
\(522\) 0 0
\(523\) −6.04191 6.97273i −0.264194 0.304896i 0.608117 0.793847i \(-0.291925\pi\)
−0.872311 + 0.488951i \(0.837380\pi\)
\(524\) 0 0
\(525\) −21.5833 + 24.9085i −0.941973 + 1.08709i
\(526\) 0 0
\(527\) −8.56776 18.7608i −0.373218 0.817233i
\(528\) 0 0
\(529\) −7.01790 21.9032i −0.305126 0.952312i
\(530\) 0 0
\(531\) −2.67069 5.84800i −0.115898 0.253781i
\(532\) 0 0
\(533\) −12.8213 + 14.7966i −0.555354 + 0.640913i
\(534\) 0 0
\(535\) 3.05506 + 3.52572i 0.132082 + 0.152430i
\(536\) 0 0
\(537\) 22.1391 + 6.50062i 0.955372 + 0.280522i
\(538\) 0 0
\(539\) 12.4894 86.8657i 0.537957 3.74157i
\(540\) 0 0
\(541\) 3.26356 7.14619i 0.140311 0.307239i −0.826411 0.563068i \(-0.809621\pi\)
0.966722 + 0.255829i \(0.0823483\pi\)
\(542\) 0 0
\(543\) −6.95884 + 4.47217i −0.298632 + 0.191919i
\(544\) 0 0
\(545\) −3.69320 25.6867i −0.158199 1.10030i
\(546\) 0 0
\(547\) 0.583208 + 0.374805i 0.0249362 + 0.0160255i 0.553050 0.833148i \(-0.313464\pi\)
−0.528113 + 0.849174i \(0.677100\pi\)
\(548\) 0 0
\(549\) −10.2199 + 3.00085i −0.436177 + 0.128073i
\(550\) 0 0
\(551\) 14.8505 0.632651
\(552\) 0 0
\(553\) −13.8505 −0.588982
\(554\) 0 0
\(555\) 11.1139 3.26334i 0.471759 0.138521i
\(556\) 0 0
\(557\) 24.0186 + 15.4358i 1.01770 + 0.654037i 0.939375 0.342891i \(-0.111406\pi\)
0.0783260 + 0.996928i \(0.475043\pi\)
\(558\) 0 0
\(559\) −2.49088 17.3244i −0.105353 0.732746i
\(560\) 0 0
\(561\) 8.94943 5.75145i 0.377845 0.242826i
\(562\) 0 0
\(563\) 5.74643 12.5829i 0.242183 0.530307i −0.749037 0.662528i \(-0.769484\pi\)
0.991220 + 0.132221i \(0.0422109\pi\)
\(564\) 0 0
\(565\) −0.739379 + 5.14249i −0.0311059 + 0.216346i
\(566\) 0 0
\(567\) 4.74325 + 1.39274i 0.199198 + 0.0584897i
\(568\) 0 0
\(569\) −21.3939 24.6899i −0.896880 1.03506i −0.999188 0.0403022i \(-0.987168\pi\)
0.102307 0.994753i \(-0.467378\pi\)
\(570\) 0 0
\(571\) 13.3700 15.4298i 0.559517 0.645716i −0.403557 0.914954i \(-0.632226\pi\)
0.963074 + 0.269238i \(0.0867718\pi\)
\(572\) 0 0
\(573\) 3.48721 + 7.63593i 0.145680 + 0.318996i
\(574\) 0 0
\(575\) −31.3243 6.41381i −1.30631 0.267474i
\(576\) 0 0
\(577\) 18.2715 + 40.0090i 0.760652 + 1.66560i 0.746219 + 0.665701i \(0.231867\pi\)
0.0144333 + 0.999896i \(0.495406\pi\)
\(578\) 0 0
\(579\) −0.593774 + 0.685252i −0.0246764 + 0.0284781i
\(580\) 0 0
\(581\) 40.5996 + 46.8544i 1.68435 + 1.94385i
\(582\) 0 0
\(583\) 16.6300 + 4.88300i 0.688743 + 0.202233i
\(584\) 0 0
\(585\) 1.68024 11.6863i 0.0694693 0.483170i
\(586\) 0 0
\(587\) −4.91947 + 10.7721i −0.203048 + 0.444614i −0.983573 0.180511i \(-0.942225\pi\)
0.780525 + 0.625125i \(0.214952\pi\)
\(588\) 0 0
\(589\) 38.4460 24.7077i 1.58414 1.01806i
\(590\) 0 0
\(591\) −2.37751 16.5359i −0.0977976 0.680197i
\(592\) 0 0
\(593\) 21.7045 + 13.9486i 0.891296 + 0.572801i 0.904197 0.427116i \(-0.140470\pi\)
−0.0129013 + 0.999917i \(0.504107\pi\)
\(594\) 0 0
\(595\) −34.2478 + 10.0561i −1.40402 + 0.412258i
\(596\) 0 0
\(597\) 5.17584 0.211833
\(598\) 0 0
\(599\) 14.7880 0.604222 0.302111 0.953273i \(-0.402309\pi\)
0.302111 + 0.953273i \(0.402309\pi\)
\(600\) 0 0
\(601\) −5.55362 + 1.63069i −0.226537 + 0.0665172i −0.393031 0.919525i \(-0.628573\pi\)
0.166494 + 0.986042i \(0.446755\pi\)
\(602\) 0 0
\(603\) −8.43736 5.42236i −0.343596 0.220816i
\(604\) 0 0
\(605\) 6.96446 + 48.4389i 0.283145 + 1.96932i
\(606\) 0 0
\(607\) 4.97908 3.19986i 0.202095 0.129878i −0.435679 0.900102i \(-0.643492\pi\)
0.637774 + 0.770224i \(0.279855\pi\)
\(608\) 0 0
\(609\) −6.51090 + 14.2569i −0.263835 + 0.577718i
\(610\) 0 0
\(611\) 2.42372 16.8574i 0.0980533 0.681976i
\(612\) 0 0
\(613\) −32.1008 9.42563i −1.29654 0.380698i −0.440566 0.897720i \(-0.645222\pi\)
−0.855972 + 0.517023i \(0.827040\pi\)
\(614\) 0 0
\(615\) −12.6699 14.6219i −0.510901 0.589612i
\(616\) 0 0
\(617\) −17.9120 + 20.6715i −0.721108 + 0.832203i −0.991440 0.130564i \(-0.958321\pi\)
0.270332 + 0.962767i \(0.412867\pi\)
\(618\) 0 0
\(619\) 11.0893 + 24.2823i 0.445718 + 0.975987i 0.990513 + 0.137418i \(0.0438803\pi\)
−0.544795 + 0.838569i \(0.683392\pi\)
\(620\) 0 0
\(621\) 1.07669 + 4.67341i 0.0432061 + 0.187537i
\(622\) 0 0
\(623\) −7.80271 17.0855i −0.312609 0.684518i
\(624\) 0 0
\(625\) 9.09307 10.4940i 0.363723 0.419758i
\(626\) 0 0
\(627\) 15.4367 + 17.8150i 0.616484 + 0.711461i
\(628\) 0 0
\(629\) 6.87800 + 2.01956i 0.274244 + 0.0805252i
\(630\) 0 0
\(631\) 1.28615 8.94537i 0.0512008 0.356109i −0.948075 0.318048i \(-0.896973\pi\)
0.999275 0.0380614i \(-0.0121182\pi\)
\(632\) 0 0
\(633\) −0.253280 + 0.554606i −0.0100670 + 0.0220436i
\(634\) 0 0
\(635\) −60.9019 + 39.1393i −2.41682 + 1.55319i
\(636\) 0 0
\(637\) −8.57807 59.6618i −0.339875 2.36389i
\(638\) 0 0
\(639\) 9.33263 + 5.99772i 0.369193 + 0.237266i
\(640\) 0 0
\(641\) −3.97575 + 1.16739i −0.157033 + 0.0461090i −0.359304 0.933221i \(-0.616986\pi\)
0.202271 + 0.979330i \(0.435168\pi\)
\(642\) 0 0
\(643\) 2.10692 0.0830890 0.0415445 0.999137i \(-0.486772\pi\)
0.0415445 + 0.999137i \(0.486772\pi\)
\(644\) 0 0
\(645\) 17.2959 0.681026
\(646\) 0 0
\(647\) −17.2173 + 5.05547i −0.676884 + 0.198751i −0.602066 0.798446i \(-0.705656\pi\)
−0.0748177 + 0.997197i \(0.523837\pi\)
\(648\) 0 0
\(649\) 27.2183 + 17.4921i 1.06841 + 0.686626i
\(650\) 0 0
\(651\) 6.86425 + 47.7419i 0.269031 + 1.87115i
\(652\) 0 0
\(653\) −9.13678 + 5.87185i −0.357550 + 0.229783i −0.707067 0.707147i \(-0.749982\pi\)
0.349517 + 0.936930i \(0.386346\pi\)
\(654\) 0 0
\(655\) 11.6290 25.4640i 0.454384 0.994962i
\(656\) 0 0
\(657\) 0.145257 1.01029i 0.00566702 0.0394150i
\(658\) 0 0
\(659\) 4.20751 + 1.23544i 0.163901 + 0.0481257i 0.362654 0.931924i \(-0.381871\pi\)
−0.198752 + 0.980050i \(0.563689\pi\)
\(660\) 0 0
\(661\) 2.63120 + 3.03657i 0.102342 + 0.118109i 0.804610 0.593804i \(-0.202375\pi\)
−0.702268 + 0.711913i \(0.747829\pi\)
\(662\) 0 0
\(663\) 4.78481 5.52197i 0.185827 0.214456i
\(664\) 0 0
\(665\) −32.8558 71.9441i −1.27409 2.78987i
\(666\) 0 0
\(667\) −15.1519 + 1.27021i −0.586686 + 0.0491826i
\(668\) 0 0
\(669\) 4.42758 + 9.69506i 0.171180 + 0.374833i
\(670\) 0 0
\(671\) 35.1033 40.5113i 1.35515 1.56392i
\(672\) 0 0
\(673\) 18.9582 + 21.8789i 0.730784 + 0.843369i 0.992560 0.121759i \(-0.0388536\pi\)
−0.261776 + 0.965129i \(0.584308\pi\)
\(674\) 0 0
\(675\) 6.39701 + 1.87833i 0.246221 + 0.0722970i
\(676\) 0 0
\(677\) 3.08907 21.4850i 0.118723 0.825734i −0.840243 0.542210i \(-0.817588\pi\)
0.958965 0.283523i \(-0.0915034\pi\)
\(678\) 0 0
\(679\) −20.7702 + 45.4805i −0.797089 + 1.74538i
\(680\) 0 0
\(681\) −5.21177 + 3.34940i −0.199716 + 0.128349i
\(682\) 0 0
\(683\) 1.69873 + 11.8149i 0.0650002 + 0.452086i 0.996165 + 0.0874890i \(0.0278843\pi\)
−0.931165 + 0.364597i \(0.881207\pi\)
\(684\) 0 0
\(685\) −14.3576 9.22707i −0.548576 0.352548i
\(686\) 0 0
\(687\) 11.5071 3.37880i 0.439024 0.128909i
\(688\) 0 0
\(689\) 11.9041 0.453511
\(690\) 0 0
\(691\) 21.4766 0.817009 0.408505 0.912756i \(-0.366050\pi\)
0.408505 + 0.912756i \(0.366050\pi\)
\(692\) 0 0
\(693\) −23.8708 + 7.00911i −0.906778 + 0.266254i
\(694\) 0 0
\(695\) −41.0498 26.3811i −1.55711 1.00069i
\(696\) 0 0
\(697\) −1.70401 11.8516i −0.0645438 0.448912i
\(698\) 0 0
\(699\) 1.11484 0.716467i 0.0421673 0.0270993i
\(700\) 0 0
\(701\) −19.7155 + 43.1709i −0.744644 + 1.63054i 0.0311179 + 0.999516i \(0.490093\pi\)
−0.775761 + 0.631026i \(0.782634\pi\)
\(702\) 0 0
\(703\) −2.26052 + 15.7223i −0.0852573 + 0.592977i
\(704\) 0 0
\(705\) 16.1479 + 4.74145i 0.608164 + 0.178573i
\(706\) 0 0
\(707\) 36.5324 + 42.1607i 1.37394 + 1.58561i
\(708\) 0 0
\(709\) −8.52521 + 9.83861i −0.320171 + 0.369497i −0.892906 0.450244i \(-0.851337\pi\)
0.572735 + 0.819741i \(0.305883\pi\)
\(710\) 0 0
\(711\) 1.16389 + 2.54857i 0.0436494 + 0.0955788i
\(712\) 0 0
\(713\) −37.1131 + 28.4977i −1.38990 + 1.06725i
\(714\) 0 0
\(715\) 24.6828 + 54.0479i 0.923086 + 2.02128i
\(716\) 0 0
\(717\) 17.1891 19.8373i 0.641940 0.740839i
\(718\) 0 0
\(719\) −28.1192 32.4513i −1.04867 1.21023i −0.977097 0.212793i \(-0.931744\pi\)
−0.0715713 0.997435i \(-0.522801\pi\)
\(720\) 0 0
\(721\) −37.1674 10.9133i −1.38419 0.406434i
\(722\) 0 0
\(723\) 0.392986 2.73328i 0.0146153 0.101652i
\(724\) 0 0
\(725\) −8.78097 + 19.2276i −0.326117 + 0.714097i
\(726\) 0 0
\(727\) 7.41518 4.76544i 0.275014 0.176741i −0.395863 0.918310i \(-0.629554\pi\)
0.670876 + 0.741569i \(0.265918\pi\)
\(728\) 0 0
\(729\) −0.142315 0.989821i −0.00527092 0.0366601i
\(730\) 0 0
\(731\) 9.00462 + 5.78692i 0.333048 + 0.214037i
\(732\) 0 0
\(733\) 14.5715 4.27859i 0.538212 0.158033i −0.00131905 0.999999i \(-0.500420\pi\)
0.539531 + 0.841966i \(0.318602\pi\)
\(734\) 0 0
\(735\) 59.5635 2.19703
\(736\) 0 0
\(737\) 50.4745 1.85925
\(738\) 0 0
\(739\) −14.0846 + 4.13560i −0.518109 + 0.152131i −0.530324 0.847795i \(-0.677930\pi\)
0.0122151 + 0.999925i \(0.496112\pi\)
\(740\) 0 0
\(741\) 13.6201 + 8.75313i 0.500348 + 0.321554i
\(742\) 0 0
\(743\) −4.45729 31.0012i −0.163522 1.13732i −0.891928 0.452177i \(-0.850648\pi\)
0.728406 0.685145i \(-0.240261\pi\)
\(744\) 0 0
\(745\) −3.54853 + 2.28050i −0.130008 + 0.0835511i
\(746\) 0 0
\(747\) 5.20980 11.4079i 0.190617 0.417392i
\(748\) 0 0
\(749\) 0.960889 6.68313i 0.0351101 0.244196i
\(750\) 0 0
\(751\) 7.55474 + 2.21827i 0.275676 + 0.0809459i 0.416648 0.909068i \(-0.363205\pi\)
−0.140972 + 0.990014i \(0.545023\pi\)
\(752\) 0 0
\(753\) 18.9419 + 21.8601i 0.690280 + 0.796625i
\(754\) 0 0
\(755\) 10.9486 12.6353i 0.398459 0.459846i
\(756\) 0 0
\(757\) −21.6496 47.4061i −0.786869 1.72300i −0.685403 0.728164i \(-0.740374\pi\)
−0.101466 0.994839i \(-0.532353\pi\)
\(758\) 0 0
\(759\) −17.2739 16.8563i −0.627003 0.611844i
\(760\) 0 0
\(761\) −12.0339 26.3505i −0.436227 0.955203i −0.992276 0.124054i \(-0.960410\pi\)
0.556049 0.831150i \(-0.312317\pi\)
\(762\) 0 0
\(763\) −24.5954 + 28.3846i −0.890414 + 1.02759i
\(764\) 0 0
\(765\) 4.72831 + 5.45676i 0.170952 + 0.197290i
\(766\) 0 0
\(767\) 21.3218 + 6.26064i 0.769884 + 0.226058i
\(768\) 0 0
\(769\) −0.0824698 + 0.573590i −0.00297394 + 0.0206842i −0.991254 0.131965i \(-0.957871\pi\)
0.988280 + 0.152649i \(0.0487804\pi\)
\(770\) 0 0
\(771\) 2.14934 4.70640i 0.0774066 0.169497i
\(772\) 0 0
\(773\) 23.5018 15.1037i 0.845301 0.543242i −0.0448051 0.998996i \(-0.514267\pi\)
0.890106 + 0.455754i \(0.150630\pi\)
\(774\) 0 0
\(775\) 9.25752 + 64.3875i 0.332540 + 2.31287i
\(776\) 0 0
\(777\) −14.1028 9.06331i −0.505934 0.325144i
\(778\) 0 0
\(779\) 25.4567 7.47475i 0.912079 0.267811i
\(780\) 0 0
\(781\) −55.8302 −1.99776
\(782\) 0 0
\(783\) 3.17048 0.113304
\(784\) 0 0
\(785\) −44.8020 + 13.1550i −1.59905 + 0.469524i
\(786\) 0 0
\(787\) −31.2614 20.0905i −1.11435 0.716148i −0.152112 0.988363i \(-0.548607\pi\)
−0.962236 + 0.272215i \(0.912244\pi\)
\(788\) 0 0
\(789\) 2.16806 + 15.0792i 0.0771851 + 0.536834i
\(790\) 0 0
\(791\) 6.32553 4.06517i 0.224910 0.144541i
\(792\) 0 0
\(793\) 15.2943 33.4898i 0.543116 1.18926i
\(794\) 0 0
\(795\) −1.67413 + 11.6438i −0.0593752 + 0.412964i
\(796\) 0 0
\(797\) −29.8641 8.76890i −1.05784 0.310610i −0.293860 0.955848i \(-0.594940\pi\)
−0.763982 + 0.645238i \(0.776758\pi\)
\(798\) 0 0
\(799\) 6.82053 + 7.87131i 0.241293 + 0.278467i
\(800\) 0 0
\(801\) −2.48816 + 2.87149i −0.0879148 + 0.101459i
\(802\) 0 0
\(803\) 2.13384 + 4.67245i 0.0753015 + 0.164887i
\(804\) 0 0
\(805\) 39.6764 + 70.5944i 1.39841 + 2.48813i
\(806\) 0 0
\(807\) 1.98788 + 4.35285i 0.0699766 + 0.153227i
\(808\) 0 0
\(809\) 4.22705 4.87828i 0.148615 0.171511i −0.676561 0.736387i \(-0.736530\pi\)
0.825176 + 0.564876i \(0.191076\pi\)
\(810\) 0 0
\(811\) 11.3684 + 13.1199i 0.399200 + 0.460701i 0.919389 0.393350i \(-0.128684\pi\)
−0.520189 + 0.854051i \(0.674138\pi\)
\(812\) 0 0
\(813\) −10.1795 2.98896i −0.357010 0.104828i
\(814\) 0 0
\(815\) −7.60368 + 52.8848i −0.266345 + 1.85247i
\(816\) 0 0
\(817\) −9.85279 + 21.5746i −0.344706 + 0.754800i
\(818\) 0 0
\(819\) −14.3748 + 9.23810i −0.502295 + 0.322805i
\(820\) 0 0
\(821\) −2.26018 15.7199i −0.0788807 0.548628i −0.990492 0.137573i \(-0.956070\pi\)
0.911611 0.411054i \(-0.134839\pi\)
\(822\) 0 0
\(823\) −43.7424 28.1115i −1.52476 0.979906i −0.990939 0.134310i \(-0.957118\pi\)
−0.533824 0.845596i \(-0.679245\pi\)
\(824\) 0 0
\(825\) −32.1936 + 9.45288i −1.12084 + 0.329107i
\(826\) 0 0
\(827\) −2.12984 −0.0740616 −0.0370308 0.999314i \(-0.511790\pi\)
−0.0370308 + 0.999314i \(0.511790\pi\)
\(828\) 0 0
\(829\) 10.9168 0.379155 0.189577 0.981866i \(-0.439288\pi\)
0.189577 + 0.981866i \(0.439288\pi\)
\(830\) 0 0
\(831\) −22.5562 + 6.62311i −0.782467 + 0.229753i
\(832\) 0 0
\(833\) 31.0100 + 19.9289i 1.07443 + 0.690497i
\(834\) 0 0
\(835\) 7.02416 + 48.8541i 0.243081 + 1.69067i
\(836\) 0 0
\(837\) 8.20798 5.27495i 0.283709 0.182329i
\(838\) 0 0
\(839\) 16.9393 37.0919i 0.584810 1.28056i −0.353717 0.935352i \(-0.615083\pi\)
0.938528 0.345204i \(-0.112190\pi\)
\(840\) 0 0
\(841\) 2.69659 18.7552i 0.0929858 0.646731i
\(842\) 0 0
\(843\) 4.72535 + 1.38749i 0.162750 + 0.0477876i
\(844\) 0 0
\(845\) −2.35406 2.71674i −0.0809823 0.0934585i
\(846\) 0 0
\(847\) 46.3809 53.5264i 1.59367 1.83919i
\(848\) 0 0
\(849\) 11.6901 + 25.5978i 0.401204 + 0.878515i
\(850\) 0 0
\(851\) 0.961639 16.2348i 0.0329645 0.556522i
\(852\) 0 0
\(853\) 11.7017 + 25.6231i 0.400658 + 0.877320i 0.997203 + 0.0747397i \(0.0238126\pi\)
−0.596545 + 0.802580i \(0.703460\pi\)
\(854\) 0 0
\(855\) −10.4772 + 12.0913i −0.358312 + 0.413514i
\(856\) 0 0
\(857\) −2.95650 3.41199i −0.100992 0.116551i 0.703003 0.711187i \(-0.251842\pi\)
−0.803996 + 0.594635i \(0.797296\pi\)
\(858\) 0 0
\(859\) −38.1809 11.2109i −1.30272 0.382512i −0.444490 0.895784i \(-0.646615\pi\)
−0.858226 + 0.513271i \(0.828433\pi\)
\(860\) 0 0
\(861\) −3.98500 + 27.7163i −0.135809 + 0.944569i
\(862\) 0 0
\(863\) −4.92546 + 10.7852i −0.167664 + 0.367134i −0.974749 0.223301i \(-0.928317\pi\)
0.807085 + 0.590435i \(0.201044\pi\)
\(864\) 0 0
\(865\) 50.3097 32.3321i 1.71058 1.09932i
\(866\) 0 0
\(867\) −1.78343 12.4040i −0.0605685 0.421263i
\(868\) 0 0
\(869\) −11.8618 7.62310i −0.402383 0.258596i
\(870\) 0 0
\(871\) 33.2630 9.76690i 1.12707 0.330939i
\(872\) 0 0
\(873\) 10.1141 0.342309
\(874\) 0 0
\(875\) 28.1494 0.951624
\(876\) 0 0
\(877\) −34.4233 + 10.1076i −1.16239 + 0.341309i −0.805362 0.592783i \(-0.798029\pi\)
−0.357031 + 0.934093i \(0.616211\pi\)
\(878\) 0 0
\(879\) −0.851310 0.547104i −0.0287140 0.0184533i
\(880\) 0 0
\(881\) −1.36864 9.51909i −0.0461106 0.320706i −0.999802 0.0199182i \(-0.993659\pi\)
0.953691 0.300788i \(-0.0972497\pi\)
\(882\) 0 0
\(883\) −21.1778 + 13.6101i −0.712689 + 0.458017i −0.846087 0.533045i \(-0.821048\pi\)
0.133398 + 0.991063i \(0.457411\pi\)
\(884\) 0 0
\(885\) −9.12230 + 19.9751i −0.306643 + 0.671454i
\(886\) 0 0
\(887\) 0.988822 6.87740i 0.0332014 0.230921i −0.966464 0.256804i \(-0.917331\pi\)
0.999665 + 0.0258830i \(0.00823973\pi\)
\(888\) 0 0
\(889\) 100.531 + 29.5185i 3.37169 + 0.990018i
\(890\) 0 0
\(891\) 3.29565 + 3.80338i 0.110408 + 0.127418i
\(892\) 0 0
\(893\) −15.1132 + 17.4416i −0.505744 + 0.583660i
\(894\) 0 0
\(895\) −32.7402 71.6909i −1.09438 2.39636i
\(896\) 0 0
\(897\) −14.6453 7.76586i −0.488993 0.259295i
\(898\) 0 0
\(899\) 12.8504 + 28.1384i 0.428585 + 0.938470i
\(900\) 0 0
\(901\) −4.76741 + 5.50189i −0.158826 + 0.183295i
\(902\) 0 0
\(903\) −16.3925 18.9179i −0.545508 0.629550i
\(904\) 0 0
\(905\) 27.1102 + 7.96027i 0.901173 + 0.264608i
\(906\) 0 0
\(907\) −5.47630 + 38.0885i −0.181838 + 1.26471i 0.670576 + 0.741841i \(0.266047\pi\)
−0.852414 + 0.522868i \(0.824862\pi\)
\(908\) 0 0
\(909\) 4.68789 10.2651i 0.155488 0.340470i
\(910\) 0 0
\(911\) 17.3325 11.1389i 0.574251 0.369049i −0.221051 0.975262i \(-0.570949\pi\)
0.795302 + 0.606214i \(0.207312\pi\)
\(912\) 0 0
\(913\) 8.98216 + 62.4723i 0.297266 + 2.06753i
\(914\) 0 0
\(915\) 30.6066 + 19.6696i 1.01182 + 0.650258i
\(916\) 0 0
\(917\) −38.8737 + 11.4144i −1.28372 + 0.376935i
\(918\) 0 0
\(919\) 10.7289 0.353912 0.176956 0.984219i \(-0.443375\pi\)
0.176956 + 0.984219i \(0.443375\pi\)
\(920\) 0 0
\(921\) −5.84691 −0.192662
\(922\) 0 0
\(923\) −36.7925 + 10.8032i −1.21104 + 0.355593i
\(924\) 0 0
\(925\) −19.0198 12.2233i −0.625367 0.401899i
\(926\) 0 0
\(927\) 1.11516 + 7.75611i 0.0366267 + 0.254744i
\(928\) 0 0
\(929\) 26.8515 17.2564i 0.880971 0.566165i −0.0201193 0.999798i \(-0.506405\pi\)
0.901090 + 0.433632i \(0.142768\pi\)
\(930\) 0 0
\(931\) −33.9310 + 74.2985i −1.11204 + 2.43503i
\(932\) 0 0
\(933\) −3.31430 + 23.0515i −0.108505 + 0.754671i
\(934\) 0 0
\(935\) −34.8651 10.2373i −1.14021 0.334796i
\(936\) 0 0
\(937\) −12.7153 14.6743i −0.415391 0.479387i 0.509036 0.860745i \(-0.330002\pi\)
−0.924427 + 0.381358i \(0.875457\pi\)
\(938\) 0 0
\(939\) 10.1875 11.7570i 0.332457 0.383676i
\(940\) 0 0
\(941\) −17.6723 38.6969i −0.576100 1.26148i −0.943485 0.331415i \(-0.892474\pi\)
0.367385 0.930069i \(-0.380253\pi\)
\(942\) 0 0
\(943\) −25.3341 + 9.80388i −0.824992 + 0.319258i
\(944\) 0 0
\(945\) −7.01450 15.3596i −0.228182 0.499648i
\(946\) 0 0
\(947\) −20.7791 + 23.9804i −0.675231 + 0.779259i −0.985185 0.171493i \(-0.945141\pi\)
0.309954 + 0.950752i \(0.399686\pi\)
\(948\) 0 0
\(949\) 2.31034 + 2.66628i 0.0749969 + 0.0865510i
\(950\) 0 0
\(951\) −16.9590 4.97962i −0.549935 0.161475i
\(952\) 0 0
\(953\) −2.78316 + 19.3573i −0.0901553 + 0.627044i 0.893778 + 0.448509i \(0.148045\pi\)
−0.983934 + 0.178535i \(0.942864\pi\)
\(954\) 0 0
\(955\) 11.9113 26.0821i 0.385441 0.843998i
\(956\) 0 0
\(957\) −13.4228 + 8.62633i −0.433899 + 0.278850i
\(958\) 0 0
\(959\) 3.51527 + 24.4492i 0.113514 + 0.789506i
\(960\) 0 0
\(961\) 54.0050 + 34.7069i 1.74210 + 1.11958i
\(962\) 0 0
\(963\) −1.31048 + 0.384792i −0.0422297 + 0.0123998i
\(964\) 0 0
\(965\) 3.09709 0.0996987
\(966\) 0 0
\(967\) 32.1644 1.03434 0.517168 0.855884i \(-0.326986\pi\)
0.517168 + 0.855884i \(0.326986\pi\)
\(968\) 0 0
\(969\) −9.50020 + 2.78951i −0.305190 + 0.0896120i
\(970\) 0 0
\(971\) −5.81066 3.73428i −0.186473 0.119839i 0.444074 0.895990i \(-0.353533\pi\)
−0.630547 + 0.776151i \(0.717169\pi\)
\(972\) 0 0
\(973\) 10.0505 + 69.9026i 0.322204 + 2.24097i
\(974\) 0 0
\(975\) −19.3866 + 12.4590i −0.620869 + 0.399008i
\(976\) 0 0
\(977\) 23.4685 51.3888i 0.750824 1.64407i −0.0140556 0.999901i \(-0.504474\pi\)
0.764879 0.644174i \(-0.222799\pi\)
\(978\) 0 0
\(979\) 2.72127 18.9268i 0.0869722 0.604905i
\(980\) 0 0
\(981\) 7.28976 + 2.14047i 0.232744 + 0.0683398i
\(982\) 0 0
\(983\) −32.9111 37.9814i −1.04970 1.21142i −0.976816 0.214079i \(-0.931325\pi\)
−0.0728848 0.997340i \(-0.523221\pi\)
\(984\) 0 0
\(985\) −37.3682 + 43.1252i −1.19065 + 1.37408i
\(986\) 0 0
\(987\) −10.1183 22.1561i −0.322070 0.705235i
\(988\) 0 0
\(989\) 8.20747 22.8553i 0.260982 0.726757i
\(990\) 0 0
\(991\) 7.40268 + 16.2096i 0.235154 + 0.514915i 0.990014 0.140971i \(-0.0450224\pi\)
−0.754860 + 0.655886i \(0.772295\pi\)
\(992\) 0 0
\(993\) 15.5167 17.9073i 0.492408 0.568270i
\(994\) 0 0
\(995\) −11.5774 13.3610i −0.367028 0.423573i
\(996\) 0 0
\(997\) 12.6886 + 3.72571i 0.401852 + 0.117994i 0.476412 0.879222i \(-0.341937\pi\)
−0.0745601 + 0.997217i \(0.523755\pi\)
\(998\) 0 0
\(999\) −0.482608 + 3.35661i −0.0152690 + 0.106198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.2.q.c.73.1 30
23.6 even 11 inner 552.2.q.c.121.1 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.q.c.73.1 30 1.1 even 1 trivial
552.2.q.c.121.1 yes 30 23.6 even 11 inner