Properties

Label 552.2.q.c.49.1
Level $552$
Weight $2$
Character 552.49
Analytic conductor $4.408$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,2,Mod(25,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,3,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 49.1
Character \(\chi\) \(=\) 552.49
Dual form 552.2.q.c.169.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.415415 + 0.909632i) q^{3} +(-2.29838 + 2.65247i) q^{5} +(-2.05854 + 1.32294i) q^{7} +(-0.654861 - 0.755750i) q^{9} +(0.516583 - 3.59291i) q^{11} +(-1.06754 - 0.686067i) q^{13} +(-1.45799 - 3.19256i) q^{15} +(-3.04373 - 0.893720i) q^{17} +(5.42582 - 1.59316i) q^{19} +(-0.348244 - 2.42209i) q^{21} +(-2.27256 - 4.22321i) q^{23} +(-1.04148 - 7.24368i) q^{25} +(0.959493 - 0.281733i) q^{27} +(-3.58685 - 1.05319i) q^{29} +(1.20314 + 2.63450i) q^{31} +(3.05363 + 1.96245i) q^{33} +(1.22224 - 8.50086i) q^{35} +(0.367275 + 0.423858i) q^{37} +(1.06754 - 0.686067i) q^{39} +(-6.77685 + 7.82090i) q^{41} +(1.22675 - 2.68620i) q^{43} +3.50972 q^{45} -11.8576 q^{47} +(-0.420491 + 0.920747i) q^{49} +(2.07737 - 2.39741i) q^{51} +(-9.81751 + 6.30933i) q^{53} +(8.34280 + 9.62810i) q^{55} +(-0.804773 + 5.59732i) q^{57} +(9.75532 + 6.26936i) q^{59} +(-2.34534 - 5.13557i) q^{61} +(2.34787 + 0.689398i) q^{63} +(4.27339 - 1.25478i) q^{65} +(-1.66547 - 11.5836i) q^{67} +(4.78562 - 0.312806i) q^{69} +(-0.110048 - 0.765404i) q^{71} +(-13.7538 + 4.03848i) q^{73} +(7.02173 + 2.06177i) q^{75} +(3.68982 + 8.07957i) q^{77} +(-5.98253 - 3.84474i) q^{79} +(-0.142315 + 0.989821i) q^{81} +(-2.61290 - 3.01545i) q^{83} +(9.36622 - 6.01931i) q^{85} +(2.44805 - 2.82520i) q^{87} +(3.55432 - 7.78287i) q^{89} +3.10521 q^{91} -2.89622 q^{93} +(-8.24477 + 18.0535i) q^{95} +(-5.63529 + 6.50347i) q^{97} +(-3.05363 + 1.96245i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 3 q^{3} - 2 q^{5} - 2 q^{7} - 3 q^{9} + 13 q^{11} - 13 q^{13} + 2 q^{15} - 11 q^{17} + 11 q^{19} - 9 q^{21} - 12 q^{23} + 17 q^{25} + 3 q^{27} + 9 q^{29} + 33 q^{31} + 9 q^{33} + 62 q^{35} + 11 q^{37}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(e\left(\frac{8}{11}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.415415 + 0.909632i −0.239840 + 0.525176i
\(4\) 0 0
\(5\) −2.29838 + 2.65247i −1.02787 + 1.18622i −0.0455569 + 0.998962i \(0.514506\pi\)
−0.982310 + 0.187260i \(0.940039\pi\)
\(6\) 0 0
\(7\) −2.05854 + 1.32294i −0.778056 + 0.500026i −0.868388 0.495886i \(-0.834844\pi\)
0.0903320 + 0.995912i \(0.471207\pi\)
\(8\) 0 0
\(9\) −0.654861 0.755750i −0.218287 0.251917i
\(10\) 0 0
\(11\) 0.516583 3.59291i 0.155756 1.08330i −0.750590 0.660768i \(-0.770231\pi\)
0.906346 0.422536i \(-0.138860\pi\)
\(12\) 0 0
\(13\) −1.06754 0.686067i −0.296083 0.190281i 0.384162 0.923266i \(-0.374490\pi\)
−0.680245 + 0.732985i \(0.738127\pi\)
\(14\) 0 0
\(15\) −1.45799 3.19256i −0.376452 0.824315i
\(16\) 0 0
\(17\) −3.04373 0.893720i −0.738213 0.216759i −0.109054 0.994036i \(-0.534782\pi\)
−0.629159 + 0.777277i \(0.716600\pi\)
\(18\) 0 0
\(19\) 5.42582 1.59316i 1.24477 0.365497i 0.407963 0.912998i \(-0.366239\pi\)
0.836805 + 0.547502i \(0.184421\pi\)
\(20\) 0 0
\(21\) −0.348244 2.42209i −0.0759930 0.528543i
\(22\) 0 0
\(23\) −2.27256 4.22321i −0.473861 0.880600i
\(24\) 0 0
\(25\) −1.04148 7.24368i −0.208297 1.44874i
\(26\) 0 0
\(27\) 0.959493 0.281733i 0.184655 0.0542195i
\(28\) 0 0
\(29\) −3.58685 1.05319i −0.666061 0.195573i −0.0688125 0.997630i \(-0.521921\pi\)
−0.597248 + 0.802057i \(0.703739\pi\)
\(30\) 0 0
\(31\) 1.20314 + 2.63450i 0.216089 + 0.473170i 0.986372 0.164533i \(-0.0526118\pi\)
−0.770282 + 0.637703i \(0.779885\pi\)
\(32\) 0 0
\(33\) 3.05363 + 1.96245i 0.531569 + 0.341619i
\(34\) 0 0
\(35\) 1.22224 8.50086i 0.206596 1.43691i
\(36\) 0 0
\(37\) 0.367275 + 0.423858i 0.0603797 + 0.0696818i 0.785136 0.619324i \(-0.212593\pi\)
−0.724756 + 0.689005i \(0.758048\pi\)
\(38\) 0 0
\(39\) 1.06754 0.686067i 0.170943 0.109859i
\(40\) 0 0
\(41\) −6.77685 + 7.82090i −1.05837 + 1.22142i −0.0839966 + 0.996466i \(0.526768\pi\)
−0.974369 + 0.224954i \(0.927777\pi\)
\(42\) 0 0
\(43\) 1.22675 2.68620i 0.187077 0.409642i −0.792734 0.609568i \(-0.791343\pi\)
0.979811 + 0.199926i \(0.0640703\pi\)
\(44\) 0 0
\(45\) 3.50972 0.523199
\(46\) 0 0
\(47\) −11.8576 −1.72961 −0.864804 0.502110i \(-0.832557\pi\)
−0.864804 + 0.502110i \(0.832557\pi\)
\(48\) 0 0
\(49\) −0.420491 + 0.920747i −0.0600702 + 0.131535i
\(50\) 0 0
\(51\) 2.07737 2.39741i 0.290890 0.335705i
\(52\) 0 0
\(53\) −9.81751 + 6.30933i −1.34854 + 0.866653i −0.997566 0.0697323i \(-0.977785\pi\)
−0.350973 + 0.936386i \(0.614149\pi\)
\(54\) 0 0
\(55\) 8.34280 + 9.62810i 1.12494 + 1.29825i
\(56\) 0 0
\(57\) −0.804773 + 5.59732i −0.106595 + 0.741383i
\(58\) 0 0
\(59\) 9.75532 + 6.26936i 1.27003 + 0.816201i 0.989624 0.143679i \(-0.0458932\pi\)
0.280410 + 0.959880i \(0.409530\pi\)
\(60\) 0 0
\(61\) −2.34534 5.13557i −0.300289 0.657542i 0.697994 0.716103i \(-0.254076\pi\)
−0.998284 + 0.0585611i \(0.981349\pi\)
\(62\) 0 0
\(63\) 2.34787 + 0.689398i 0.295804 + 0.0868560i
\(64\) 0 0
\(65\) 4.27339 1.25478i 0.530049 0.155636i
\(66\) 0 0
\(67\) −1.66547 11.5836i −0.203469 1.41516i −0.793890 0.608062i \(-0.791947\pi\)
0.590421 0.807096i \(-0.298962\pi\)
\(68\) 0 0
\(69\) 4.78562 0.312806i 0.576121 0.0376575i
\(70\) 0 0
\(71\) −0.110048 0.765404i −0.0130603 0.0908367i 0.982249 0.187583i \(-0.0600654\pi\)
−0.995309 + 0.0967466i \(0.969156\pi\)
\(72\) 0 0
\(73\) −13.7538 + 4.03848i −1.60976 + 0.472668i −0.958240 0.285964i \(-0.907686\pi\)
−0.651519 + 0.758632i \(0.725868\pi\)
\(74\) 0 0
\(75\) 7.02173 + 2.06177i 0.810800 + 0.238072i
\(76\) 0 0
\(77\) 3.68982 + 8.07957i 0.420494 + 0.920753i
\(78\) 0 0
\(79\) −5.98253 3.84474i −0.673087 0.432567i 0.158950 0.987287i \(-0.449189\pi\)
−0.832037 + 0.554720i \(0.812825\pi\)
\(80\) 0 0
\(81\) −0.142315 + 0.989821i −0.0158128 + 0.109980i
\(82\) 0 0
\(83\) −2.61290 3.01545i −0.286804 0.330989i 0.594005 0.804461i \(-0.297546\pi\)
−0.880809 + 0.473472i \(0.843000\pi\)
\(84\) 0 0
\(85\) 9.36622 6.01931i 1.01591 0.652885i
\(86\) 0 0
\(87\) 2.44805 2.82520i 0.262458 0.302893i
\(88\) 0 0
\(89\) 3.55432 7.78287i 0.376757 0.824983i −0.622350 0.782739i \(-0.713822\pi\)
0.999107 0.0422438i \(-0.0134506\pi\)
\(90\) 0 0
\(91\) 3.10521 0.325514
\(92\) 0 0
\(93\) −2.89622 −0.300325
\(94\) 0 0
\(95\) −8.24477 + 18.0535i −0.845896 + 1.85225i
\(96\) 0 0
\(97\) −5.63529 + 6.50347i −0.572177 + 0.660328i −0.965904 0.258900i \(-0.916640\pi\)
0.393727 + 0.919227i \(0.371186\pi\)
\(98\) 0 0
\(99\) −3.05363 + 1.96245i −0.306902 + 0.197234i
\(100\) 0 0
\(101\) 7.01701 + 8.09806i 0.698219 + 0.805787i 0.988511 0.151151i \(-0.0482979\pi\)
−0.290292 + 0.956938i \(0.593752\pi\)
\(102\) 0 0
\(103\) −0.132448 + 0.921197i −0.0130505 + 0.0907683i −0.995306 0.0967810i \(-0.969145\pi\)
0.982255 + 0.187549i \(0.0600544\pi\)
\(104\) 0 0
\(105\) 7.22492 + 4.64317i 0.705080 + 0.453127i
\(106\) 0 0
\(107\) −2.32137 5.08310i −0.224415 0.491401i 0.763613 0.645674i \(-0.223424\pi\)
−0.988028 + 0.154273i \(0.950696\pi\)
\(108\) 0 0
\(109\) 15.2551 + 4.47929i 1.46117 + 0.429039i 0.913218 0.407470i \(-0.133589\pi\)
0.547953 + 0.836509i \(0.315407\pi\)
\(110\) 0 0
\(111\) −0.538127 + 0.158008i −0.0510767 + 0.0149975i
\(112\) 0 0
\(113\) −0.809546 5.63052i −0.0761557 0.529674i −0.991811 0.127711i \(-0.959237\pi\)
0.915656 0.401963i \(-0.131672\pi\)
\(114\) 0 0
\(115\) 16.4251 + 3.67865i 1.53165 + 0.343035i
\(116\) 0 0
\(117\) 0.180596 + 1.25607i 0.0166961 + 0.116124i
\(118\) 0 0
\(119\) 7.44799 2.18693i 0.682756 0.200475i
\(120\) 0 0
\(121\) −2.08774 0.613016i −0.189795 0.0557287i
\(122\) 0 0
\(123\) −4.29894 9.41336i −0.387622 0.848774i
\(124\) 0 0
\(125\) 6.84455 + 4.39873i 0.612195 + 0.393434i
\(126\) 0 0
\(127\) −1.39870 + 9.72815i −0.124114 + 0.863234i 0.828703 + 0.559689i \(0.189079\pi\)
−0.952817 + 0.303545i \(0.901830\pi\)
\(128\) 0 0
\(129\) 1.93384 + 2.23178i 0.170265 + 0.196497i
\(130\) 0 0
\(131\) −14.7823 + 9.50001i −1.29154 + 0.830019i −0.992264 0.124149i \(-0.960380\pi\)
−0.299272 + 0.954168i \(0.596744\pi\)
\(132\) 0 0
\(133\) −9.06161 + 10.4577i −0.785741 + 0.906793i
\(134\) 0 0
\(135\) −1.45799 + 3.19256i −0.125484 + 0.274772i
\(136\) 0 0
\(137\) −3.59670 −0.307287 −0.153643 0.988126i \(-0.549101\pi\)
−0.153643 + 0.988126i \(0.549101\pi\)
\(138\) 0 0
\(139\) −4.59723 −0.389932 −0.194966 0.980810i \(-0.562460\pi\)
−0.194966 + 0.980810i \(0.562460\pi\)
\(140\) 0 0
\(141\) 4.92582 10.7860i 0.414829 0.908349i
\(142\) 0 0
\(143\) −3.01645 + 3.48117i −0.252248 + 0.291110i
\(144\) 0 0
\(145\) 11.0375 7.09337i 0.916615 0.589073i
\(146\) 0 0
\(147\) −0.662863 0.764984i −0.0546720 0.0630949i
\(148\) 0 0
\(149\) −1.15315 + 8.02034i −0.0944697 + 0.657051i 0.886477 + 0.462773i \(0.153146\pi\)
−0.980946 + 0.194278i \(0.937764\pi\)
\(150\) 0 0
\(151\) 7.47081 + 4.80120i 0.607966 + 0.390716i 0.808094 0.589054i \(-0.200499\pi\)
−0.200128 + 0.979770i \(0.564136\pi\)
\(152\) 0 0
\(153\) 1.31779 + 2.88556i 0.106537 + 0.233284i
\(154\) 0 0
\(155\) −9.75320 2.86380i −0.783396 0.230026i
\(156\) 0 0
\(157\) 21.0092 6.16886i 1.67672 0.492329i 0.701332 0.712835i \(-0.252589\pi\)
0.975386 + 0.220506i \(0.0707708\pi\)
\(158\) 0 0
\(159\) −1.66083 11.5513i −0.131712 0.916079i
\(160\) 0 0
\(161\) 10.2652 + 5.68719i 0.809013 + 0.448213i
\(162\) 0 0
\(163\) 1.60254 + 11.1459i 0.125520 + 0.873014i 0.951134 + 0.308778i \(0.0999200\pi\)
−0.825614 + 0.564236i \(0.809171\pi\)
\(164\) 0 0
\(165\) −12.2238 + 3.58922i −0.951618 + 0.279420i
\(166\) 0 0
\(167\) 10.8435 + 3.18393i 0.839092 + 0.246380i 0.672918 0.739717i \(-0.265041\pi\)
0.166174 + 0.986096i \(0.446859\pi\)
\(168\) 0 0
\(169\) −4.73144 10.3604i −0.363957 0.796954i
\(170\) 0 0
\(171\) −4.75719 3.05726i −0.363791 0.233794i
\(172\) 0 0
\(173\) 3.01076 20.9403i 0.228904 1.59206i −0.473836 0.880613i \(-0.657131\pi\)
0.702740 0.711447i \(-0.251960\pi\)
\(174\) 0 0
\(175\) 11.7269 + 13.5336i 0.886473 + 1.02304i
\(176\) 0 0
\(177\) −9.75532 + 6.26936i −0.733255 + 0.471234i
\(178\) 0 0
\(179\) 6.66146 7.68773i 0.497901 0.574608i −0.450059 0.892999i \(-0.648597\pi\)
0.947960 + 0.318391i \(0.103142\pi\)
\(180\) 0 0
\(181\) −4.42318 + 9.68542i −0.328772 + 0.719911i −0.999768 0.0215503i \(-0.993140\pi\)
0.670995 + 0.741462i \(0.265867\pi\)
\(182\) 0 0
\(183\) 5.64576 0.417347
\(184\) 0 0
\(185\) −1.96841 −0.144720
\(186\) 0 0
\(187\) −4.78340 + 10.4742i −0.349797 + 0.765948i
\(188\) 0 0
\(189\) −1.60244 + 1.84931i −0.116560 + 0.134518i
\(190\) 0 0
\(191\) −8.60852 + 5.53236i −0.622890 + 0.400307i −0.813671 0.581325i \(-0.802534\pi\)
0.190781 + 0.981633i \(0.438898\pi\)
\(192\) 0 0
\(193\) 6.64157 + 7.66478i 0.478071 + 0.551723i 0.942639 0.333814i \(-0.108336\pi\)
−0.464568 + 0.885537i \(0.653790\pi\)
\(194\) 0 0
\(195\) −0.633842 + 4.40847i −0.0453903 + 0.315697i
\(196\) 0 0
\(197\) −17.7533 11.4093i −1.26487 0.812881i −0.275925 0.961179i \(-0.588984\pi\)
−0.988943 + 0.148298i \(0.952620\pi\)
\(198\) 0 0
\(199\) 2.47795 + 5.42595i 0.175657 + 0.384635i 0.976898 0.213707i \(-0.0685537\pi\)
−0.801241 + 0.598342i \(0.795826\pi\)
\(200\) 0 0
\(201\) 11.2286 + 3.29703i 0.792007 + 0.232554i
\(202\) 0 0
\(203\) 8.77699 2.57716i 0.616024 0.180881i
\(204\) 0 0
\(205\) −5.16895 35.9508i −0.361015 2.51091i
\(206\) 0 0
\(207\) −1.70348 + 4.48310i −0.118400 + 0.311597i
\(208\) 0 0
\(209\) −2.92121 20.3175i −0.202065 1.40539i
\(210\) 0 0
\(211\) −18.4390 + 5.41417i −1.26939 + 0.372727i −0.845982 0.533212i \(-0.820985\pi\)
−0.423409 + 0.905939i \(0.639167\pi\)
\(212\) 0 0
\(213\) 0.741951 + 0.217857i 0.0508377 + 0.0149273i
\(214\) 0 0
\(215\) 4.30554 + 9.42782i 0.293635 + 0.642972i
\(216\) 0 0
\(217\) −5.96200 3.83155i −0.404727 0.260102i
\(218\) 0 0
\(219\) 2.04000 14.1885i 0.137851 0.958772i
\(220\) 0 0
\(221\) 2.63616 + 3.04229i 0.177327 + 0.204646i
\(222\) 0 0
\(223\) 0.265575 0.170675i 0.0177842 0.0114292i −0.531718 0.846921i \(-0.678454\pi\)
0.549503 + 0.835492i \(0.314817\pi\)
\(224\) 0 0
\(225\) −4.79238 + 5.53070i −0.319492 + 0.368714i
\(226\) 0 0
\(227\) 11.1097 24.3269i 0.737377 1.61463i −0.0504439 0.998727i \(-0.516064\pi\)
0.787821 0.615904i \(-0.211209\pi\)
\(228\) 0 0
\(229\) −25.3339 −1.67411 −0.837057 0.547116i \(-0.815726\pi\)
−0.837057 + 0.547116i \(0.815726\pi\)
\(230\) 0 0
\(231\) −8.88224 −0.584409
\(232\) 0 0
\(233\) −9.93226 + 21.7486i −0.650684 + 1.42480i 0.240270 + 0.970706i \(0.422764\pi\)
−0.890954 + 0.454093i \(0.849963\pi\)
\(234\) 0 0
\(235\) 27.2533 31.4519i 1.77781 2.05170i
\(236\) 0 0
\(237\) 5.98253 3.84474i 0.388607 0.249743i
\(238\) 0 0
\(239\) −0.935153 1.07922i −0.0604900 0.0698092i 0.724698 0.689067i \(-0.241979\pi\)
−0.785188 + 0.619257i \(0.787434\pi\)
\(240\) 0 0
\(241\) −0.0338900 + 0.235710i −0.00218305 + 0.0151834i −0.990884 0.134719i \(-0.956987\pi\)
0.988701 + 0.149902i \(0.0478959\pi\)
\(242\) 0 0
\(243\) −0.841254 0.540641i −0.0539664 0.0346821i
\(244\) 0 0
\(245\) −1.47581 3.23157i −0.0942859 0.206457i
\(246\) 0 0
\(247\) −6.88530 2.02171i −0.438101 0.128638i
\(248\) 0 0
\(249\) 3.82839 1.12412i 0.242615 0.0712381i
\(250\) 0 0
\(251\) 2.88789 + 20.0857i 0.182282 + 1.26780i 0.851350 + 0.524598i \(0.175784\pi\)
−0.669068 + 0.743201i \(0.733306\pi\)
\(252\) 0 0
\(253\) −16.3476 + 5.98346i −1.02776 + 0.376177i
\(254\) 0 0
\(255\) 1.58448 + 11.0203i 0.0992242 + 0.690120i
\(256\) 0 0
\(257\) 15.9917 4.69557i 0.997532 0.292902i 0.258089 0.966121i \(-0.416907\pi\)
0.739443 + 0.673219i \(0.235089\pi\)
\(258\) 0 0
\(259\) −1.31679 0.386645i −0.0818215 0.0240250i
\(260\) 0 0
\(261\) 1.55293 + 3.40045i 0.0961242 + 0.210483i
\(262\) 0 0
\(263\) −14.2732 9.17281i −0.880122 0.565620i 0.0207113 0.999785i \(-0.493407\pi\)
−0.900833 + 0.434166i \(0.857043\pi\)
\(264\) 0 0
\(265\) 5.82905 40.5419i 0.358076 2.49047i
\(266\) 0 0
\(267\) 5.60303 + 6.46624i 0.342900 + 0.395728i
\(268\) 0 0
\(269\) 3.58110 2.30144i 0.218344 0.140321i −0.426897 0.904300i \(-0.640393\pi\)
0.645241 + 0.763979i \(0.276757\pi\)
\(270\) 0 0
\(271\) −3.90435 + 4.50586i −0.237172 + 0.273712i −0.861841 0.507178i \(-0.830689\pi\)
0.624669 + 0.780890i \(0.285234\pi\)
\(272\) 0 0
\(273\) −1.28995 + 2.82460i −0.0780713 + 0.170952i
\(274\) 0 0
\(275\) −26.5639 −1.60186
\(276\) 0 0
\(277\) 19.8240 1.19111 0.595553 0.803316i \(-0.296933\pi\)
0.595553 + 0.803316i \(0.296933\pi\)
\(278\) 0 0
\(279\) 1.20314 2.63450i 0.0720298 0.157723i
\(280\) 0 0
\(281\) 7.56805 8.73400i 0.451472 0.521027i −0.483693 0.875237i \(-0.660705\pi\)
0.935166 + 0.354211i \(0.115251\pi\)
\(282\) 0 0
\(283\) −23.2358 + 14.9327i −1.38122 + 0.887659i −0.999332 0.0365476i \(-0.988364\pi\)
−0.381893 + 0.924207i \(0.624728\pi\)
\(284\) 0 0
\(285\) −12.9971 14.9994i −0.769880 0.888489i
\(286\) 0 0
\(287\) 3.60381 25.0651i 0.212726 1.47954i
\(288\) 0 0
\(289\) −5.83575 3.75041i −0.343279 0.220612i
\(290\) 0 0
\(291\) −3.57478 7.82768i −0.209557 0.458867i
\(292\) 0 0
\(293\) 17.6302 + 5.17670i 1.02997 + 0.302426i 0.752698 0.658366i \(-0.228752\pi\)
0.277270 + 0.960792i \(0.410570\pi\)
\(294\) 0 0
\(295\) −39.0508 + 11.4663i −2.27362 + 0.667596i
\(296\) 0 0
\(297\) −0.516583 3.59291i −0.0299752 0.208482i
\(298\) 0 0
\(299\) −0.471356 + 6.06757i −0.0272592 + 0.350897i
\(300\) 0 0
\(301\) 1.02838 + 7.15257i 0.0592751 + 0.412267i
\(302\) 0 0
\(303\) −10.2812 + 3.01884i −0.590641 + 0.173428i
\(304\) 0 0
\(305\) 19.0124 + 5.58255i 1.08865 + 0.319656i
\(306\) 0 0
\(307\) 4.63405 + 10.1472i 0.264479 + 0.579129i 0.994552 0.104240i \(-0.0332411\pi\)
−0.730073 + 0.683369i \(0.760514\pi\)
\(308\) 0 0
\(309\) −0.782930 0.503158i −0.0445393 0.0286237i
\(310\) 0 0
\(311\) 3.08650 21.4671i 0.175019 1.21729i −0.693067 0.720873i \(-0.743741\pi\)
0.868086 0.496413i \(-0.165350\pi\)
\(312\) 0 0
\(313\) −11.4658 13.2322i −0.648083 0.747927i 0.332699 0.943033i \(-0.392041\pi\)
−0.980782 + 0.195105i \(0.937495\pi\)
\(314\) 0 0
\(315\) −7.22492 + 4.64317i −0.407078 + 0.261613i
\(316\) 0 0
\(317\) −18.5905 + 21.4546i −1.04415 + 1.20501i −0.0658429 + 0.997830i \(0.520974\pi\)
−0.978303 + 0.207179i \(0.933572\pi\)
\(318\) 0 0
\(319\) −5.63693 + 12.3432i −0.315608 + 0.691085i
\(320\) 0 0
\(321\) 5.58808 0.311896
\(322\) 0 0
\(323\) −17.9386 −0.998129
\(324\) 0 0
\(325\) −3.85782 + 8.44745i −0.213993 + 0.468580i
\(326\) 0 0
\(327\) −10.4117 + 12.0157i −0.575768 + 0.664472i
\(328\) 0 0
\(329\) 24.4094 15.6869i 1.34573 0.864849i
\(330\) 0 0
\(331\) −17.9331 20.6959i −0.985691 1.13755i −0.990493 0.137560i \(-0.956074\pi\)
0.00480243 0.999988i \(-0.498471\pi\)
\(332\) 0 0
\(333\) 0.0798165 0.555136i 0.00437392 0.0304213i
\(334\) 0 0
\(335\) 34.5530 + 22.2058i 1.88783 + 1.21324i
\(336\) 0 0
\(337\) 4.56933 + 10.0054i 0.248907 + 0.545031i 0.992305 0.123819i \(-0.0395141\pi\)
−0.743397 + 0.668850i \(0.766787\pi\)
\(338\) 0 0
\(339\) 5.45800 + 1.60261i 0.296438 + 0.0870419i
\(340\) 0 0
\(341\) 10.0870 2.96182i 0.546244 0.160392i
\(342\) 0 0
\(343\) −2.79020 19.4063i −0.150657 1.04784i
\(344\) 0 0
\(345\) −10.1695 + 13.4127i −0.547506 + 0.722114i
\(346\) 0 0
\(347\) 0.678050 + 4.71594i 0.0363996 + 0.253165i 0.999894 0.0145639i \(-0.00463598\pi\)
−0.963494 + 0.267729i \(0.913727\pi\)
\(348\) 0 0
\(349\) −7.96416 + 2.33849i −0.426312 + 0.125176i −0.487848 0.872928i \(-0.662218\pi\)
0.0615367 + 0.998105i \(0.480400\pi\)
\(350\) 0 0
\(351\) −1.21759 0.357515i −0.0649899 0.0190828i
\(352\) 0 0
\(353\) 13.4551 + 29.4626i 0.716145 + 1.56814i 0.819229 + 0.573466i \(0.194402\pi\)
−0.103085 + 0.994673i \(0.532871\pi\)
\(354\) 0 0
\(355\) 2.28315 + 1.46729i 0.121177 + 0.0778756i
\(356\) 0 0
\(357\) −1.10471 + 7.68341i −0.0584674 + 0.406649i
\(358\) 0 0
\(359\) −4.96350 5.72818i −0.261963 0.302322i 0.609496 0.792789i \(-0.291372\pi\)
−0.871460 + 0.490467i \(0.836826\pi\)
\(360\) 0 0
\(361\) 10.9175 7.01625i 0.574605 0.369277i
\(362\) 0 0
\(363\) 1.42490 1.64442i 0.0747878 0.0863097i
\(364\) 0 0
\(365\) 20.8995 45.7635i 1.09393 2.39537i
\(366\) 0 0
\(367\) −31.6972 −1.65458 −0.827291 0.561774i \(-0.810119\pi\)
−0.827291 + 0.561774i \(0.810119\pi\)
\(368\) 0 0
\(369\) 10.3485 0.538723
\(370\) 0 0
\(371\) 11.8629 25.9761i 0.615889 1.34861i
\(372\) 0 0
\(373\) −9.46556 + 10.9238i −0.490108 + 0.565615i −0.945895 0.324474i \(-0.894813\pi\)
0.455786 + 0.890089i \(0.349358\pi\)
\(374\) 0 0
\(375\) −6.84455 + 4.39873i −0.353451 + 0.227149i
\(376\) 0 0
\(377\) 3.10654 + 3.58514i 0.159995 + 0.184644i
\(378\) 0 0
\(379\) 1.19331 8.29968i 0.0612964 0.426326i −0.935948 0.352138i \(-0.885455\pi\)
0.997244 0.0741874i \(-0.0236363\pi\)
\(380\) 0 0
\(381\) −8.26800 5.31352i −0.423582 0.272220i
\(382\) 0 0
\(383\) 8.09331 + 17.7219i 0.413549 + 0.905546i 0.995715 + 0.0924757i \(0.0294781\pi\)
−0.582166 + 0.813070i \(0.697795\pi\)
\(384\) 0 0
\(385\) −29.9115 8.78280i −1.52443 0.447613i
\(386\) 0 0
\(387\) −2.83344 + 0.831974i −0.144032 + 0.0422916i
\(388\) 0 0
\(389\) 3.08550 + 21.4601i 0.156441 + 1.08807i 0.905125 + 0.425145i \(0.139777\pi\)
−0.748684 + 0.662927i \(0.769314\pi\)
\(390\) 0 0
\(391\) 3.14269 + 14.8853i 0.158932 + 0.752784i
\(392\) 0 0
\(393\) −2.50072 17.3929i −0.126145 0.877355i
\(394\) 0 0
\(395\) 23.9482 7.03182i 1.20496 0.353809i
\(396\) 0 0
\(397\) 21.5975 + 6.34161i 1.08395 + 0.318276i 0.774457 0.632626i \(-0.218023\pi\)
0.309492 + 0.950902i \(0.399841\pi\)
\(398\) 0 0
\(399\) −5.74829 12.5870i −0.287774 0.630138i
\(400\) 0 0
\(401\) −10.8294 6.95964i −0.540795 0.347548i 0.241555 0.970387i \(-0.422343\pi\)
−0.782350 + 0.622839i \(0.785979\pi\)
\(402\) 0 0
\(403\) 0.523046 3.63787i 0.0260548 0.181215i
\(404\) 0 0
\(405\) −2.29838 2.65247i −0.114207 0.131802i
\(406\) 0 0
\(407\) 1.71261 1.10063i 0.0848911 0.0545562i
\(408\) 0 0
\(409\) 22.7662 26.2736i 1.12572 1.29915i 0.176578 0.984287i \(-0.443497\pi\)
0.949138 0.314859i \(-0.101957\pi\)
\(410\) 0 0
\(411\) 1.49412 3.27167i 0.0736997 0.161380i
\(412\) 0 0
\(413\) −28.3758 −1.39628
\(414\) 0 0
\(415\) 14.0039 0.687422
\(416\) 0 0
\(417\) 1.90976 4.18179i 0.0935213 0.204783i
\(418\) 0 0
\(419\) 17.6919 20.4176i 0.864307 0.997463i −0.135671 0.990754i \(-0.543319\pi\)
0.999977 0.00670920i \(-0.00213562\pi\)
\(420\) 0 0
\(421\) 12.9955 8.35171i 0.633363 0.407037i −0.184191 0.982891i \(-0.558966\pi\)
0.817553 + 0.575853i \(0.195330\pi\)
\(422\) 0 0
\(423\) 7.76507 + 8.96137i 0.377551 + 0.435717i
\(424\) 0 0
\(425\) −3.30383 + 22.9786i −0.160259 + 1.11463i
\(426\) 0 0
\(427\) 11.6220 + 7.46904i 0.562430 + 0.361452i
\(428\) 0 0
\(429\) −1.91350 4.18999i −0.0923849 0.202295i
\(430\) 0 0
\(431\) −3.11328 0.914140i −0.149961 0.0440326i 0.205890 0.978575i \(-0.433991\pi\)
−0.355852 + 0.934542i \(0.615809\pi\)
\(432\) 0 0
\(433\) −13.4286 + 3.94300i −0.645339 + 0.189489i −0.587993 0.808866i \(-0.700082\pi\)
−0.0573457 + 0.998354i \(0.518264\pi\)
\(434\) 0 0
\(435\) 1.86721 + 12.9868i 0.0895261 + 0.622668i
\(436\) 0 0
\(437\) −19.0587 19.2938i −0.911703 0.922948i
\(438\) 0 0
\(439\) −2.79383 19.4315i −0.133342 0.927414i −0.941155 0.337975i \(-0.890258\pi\)
0.807813 0.589439i \(-0.200651\pi\)
\(440\) 0 0
\(441\) 0.971218 0.285175i 0.0462485 0.0135798i
\(442\) 0 0
\(443\) 24.3705 + 7.15583i 1.15788 + 0.339984i 0.803608 0.595159i \(-0.202911\pi\)
0.354271 + 0.935143i \(0.384729\pi\)
\(444\) 0 0
\(445\) 12.4747 + 27.3157i 0.591356 + 1.29489i
\(446\) 0 0
\(447\) −6.81652 4.38071i −0.322410 0.207200i
\(448\) 0 0
\(449\) −1.49936 + 10.4283i −0.0707591 + 0.492140i 0.923368 + 0.383917i \(0.125425\pi\)
−0.994127 + 0.108223i \(0.965484\pi\)
\(450\) 0 0
\(451\) 24.5990 + 28.3888i 1.15832 + 1.33678i
\(452\) 0 0
\(453\) −7.47081 + 4.80120i −0.351009 + 0.225580i
\(454\) 0 0
\(455\) −7.13695 + 8.23648i −0.334585 + 0.386132i
\(456\) 0 0
\(457\) −12.5634 + 27.5100i −0.587691 + 1.28686i 0.349136 + 0.937072i \(0.386475\pi\)
−0.936827 + 0.349792i \(0.886252\pi\)
\(458\) 0 0
\(459\) −3.17223 −0.148067
\(460\) 0 0
\(461\) −20.0214 −0.932491 −0.466245 0.884655i \(-0.654394\pi\)
−0.466245 + 0.884655i \(0.654394\pi\)
\(462\) 0 0
\(463\) 4.12893 9.04111i 0.191888 0.420176i −0.789095 0.614272i \(-0.789450\pi\)
0.980983 + 0.194096i \(0.0621772\pi\)
\(464\) 0 0
\(465\) 6.65663 7.68216i 0.308694 0.356252i
\(466\) 0 0
\(467\) 27.4856 17.6639i 1.27188 0.817388i 0.282017 0.959409i \(-0.408997\pi\)
0.989864 + 0.142021i \(0.0453602\pi\)
\(468\) 0 0
\(469\) 18.7529 + 21.6419i 0.865926 + 0.999332i
\(470\) 0 0
\(471\) −3.11615 + 21.6733i −0.143585 + 0.998653i
\(472\) 0 0
\(473\) −9.01756 5.79524i −0.414628 0.266465i
\(474\) 0 0
\(475\) −17.1913 37.6436i −0.788790 1.72721i
\(476\) 0 0
\(477\) 11.1974 + 3.28785i 0.512693 + 0.150540i
\(478\) 0 0
\(479\) 9.09607 2.67085i 0.415610 0.122034i −0.0672406 0.997737i \(-0.521420\pi\)
0.482851 + 0.875703i \(0.339601\pi\)
\(480\) 0 0
\(481\) −0.101286 0.704461i −0.00461825 0.0321207i
\(482\) 0 0
\(483\) −9.43758 + 6.97504i −0.429425 + 0.317375i
\(484\) 0 0
\(485\) −4.29824 29.8949i −0.195173 1.35746i
\(486\) 0 0
\(487\) 17.6216 5.17416i 0.798509 0.234463i 0.143071 0.989712i \(-0.454302\pi\)
0.655438 + 0.755249i \(0.272484\pi\)
\(488\) 0 0
\(489\) −10.8044 3.17245i −0.488591 0.143463i
\(490\) 0 0
\(491\) 9.39577 + 20.5739i 0.424025 + 0.928485i 0.994259 + 0.107003i \(0.0341254\pi\)
−0.570234 + 0.821483i \(0.693147\pi\)
\(492\) 0 0
\(493\) 9.97614 + 6.41127i 0.449303 + 0.288749i
\(494\) 0 0
\(495\) 1.81306 12.6101i 0.0814912 0.566783i
\(496\) 0 0
\(497\) 1.23913 + 1.43003i 0.0555824 + 0.0641455i
\(498\) 0 0
\(499\) 12.8226 8.24060i 0.574020 0.368900i −0.221194 0.975230i \(-0.570995\pi\)
0.795213 + 0.606330i \(0.207359\pi\)
\(500\) 0 0
\(501\) −7.40074 + 8.54091i −0.330641 + 0.381580i
\(502\) 0 0
\(503\) −11.3672 + 24.8908i −0.506841 + 1.10983i 0.467345 + 0.884075i \(0.345211\pi\)
−0.974185 + 0.225751i \(0.927516\pi\)
\(504\) 0 0
\(505\) −37.6077 −1.67352
\(506\) 0 0
\(507\) 11.3897 0.505833
\(508\) 0 0
\(509\) 5.96078 13.0523i 0.264207 0.578532i −0.730309 0.683117i \(-0.760624\pi\)
0.994516 + 0.104584i \(0.0333512\pi\)
\(510\) 0 0
\(511\) 22.9701 26.5089i 1.01614 1.17268i
\(512\) 0 0
\(513\) 4.75719 3.05726i 0.210035 0.134981i
\(514\) 0 0
\(515\) −2.13903 2.46858i −0.0942571 0.108779i
\(516\) 0 0
\(517\) −6.12543 + 42.6033i −0.269396 + 1.87369i
\(518\) 0 0
\(519\) 17.7972 + 11.4376i 0.781212 + 0.502054i
\(520\) 0 0
\(521\) 16.1919 + 35.4554i 0.709381 + 1.55333i 0.828213 + 0.560413i \(0.189358\pi\)
−0.118832 + 0.992914i \(0.537915\pi\)
\(522\) 0 0
\(523\) 32.4675 + 9.53331i 1.41970 + 0.416863i 0.899403 0.437121i \(-0.144002\pi\)
0.520301 + 0.853983i \(0.325820\pi\)
\(524\) 0 0
\(525\) −17.1821 + 5.04513i −0.749890 + 0.220188i
\(526\) 0 0
\(527\) −1.30752 9.09397i −0.0569563 0.396140i
\(528\) 0 0
\(529\) −12.6710 + 19.1950i −0.550912 + 0.834563i
\(530\) 0 0
\(531\) −1.65031 11.4781i −0.0716172 0.498109i
\(532\) 0 0
\(533\) 12.6002 3.69976i 0.545776 0.160254i
\(534\) 0 0
\(535\) 18.8182 + 5.52551i 0.813580 + 0.238889i
\(536\) 0 0
\(537\) 4.22574 + 9.25308i 0.182354 + 0.399300i
\(538\) 0 0
\(539\) 3.09095 + 1.98643i 0.133136 + 0.0855616i
\(540\) 0 0
\(541\) −4.94069 + 34.3632i −0.212417 + 1.47739i 0.552636 + 0.833423i \(0.313622\pi\)
−0.765053 + 0.643968i \(0.777287\pi\)
\(542\) 0 0
\(543\) −6.97271 8.04693i −0.299228 0.345327i
\(544\) 0 0
\(545\) −46.9432 + 30.1686i −2.01083 + 1.29228i
\(546\) 0 0
\(547\) −9.22896 + 10.6508i −0.394602 + 0.455395i −0.917933 0.396734i \(-0.870143\pi\)
0.523332 + 0.852129i \(0.324689\pi\)
\(548\) 0 0
\(549\) −2.34534 + 5.13557i −0.100096 + 0.219181i
\(550\) 0 0
\(551\) −21.1395 −0.900572
\(552\) 0 0
\(553\) 17.4017 0.739994
\(554\) 0 0
\(555\) 0.817707 1.79053i 0.0347097 0.0760037i
\(556\) 0 0
\(557\) 11.2096 12.9366i 0.474968 0.548142i −0.466819 0.884353i \(-0.654600\pi\)
0.941787 + 0.336211i \(0.109146\pi\)
\(558\) 0 0
\(559\) −3.15251 + 2.02600i −0.133337 + 0.0856906i
\(560\) 0 0
\(561\) −7.54055 8.70226i −0.318362 0.367410i
\(562\) 0 0
\(563\) −5.10761 + 35.5242i −0.215260 + 1.49717i 0.539957 + 0.841693i \(0.318441\pi\)
−0.755217 + 0.655475i \(0.772469\pi\)
\(564\) 0 0
\(565\) 16.7954 + 10.7938i 0.706589 + 0.454097i
\(566\) 0 0
\(567\) −1.01652 2.22586i −0.0426897 0.0934775i
\(568\) 0 0
\(569\) 9.76922 + 2.86850i 0.409547 + 0.120254i 0.480015 0.877260i \(-0.340631\pi\)
−0.0704682 + 0.997514i \(0.522449\pi\)
\(570\) 0 0
\(571\) 1.96770 0.577770i 0.0823458 0.0241789i −0.240300 0.970699i \(-0.577246\pi\)
0.322646 + 0.946520i \(0.395428\pi\)
\(572\) 0 0
\(573\) −1.45630 10.1288i −0.0608379 0.423137i
\(574\) 0 0
\(575\) −28.2247 + 20.8601i −1.17705 + 0.869925i
\(576\) 0 0
\(577\) 1.29934 + 9.03714i 0.0540924 + 0.376221i 0.998829 + 0.0483893i \(0.0154088\pi\)
−0.944736 + 0.327832i \(0.893682\pi\)
\(578\) 0 0
\(579\) −9.73114 + 2.85732i −0.404412 + 0.118746i
\(580\) 0 0
\(581\) 9.36805 + 2.75071i 0.388652 + 0.114119i
\(582\) 0 0
\(583\) 17.5973 + 38.5328i 0.728806 + 1.59586i
\(584\) 0 0
\(585\) −3.74677 2.40791i −0.154910 0.0995546i
\(586\) 0 0
\(587\) 0.370355 2.57588i 0.0152862 0.106318i −0.980750 0.195268i \(-0.937442\pi\)
0.996036 + 0.0889505i \(0.0283513\pi\)
\(588\) 0 0
\(589\) 10.7252 + 12.3775i 0.441923 + 0.510007i
\(590\) 0 0
\(591\) 17.7533 11.4093i 0.730271 0.469317i
\(592\) 0 0
\(593\) −8.01595 + 9.25090i −0.329176 + 0.379889i −0.896078 0.443896i \(-0.853596\pi\)
0.566903 + 0.823785i \(0.308141\pi\)
\(594\) 0 0
\(595\) −11.3176 + 24.7820i −0.463975 + 1.01596i
\(596\) 0 0
\(597\) −5.96499 −0.244131
\(598\) 0 0
\(599\) 12.1215 0.495270 0.247635 0.968853i \(-0.420347\pi\)
0.247635 + 0.968853i \(0.420347\pi\)
\(600\) 0 0
\(601\) −13.8159 + 30.2527i −0.563564 + 1.23403i 0.386590 + 0.922252i \(0.373653\pi\)
−0.950154 + 0.311781i \(0.899074\pi\)
\(602\) 0 0
\(603\) −7.66363 + 8.84430i −0.312087 + 0.360168i
\(604\) 0 0
\(605\) 6.42443 4.12873i 0.261190 0.167857i
\(606\) 0 0
\(607\) −9.71185 11.2081i −0.394192 0.454922i 0.523611 0.851957i \(-0.324584\pi\)
−0.917803 + 0.397036i \(0.870039\pi\)
\(608\) 0 0
\(609\) −1.30183 + 9.05442i −0.0527528 + 0.366904i
\(610\) 0 0
\(611\) 12.6585 + 8.13510i 0.512106 + 0.329111i
\(612\) 0 0
\(613\) −13.2703 29.0578i −0.535980 1.17363i −0.963027 0.269404i \(-0.913173\pi\)
0.427047 0.904230i \(-0.359554\pi\)
\(614\) 0 0
\(615\) 34.8493 + 10.2327i 1.40526 + 0.412621i
\(616\) 0 0
\(617\) 44.9152 13.1883i 1.80822 0.530941i 0.809776 0.586739i \(-0.199589\pi\)
0.998442 + 0.0557986i \(0.0177705\pi\)
\(618\) 0 0
\(619\) −2.13534 14.8516i −0.0858266 0.596937i −0.986663 0.162778i \(-0.947955\pi\)
0.900836 0.434159i \(-0.142954\pi\)
\(620\) 0 0
\(621\) −3.37032 3.41189i −0.135246 0.136914i
\(622\) 0 0
\(623\) 2.97959 + 20.7235i 0.119375 + 0.830271i
\(624\) 0 0
\(625\) 7.70976 2.26379i 0.308391 0.0905516i
\(626\) 0 0
\(627\) 19.6950 + 5.78296i 0.786541 + 0.230949i
\(628\) 0 0
\(629\) −0.739076 1.61835i −0.0294689 0.0645279i
\(630\) 0 0
\(631\) −32.9969 21.2058i −1.31359 0.844190i −0.318964 0.947767i \(-0.603335\pi\)
−0.994621 + 0.103577i \(0.966971\pi\)
\(632\) 0 0
\(633\) 2.73492 19.0218i 0.108703 0.756049i
\(634\) 0 0
\(635\) −22.5889 26.0690i −0.896414 1.03452i
\(636\) 0 0
\(637\) 1.08059 0.694450i 0.0428144 0.0275151i
\(638\) 0 0
\(639\) −0.506387 + 0.584402i −0.0200324 + 0.0231186i
\(640\) 0 0
\(641\) −11.5294 + 25.2459i −0.455384 + 0.997153i 0.533131 + 0.846033i \(0.321015\pi\)
−0.988515 + 0.151120i \(0.951712\pi\)
\(642\) 0 0
\(643\) −1.26270 −0.0497958 −0.0248979 0.999690i \(-0.507926\pi\)
−0.0248979 + 0.999690i \(0.507926\pi\)
\(644\) 0 0
\(645\) −10.3644 −0.408099
\(646\) 0 0
\(647\) 5.24476 11.4844i 0.206193 0.451499i −0.778078 0.628168i \(-0.783805\pi\)
0.984270 + 0.176669i \(0.0565323\pi\)
\(648\) 0 0
\(649\) 27.5647 31.8114i 1.08201 1.24871i
\(650\) 0 0
\(651\) 5.96200 3.83155i 0.233669 0.150170i
\(652\) 0 0
\(653\) −28.6300 33.0408i −1.12038 1.29299i −0.951602 0.307333i \(-0.900564\pi\)
−0.168777 0.985654i \(-0.553982\pi\)
\(654\) 0 0
\(655\) 8.77684 61.0443i 0.342940 2.38520i
\(656\) 0 0
\(657\) 12.0589 + 7.74978i 0.470462 + 0.302348i
\(658\) 0 0
\(659\) −3.31001 7.24790i −0.128940 0.282338i 0.834141 0.551551i \(-0.185964\pi\)
−0.963081 + 0.269213i \(0.913237\pi\)
\(660\) 0 0
\(661\) −12.6323 3.70918i −0.491339 0.144270i 0.0266715 0.999644i \(-0.491509\pi\)
−0.518011 + 0.855374i \(0.673327\pi\)
\(662\) 0 0
\(663\) −3.86246 + 1.13412i −0.150005 + 0.0440456i
\(664\) 0 0
\(665\) −6.91162 48.0713i −0.268021 1.86413i
\(666\) 0 0
\(667\) 3.70346 + 17.5414i 0.143398 + 0.679207i
\(668\) 0 0
\(669\) 0.0449274 + 0.312477i 0.00173699 + 0.0120810i
\(670\) 0 0
\(671\) −19.6632 + 5.77364i −0.759090 + 0.222889i
\(672\) 0 0
\(673\) −34.9936 10.2750i −1.34890 0.396074i −0.474065 0.880490i \(-0.657214\pi\)
−0.874838 + 0.484416i \(0.839032\pi\)
\(674\) 0 0
\(675\) −3.04008 6.65684i −0.117013 0.256222i
\(676\) 0 0
\(677\) 8.29781 + 5.33268i 0.318911 + 0.204951i 0.690295 0.723528i \(-0.257481\pi\)
−0.371385 + 0.928479i \(0.621117\pi\)
\(678\) 0 0
\(679\) 2.99675 20.8429i 0.115005 0.799876i
\(680\) 0 0
\(681\) 17.5134 + 20.2115i 0.671113 + 0.774506i
\(682\) 0 0
\(683\) −2.38499 + 1.53274i −0.0912591 + 0.0586487i −0.585475 0.810691i \(-0.699092\pi\)
0.494215 + 0.869339i \(0.335455\pi\)
\(684\) 0 0
\(685\) 8.26659 9.54015i 0.315850 0.364510i
\(686\) 0 0
\(687\) 10.5241 23.0446i 0.401519 0.879205i
\(688\) 0 0
\(689\) 14.8092 0.564186
\(690\) 0 0
\(691\) −35.4217 −1.34750 −0.673752 0.738957i \(-0.735318\pi\)
−0.673752 + 0.738957i \(0.735318\pi\)
\(692\) 0 0
\(693\) 3.68982 8.07957i 0.140165 0.306918i
\(694\) 0 0
\(695\) 10.5662 12.1940i 0.400799 0.462546i
\(696\) 0 0
\(697\) 27.6166 17.7481i 1.04605 0.672258i
\(698\) 0 0
\(699\) −15.6572 18.0694i −0.592211 0.683447i
\(700\) 0 0
\(701\) 2.56956 17.8717i 0.0970508 0.675003i −0.881979 0.471288i \(-0.843789\pi\)
0.979030 0.203715i \(-0.0653017\pi\)
\(702\) 0 0
\(703\) 2.66804 + 1.71465i 0.100627 + 0.0646691i
\(704\) 0 0
\(705\) 17.2883 + 37.8560i 0.651114 + 1.42574i
\(706\) 0 0
\(707\) −25.1581 7.38709i −0.946168 0.277820i
\(708\) 0 0
\(709\) 37.1662 10.9130i 1.39581 0.409845i 0.504564 0.863374i \(-0.331653\pi\)
0.891242 + 0.453529i \(0.149835\pi\)
\(710\) 0 0
\(711\) 1.01206 + 7.03906i 0.0379554 + 0.263985i
\(712\) 0 0
\(713\) 8.39184 11.0681i 0.314277 0.414505i
\(714\) 0 0
\(715\) −2.30076 16.0021i −0.0860434 0.598445i
\(716\) 0 0
\(717\) 1.37017 0.402319i 0.0511701 0.0150249i
\(718\) 0 0
\(719\) 49.1790 + 14.4402i 1.83407 + 0.538530i 0.999915 0.0130060i \(-0.00414007\pi\)
0.834151 + 0.551536i \(0.185958\pi\)
\(720\) 0 0
\(721\) −0.946043 2.07155i −0.0352325 0.0771484i
\(722\) 0 0
\(723\) −0.200331 0.128745i −0.00745040 0.00478808i
\(724\) 0 0
\(725\) −3.89335 + 27.0789i −0.144595 + 1.00568i
\(726\) 0 0
\(727\) −32.4331 37.4298i −1.20288 1.38819i −0.900415 0.435031i \(-0.856737\pi\)
−0.302461 0.953162i \(-0.597808\pi\)
\(728\) 0 0
\(729\) 0.841254 0.540641i 0.0311575 0.0200237i
\(730\) 0 0
\(731\) −6.13460 + 7.07970i −0.226896 + 0.261852i
\(732\) 0 0
\(733\) −13.8110 + 30.2418i −0.510120 + 1.11701i 0.462926 + 0.886397i \(0.346800\pi\)
−0.973046 + 0.230610i \(0.925928\pi\)
\(734\) 0 0
\(735\) 3.55261 0.131040
\(736\) 0 0
\(737\) −42.4791 −1.56474
\(738\) 0 0
\(739\) 16.3928 35.8953i 0.603020 1.32043i −0.324227 0.945979i \(-0.605104\pi\)
0.927247 0.374451i \(-0.122169\pi\)
\(740\) 0 0
\(741\) 4.69926 5.42324i 0.172632 0.199228i
\(742\) 0 0
\(743\) 28.4816 18.3040i 1.04489 0.671508i 0.0986965 0.995118i \(-0.468533\pi\)
0.946191 + 0.323609i \(0.104896\pi\)
\(744\) 0 0
\(745\) −18.6233 21.4925i −0.682307 0.787424i
\(746\) 0 0
\(747\) −0.567839 + 3.94940i −0.0207761 + 0.144501i
\(748\) 0 0
\(749\) 11.5033 + 7.39272i 0.420321 + 0.270124i
\(750\) 0 0
\(751\) −11.8182 25.8781i −0.431251 0.944307i −0.993122 0.117083i \(-0.962646\pi\)
0.561872 0.827224i \(-0.310081\pi\)
\(752\) 0 0
\(753\) −19.4703 5.71699i −0.709537 0.208339i
\(754\) 0 0
\(755\) −29.9058 + 8.78114i −1.08838 + 0.319578i
\(756\) 0 0
\(757\) 3.15222 + 21.9241i 0.114569 + 0.796847i 0.963378 + 0.268147i \(0.0864112\pi\)
−0.848809 + 0.528700i \(0.822680\pi\)
\(758\) 0 0
\(759\) 1.34828 17.3559i 0.0489396 0.629979i
\(760\) 0 0
\(761\) −4.00085 27.8265i −0.145031 1.00871i −0.924203 0.381901i \(-0.875269\pi\)
0.779172 0.626810i \(-0.215640\pi\)
\(762\) 0 0
\(763\) −37.3291 + 10.9608i −1.35140 + 0.396808i
\(764\) 0 0
\(765\) −10.6827 3.13671i −0.386232 0.113408i
\(766\) 0 0
\(767\) −6.11300 13.3856i −0.220728 0.483326i
\(768\) 0 0
\(769\) −15.8579 10.1913i −0.571852 0.367507i 0.222530 0.974926i \(-0.428569\pi\)
−0.794382 + 0.607419i \(0.792205\pi\)
\(770\) 0 0
\(771\) −2.37193 + 16.4971i −0.0854230 + 0.594130i
\(772\) 0 0
\(773\) 10.5832 + 12.2137i 0.380651 + 0.439295i 0.913452 0.406946i \(-0.133406\pi\)
−0.532801 + 0.846240i \(0.678861\pi\)
\(774\) 0 0
\(775\) 17.8304 11.4589i 0.640488 0.411616i
\(776\) 0 0
\(777\) 0.898720 1.03718i 0.0322414 0.0372086i
\(778\) 0 0
\(779\) −24.3100 + 53.2314i −0.870995 + 1.90721i
\(780\) 0 0
\(781\) −2.80688 −0.100438
\(782\) 0 0
\(783\) −3.73827 −0.133595
\(784\) 0 0
\(785\) −31.9244 + 69.9048i −1.13943 + 2.49501i
\(786\) 0 0
\(787\) 7.88438 9.09906i 0.281048 0.324346i −0.597621 0.801779i \(-0.703887\pi\)
0.878668 + 0.477433i \(0.158433\pi\)
\(788\) 0 0
\(789\) 14.2732 9.17281i 0.508139 0.326561i
\(790\) 0 0
\(791\) 9.11535 + 10.5197i 0.324104 + 0.374037i
\(792\) 0 0
\(793\) −1.01960 + 7.09148i −0.0362071 + 0.251826i
\(794\) 0 0
\(795\) 34.4568 + 22.1440i 1.22206 + 0.785367i
\(796\) 0 0
\(797\) −18.6721 40.8863i −0.661401 1.44827i −0.881210 0.472724i \(-0.843271\pi\)
0.219809 0.975543i \(-0.429457\pi\)
\(798\) 0 0
\(799\) 36.0913 + 10.5974i 1.27682 + 0.374908i
\(800\) 0 0
\(801\) −8.20948 + 2.41052i −0.290068 + 0.0851716i
\(802\) 0 0
\(803\) 7.40492 + 51.5024i 0.261314 + 1.81748i
\(804\) 0 0
\(805\) −38.6785 + 14.1569i −1.36324 + 0.498966i
\(806\) 0 0
\(807\) 0.605815 + 4.21354i 0.0213257 + 0.148324i
\(808\) 0 0
\(809\) −19.0920 + 5.60591i −0.671238 + 0.197093i −0.599554 0.800334i \(-0.704655\pi\)
−0.0716836 + 0.997427i \(0.522837\pi\)
\(810\) 0 0
\(811\) −31.3402 9.20230i −1.10050 0.323137i −0.319450 0.947603i \(-0.603498\pi\)
−0.781052 + 0.624466i \(0.785316\pi\)
\(812\) 0 0
\(813\) −2.47675 5.42332i −0.0868634 0.190204i
\(814\) 0 0
\(815\) −33.2474 21.3668i −1.16461 0.748447i
\(816\) 0 0
\(817\) 2.37655 16.5292i 0.0831448 0.578285i
\(818\) 0 0
\(819\) −2.03348 2.34676i −0.0710555 0.0820024i
\(820\) 0 0
\(821\) −11.3204 + 7.27518i −0.395085 + 0.253905i −0.723066 0.690779i \(-0.757268\pi\)
0.327982 + 0.944684i \(0.393632\pi\)
\(822\) 0 0
\(823\) 12.2385 14.1239i 0.426606 0.492329i −0.501232 0.865313i \(-0.667120\pi\)
0.927838 + 0.372984i \(0.121665\pi\)
\(824\) 0 0
\(825\) 11.0351 24.1634i 0.384191 0.841261i
\(826\) 0 0
\(827\) −18.1631 −0.631594 −0.315797 0.948827i \(-0.602272\pi\)
−0.315797 + 0.948827i \(0.602272\pi\)
\(828\) 0 0
\(829\) 37.8172 1.31345 0.656723 0.754132i \(-0.271942\pi\)
0.656723 + 0.754132i \(0.271942\pi\)
\(830\) 0 0
\(831\) −8.23517 + 18.0325i −0.285675 + 0.625541i
\(832\) 0 0
\(833\) 2.10275 2.42671i 0.0728561 0.0840804i
\(834\) 0 0
\(835\) −33.3677 + 21.4441i −1.15474 + 0.742104i
\(836\) 0 0
\(837\) 1.89662 + 2.18882i 0.0655569 + 0.0756567i
\(838\) 0 0
\(839\) 4.59025 31.9259i 0.158473 1.10220i −0.742976 0.669318i \(-0.766586\pi\)
0.901449 0.432885i \(-0.142505\pi\)
\(840\) 0 0
\(841\) −12.6401 8.12330i −0.435866 0.280114i
\(842\) 0 0
\(843\) 4.80084 + 10.5124i 0.165350 + 0.362065i
\(844\) 0 0
\(845\) 38.3554 + 11.2621i 1.31946 + 0.387430i
\(846\) 0 0
\(847\) 5.10869 1.50005i 0.175537 0.0515422i
\(848\) 0 0
\(849\) −3.93080 27.3393i −0.134905 0.938282i
\(850\) 0 0
\(851\) 0.955387 2.51432i 0.0327503 0.0861898i
\(852\) 0 0
\(853\) −1.97706 13.7508i −0.0676933 0.470817i −0.995267 0.0971771i \(-0.969019\pi\)
0.927574 0.373640i \(-0.121890\pi\)
\(854\) 0 0
\(855\) 19.0431 5.59157i 0.651261 0.191228i
\(856\) 0 0
\(857\) −33.4741 9.82889i −1.14345 0.335749i −0.345472 0.938429i \(-0.612281\pi\)
−0.797983 + 0.602680i \(0.794099\pi\)
\(858\) 0 0
\(859\) 1.26281 + 2.76518i 0.0430866 + 0.0943466i 0.929951 0.367683i \(-0.119849\pi\)
−0.886865 + 0.462029i \(0.847121\pi\)
\(860\) 0 0
\(861\) 21.3029 + 13.6905i 0.726001 + 0.466572i
\(862\) 0 0
\(863\) 3.47453 24.1659i 0.118275 0.822617i −0.841180 0.540755i \(-0.818139\pi\)
0.959455 0.281863i \(-0.0909522\pi\)
\(864\) 0 0
\(865\) 48.6236 + 56.1147i 1.65325 + 1.90796i
\(866\) 0 0
\(867\) 5.83575 3.75041i 0.198192 0.127371i
\(868\) 0 0
\(869\) −16.9043 + 19.5086i −0.573438 + 0.661783i
\(870\) 0 0
\(871\) −6.16915 + 13.5085i −0.209034 + 0.457720i
\(872\) 0 0
\(873\) 8.60533 0.291246
\(874\) 0 0
\(875\) −19.9091 −0.673050
\(876\) 0 0
\(877\) −7.75427 + 16.9795i −0.261843 + 0.573356i −0.994198 0.107567i \(-0.965694\pi\)
0.732355 + 0.680923i \(0.238421\pi\)
\(878\) 0 0
\(879\) −12.0327 + 13.8865i −0.405854 + 0.468381i
\(880\) 0 0
\(881\) 0.407658 0.261986i 0.0137343 0.00882652i −0.533756 0.845639i \(-0.679220\pi\)
0.547490 + 0.836812i \(0.315583\pi\)
\(882\) 0 0
\(883\) 31.6473 + 36.5229i 1.06502 + 1.22909i 0.972382 + 0.233395i \(0.0749834\pi\)
0.0926345 + 0.995700i \(0.470471\pi\)
\(884\) 0 0
\(885\) 5.79212 40.2851i 0.194700 1.35417i
\(886\) 0 0
\(887\) −9.98107 6.41445i −0.335132 0.215376i 0.362241 0.932084i \(-0.382012\pi\)
−0.697373 + 0.716708i \(0.745648\pi\)
\(888\) 0 0
\(889\) −9.99053 21.8762i −0.335072 0.733705i
\(890\) 0 0
\(891\) 3.48282 + 1.02265i 0.116679 + 0.0342601i
\(892\) 0 0
\(893\) −64.3371 + 18.8911i −2.15296 + 0.632166i
\(894\) 0 0
\(895\) 5.08094 + 35.3387i 0.169837 + 1.18124i
\(896\) 0 0
\(897\) −5.32345 2.94932i −0.177745 0.0984750i
\(898\) 0 0
\(899\) −1.54083 10.7167i −0.0513894 0.357421i
\(900\) 0 0
\(901\) 35.5206 10.4298i 1.18336 0.347467i
\(902\) 0 0
\(903\) −6.93342 2.03583i −0.230730 0.0677483i
\(904\) 0 0
\(905\) −15.5242 33.9931i −0.516040 1.12997i
\(906\) 0 0
\(907\) 17.2104 + 11.0605i 0.571462 + 0.367256i 0.794232 0.607615i \(-0.207874\pi\)
−0.222770 + 0.974871i \(0.571510\pi\)
\(908\) 0 0
\(909\) 1.52494 10.6062i 0.0505791 0.351786i
\(910\) 0 0
\(911\) −7.35328 8.48614i −0.243625 0.281158i 0.620747 0.784011i \(-0.286829\pi\)
−0.864372 + 0.502853i \(0.832284\pi\)
\(912\) 0 0
\(913\) −12.1840 + 7.83021i −0.403233 + 0.259142i
\(914\) 0 0
\(915\) −12.9761 + 14.9752i −0.428977 + 0.495066i
\(916\) 0 0
\(917\) 17.8620 39.1123i 0.589855 1.29160i
\(918\) 0 0
\(919\) −15.5940 −0.514399 −0.257200 0.966358i \(-0.582800\pi\)
−0.257200 + 0.966358i \(0.582800\pi\)
\(920\) 0 0
\(921\) −11.1552 −0.367578
\(922\) 0 0
\(923\) −0.407637 + 0.892600i −0.0134175 + 0.0293803i
\(924\) 0 0
\(925\) 2.68778 3.10187i 0.0883737 0.101989i
\(926\) 0 0
\(927\) 0.782930 0.503158i 0.0257148 0.0165259i
\(928\) 0 0
\(929\) −11.9711 13.8154i −0.392758 0.453267i 0.524589 0.851356i \(-0.324219\pi\)
−0.917347 + 0.398089i \(0.869674\pi\)
\(930\) 0 0
\(931\) −0.814607 + 5.66572i −0.0266977 + 0.185686i
\(932\) 0 0
\(933\) 18.2450 + 11.7253i 0.597313 + 0.383870i
\(934\) 0 0
\(935\) −16.7884 36.7615i −0.549040 1.20223i
\(936\) 0 0
\(937\) −32.1451 9.43864i −1.05013 0.308347i −0.289262 0.957250i \(-0.593410\pi\)
−0.760871 + 0.648903i \(0.775228\pi\)
\(938\) 0 0
\(939\) 16.7995 4.93277i 0.548230 0.160975i
\(940\) 0 0
\(941\) −7.98942 55.5677i −0.260448 1.81145i −0.529480 0.848323i \(-0.677613\pi\)
0.269032 0.963131i \(-0.413296\pi\)
\(942\) 0 0
\(943\) 48.4301 + 10.8466i 1.57710 + 0.353214i
\(944\) 0 0
\(945\) −1.22224 8.50086i −0.0397594 0.276533i
\(946\) 0 0
\(947\) −37.6807 + 11.0640i −1.22446 + 0.359533i −0.829155 0.559018i \(-0.811178\pi\)
−0.395302 + 0.918551i \(0.629360\pi\)
\(948\) 0 0
\(949\) 17.4534 + 5.12478i 0.566561 + 0.166357i
\(950\) 0 0
\(951\) −11.7930 25.8231i −0.382414 0.837370i
\(952\) 0 0
\(953\) −17.1159 10.9997i −0.554438 0.356316i 0.233224 0.972423i \(-0.425072\pi\)
−0.787662 + 0.616107i \(0.788709\pi\)
\(954\) 0 0
\(955\) 5.11122 35.5493i 0.165395 1.15035i
\(956\) 0 0
\(957\) −8.88607 10.2551i −0.287246 0.331499i
\(958\) 0 0
\(959\) 7.40396 4.75824i 0.239086 0.153651i
\(960\) 0 0
\(961\) 14.8076 17.0889i 0.477666 0.551255i
\(962\) 0 0
\(963\) −2.32137 + 5.08310i −0.0748052 + 0.163800i
\(964\) 0 0
\(965\) −35.5955 −1.14586
\(966\) 0 0
\(967\) 5.66729 0.182248 0.0911239 0.995840i \(-0.470954\pi\)
0.0911239 + 0.995840i \(0.470954\pi\)
\(968\) 0 0
\(969\) 7.45195 16.3175i 0.239391 0.524194i
\(970\) 0 0
\(971\) −9.50053 + 10.9642i −0.304886 + 0.351858i −0.887431 0.460941i \(-0.847512\pi\)
0.582544 + 0.812799i \(0.302057\pi\)
\(972\) 0 0
\(973\) 9.46360 6.08189i 0.303389 0.194976i
\(974\) 0 0
\(975\) −6.08148 7.01840i −0.194763 0.224769i
\(976\) 0 0
\(977\) −3.20624 + 22.2999i −0.102577 + 0.713436i 0.872020 + 0.489470i \(0.162810\pi\)
−0.974597 + 0.223966i \(0.928099\pi\)
\(978\) 0 0
\(979\) −26.1271 16.7908i −0.835025 0.536638i
\(980\) 0 0
\(981\) −6.60473 14.4623i −0.210873 0.461747i
\(982\) 0 0
\(983\) 43.6709 + 12.8229i 1.39288 + 0.408988i 0.890235 0.455502i \(-0.150540\pi\)
0.502650 + 0.864490i \(0.332359\pi\)
\(984\) 0 0
\(985\) 71.0667 20.8671i 2.26437 0.664880i
\(986\) 0 0
\(987\) 4.12933 + 28.7201i 0.131438 + 0.914171i
\(988\) 0 0
\(989\) −14.1322 + 0.923736i −0.449379 + 0.0293731i
\(990\) 0 0
\(991\) 0.355063 + 2.46952i 0.0112790 + 0.0784469i 0.994683 0.102980i \(-0.0328376\pi\)
−0.983405 + 0.181427i \(0.941929\pi\)
\(992\) 0 0
\(993\) 26.2753 7.71512i 0.833821 0.244832i
\(994\) 0 0
\(995\) −20.0874 5.89821i −0.636815 0.186986i
\(996\) 0 0
\(997\) 17.0870 + 37.4152i 0.541149 + 1.18495i 0.960794 + 0.277263i \(0.0894275\pi\)
−0.419645 + 0.907689i \(0.637845\pi\)
\(998\) 0 0
\(999\) 0.471813 + 0.303216i 0.0149275 + 0.00959331i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.2.q.c.49.1 30
23.8 even 11 inner 552.2.q.c.169.1 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.q.c.49.1 30 1.1 even 1 trivial
552.2.q.c.169.1 yes 30 23.8 even 11 inner