Properties

Label 552.2.q.c.193.1
Level $552$
Weight $2$
Character 552.193
Analytic conductor $4.408$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,2,Mod(25,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,3,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 193.1
Character \(\chi\) \(=\) 552.193
Dual form 552.2.q.c.409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.654861 + 0.755750i) q^{3} +(-0.321356 - 2.23508i) q^{5} +(0.387169 - 0.847782i) q^{7} +(-0.142315 + 0.989821i) q^{9} +(2.69592 + 0.791592i) q^{11} +(-0.948751 - 2.07748i) q^{13} +(1.47872 - 1.70653i) q^{15} +(0.0340208 + 0.0218639i) q^{17} +(7.12699 - 4.58024i) q^{19} +(0.894253 - 0.262576i) q^{21} +(-4.33279 - 2.05596i) q^{23} +(-0.0948546 + 0.0278518i) q^{25} +(-0.841254 + 0.540641i) q^{27} +(-1.27960 - 0.822347i) q^{29} +(4.09464 - 4.72546i) q^{31} +(1.16720 + 2.55582i) q^{33} +(-2.01928 - 0.592914i) q^{35} +(-0.406483 + 2.82715i) q^{37} +(0.948751 - 2.07748i) q^{39} +(-0.537372 - 3.73750i) q^{41} +(7.20721 + 8.31757i) q^{43} +2.25807 q^{45} -1.48921 q^{47} +(4.01519 + 4.63378i) q^{49} +(0.00575531 + 0.0400290i) q^{51} +(-3.20904 + 7.02682i) q^{53} +(0.902924 - 6.27998i) q^{55} +(8.12870 + 2.38680i) q^{57} +(-1.68906 - 3.69853i) q^{59} +(-8.43408 + 9.73345i) q^{61} +(0.784053 + 0.503880i) q^{63} +(-4.33844 + 2.78815i) q^{65} +(-2.80239 + 0.822856i) q^{67} +(-1.28358 - 4.62087i) q^{69} +(2.60689 - 0.765453i) q^{71} +(-4.28023 + 2.75074i) q^{73} +(-0.0831655 - 0.0534472i) q^{75} +(1.71487 - 1.97907i) q^{77} +(-1.17934 - 2.58240i) q^{79} +(-0.959493 - 0.281733i) q^{81} +(0.773854 - 5.38227i) q^{83} +(0.0379347 - 0.0830655i) q^{85} +(-0.216469 - 1.50558i) q^{87} +(-2.23332 - 2.57739i) q^{89} -2.12857 q^{91} +6.25269 q^{93} +(-12.5275 - 14.4575i) q^{95} +(-0.0164177 - 0.114188i) q^{97} +(-1.16720 + 2.55582i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 3 q^{3} - 2 q^{5} - 2 q^{7} - 3 q^{9} + 13 q^{11} - 13 q^{13} + 2 q^{15} - 11 q^{17} + 11 q^{19} - 9 q^{21} - 12 q^{23} + 17 q^{25} + 3 q^{27} + 9 q^{29} + 33 q^{31} + 9 q^{33} + 62 q^{35} + 11 q^{37}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(e\left(\frac{5}{11}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.654861 + 0.755750i 0.378084 + 0.436332i
\(4\) 0 0
\(5\) −0.321356 2.23508i −0.143715 0.999559i −0.926239 0.376938i \(-0.876977\pi\)
0.782524 0.622621i \(-0.213932\pi\)
\(6\) 0 0
\(7\) 0.387169 0.847782i 0.146336 0.320431i −0.822243 0.569136i \(-0.807278\pi\)
0.968579 + 0.248705i \(0.0800049\pi\)
\(8\) 0 0
\(9\) −0.142315 + 0.989821i −0.0474383 + 0.329940i
\(10\) 0 0
\(11\) 2.69592 + 0.791592i 0.812849 + 0.238674i 0.661634 0.749827i \(-0.269863\pi\)
0.151215 + 0.988501i \(0.451681\pi\)
\(12\) 0 0
\(13\) −0.948751 2.07748i −0.263136 0.576188i 0.731237 0.682124i \(-0.238943\pi\)
−0.994373 + 0.105936i \(0.966216\pi\)
\(14\) 0 0
\(15\) 1.47872 1.70653i 0.381803 0.440625i
\(16\) 0 0
\(17\) 0.0340208 + 0.0218639i 0.00825127 + 0.00530277i 0.544760 0.838592i \(-0.316621\pi\)
−0.536509 + 0.843895i \(0.680257\pi\)
\(18\) 0 0
\(19\) 7.12699 4.58024i 1.63504 1.05078i 0.690012 0.723798i \(-0.257605\pi\)
0.945031 0.326980i \(-0.106031\pi\)
\(20\) 0 0
\(21\) 0.894253 0.262576i 0.195142 0.0572988i
\(22\) 0 0
\(23\) −4.33279 2.05596i −0.903448 0.428697i
\(24\) 0 0
\(25\) −0.0948546 + 0.0278518i −0.0189709 + 0.00557036i
\(26\) 0 0
\(27\) −0.841254 + 0.540641i −0.161899 + 0.104046i
\(28\) 0 0
\(29\) −1.27960 0.822347i −0.237615 0.152706i 0.416414 0.909175i \(-0.363287\pi\)
−0.654030 + 0.756469i \(0.726923\pi\)
\(30\) 0 0
\(31\) 4.09464 4.72546i 0.735419 0.848718i −0.257652 0.966238i \(-0.582949\pi\)
0.993071 + 0.117519i \(0.0374942\pi\)
\(32\) 0 0
\(33\) 1.16720 + 2.55582i 0.203184 + 0.444911i
\(34\) 0 0
\(35\) −2.01928 0.592914i −0.341321 0.100221i
\(36\) 0 0
\(37\) −0.406483 + 2.82715i −0.0668254 + 0.464781i 0.928742 + 0.370727i \(0.120892\pi\)
−0.995567 + 0.0940536i \(0.970017\pi\)
\(38\) 0 0
\(39\) 0.948751 2.07748i 0.151922 0.332662i
\(40\) 0 0
\(41\) −0.537372 3.73750i −0.0839233 0.583700i −0.987779 0.155862i \(-0.950185\pi\)
0.903856 0.427838i \(-0.140725\pi\)
\(42\) 0 0
\(43\) 7.20721 + 8.31757i 1.09909 + 1.26842i 0.960564 + 0.278058i \(0.0896909\pi\)
0.138526 + 0.990359i \(0.455764\pi\)
\(44\) 0 0
\(45\) 2.25807 0.336613
\(46\) 0 0
\(47\) −1.48921 −0.217224 −0.108612 0.994084i \(-0.534641\pi\)
−0.108612 + 0.994084i \(0.534641\pi\)
\(48\) 0 0
\(49\) 4.01519 + 4.63378i 0.573599 + 0.661968i
\(50\) 0 0
\(51\) 0.00575531 + 0.0400290i 0.000805904 + 0.00560519i
\(52\) 0 0
\(53\) −3.20904 + 7.02682i −0.440796 + 0.965208i 0.550656 + 0.834733i \(0.314378\pi\)
−0.991451 + 0.130476i \(0.958349\pi\)
\(54\) 0 0
\(55\) 0.902924 6.27998i 0.121750 0.846792i
\(56\) 0 0
\(57\) 8.12870 + 2.38680i 1.07667 + 0.316139i
\(58\) 0 0
\(59\) −1.68906 3.69853i −0.219897 0.481507i 0.767245 0.641354i \(-0.221627\pi\)
−0.987142 + 0.159847i \(0.948900\pi\)
\(60\) 0 0
\(61\) −8.43408 + 9.73345i −1.07987 + 1.24624i −0.112293 + 0.993675i \(0.535820\pi\)
−0.967580 + 0.252565i \(0.918726\pi\)
\(62\) 0 0
\(63\) 0.784053 + 0.503880i 0.0987814 + 0.0634829i
\(64\) 0 0
\(65\) −4.33844 + 2.78815i −0.538117 + 0.345827i
\(66\) 0 0
\(67\) −2.80239 + 0.822856i −0.342366 + 0.100528i −0.448396 0.893835i \(-0.648004\pi\)
0.106029 + 0.994363i \(0.466186\pi\)
\(68\) 0 0
\(69\) −1.28358 4.62087i −0.154525 0.556287i
\(70\) 0 0
\(71\) 2.60689 0.765453i 0.309381 0.0908425i −0.123356 0.992362i \(-0.539366\pi\)
0.432738 + 0.901520i \(0.357548\pi\)
\(72\) 0 0
\(73\) −4.28023 + 2.75074i −0.500963 + 0.321949i −0.766601 0.642123i \(-0.778054\pi\)
0.265638 + 0.964073i \(0.414417\pi\)
\(74\) 0 0
\(75\) −0.0831655 0.0534472i −0.00960313 0.00617156i
\(76\) 0 0
\(77\) 1.71487 1.97907i 0.195428 0.225536i
\(78\) 0 0
\(79\) −1.17934 2.58240i −0.132686 0.290543i 0.831614 0.555355i \(-0.187417\pi\)
−0.964300 + 0.264812i \(0.914690\pi\)
\(80\) 0 0
\(81\) −0.959493 0.281733i −0.106610 0.0313036i
\(82\) 0 0
\(83\) 0.773854 5.38227i 0.0849415 0.590781i −0.902247 0.431220i \(-0.858083\pi\)
0.987188 0.159561i \(-0.0510077\pi\)
\(84\) 0 0
\(85\) 0.0379347 0.0830655i 0.00411460 0.00900971i
\(86\) 0 0
\(87\) −0.216469 1.50558i −0.0232080 0.161415i
\(88\) 0 0
\(89\) −2.23332 2.57739i −0.236732 0.273203i 0.624936 0.780676i \(-0.285125\pi\)
−0.861668 + 0.507473i \(0.830580\pi\)
\(90\) 0 0
\(91\) −2.12857 −0.223135
\(92\) 0 0
\(93\) 6.25269 0.648373
\(94\) 0 0
\(95\) −12.5275 14.4575i −1.28529 1.48331i
\(96\) 0 0
\(97\) −0.0164177 0.114188i −0.00166696 0.0115940i 0.988971 0.148109i \(-0.0473188\pi\)
−0.990638 + 0.136515i \(0.956410\pi\)
\(98\) 0 0
\(99\) −1.16720 + 2.55582i −0.117308 + 0.256870i
\(100\) 0 0
\(101\) −1.01227 + 7.04048i −0.100724 + 0.700554i 0.875409 + 0.483383i \(0.160592\pi\)
−0.976134 + 0.217171i \(0.930317\pi\)
\(102\) 0 0
\(103\) 5.50340 + 1.61594i 0.542266 + 0.159224i 0.541383 0.840776i \(-0.317901\pi\)
0.000882749 1.00000i \(0.499719\pi\)
\(104\) 0 0
\(105\) −0.874253 1.91435i −0.0853183 0.186821i
\(106\) 0 0
\(107\) −7.78145 + 8.98028i −0.752261 + 0.868156i −0.994785 0.101989i \(-0.967479\pi\)
0.242524 + 0.970145i \(0.422025\pi\)
\(108\) 0 0
\(109\) −10.0614 6.46610i −0.963712 0.619340i −0.0386889 0.999251i \(-0.512318\pi\)
−0.925023 + 0.379911i \(0.875955\pi\)
\(110\) 0 0
\(111\) −2.40281 + 1.54419i −0.228065 + 0.146568i
\(112\) 0 0
\(113\) −19.4878 + 5.72213i −1.83326 + 0.538293i −0.999896 0.0144369i \(-0.995404\pi\)
−0.833361 + 0.552730i \(0.813586\pi\)
\(114\) 0 0
\(115\) −3.20287 + 10.3448i −0.298669 + 0.964660i
\(116\) 0 0
\(117\) 2.19135 0.643439i 0.202590 0.0594859i
\(118\) 0 0
\(119\) 0.0317076 0.0203772i 0.00290663 0.00186798i
\(120\) 0 0
\(121\) −2.61244 1.67892i −0.237495 0.152629i
\(122\) 0 0
\(123\) 2.47271 2.85366i 0.222957 0.257306i
\(124\) 0 0
\(125\) −4.59744 10.0670i −0.411207 0.900419i
\(126\) 0 0
\(127\) 17.8006 + 5.22672i 1.57955 + 0.463796i 0.949762 0.312974i \(-0.101325\pi\)
0.629784 + 0.776770i \(0.283143\pi\)
\(128\) 0 0
\(129\) −1.56628 + 10.8937i −0.137903 + 0.959137i
\(130\) 0 0
\(131\) −7.79638 + 17.0717i −0.681173 + 1.49156i 0.180222 + 0.983626i \(0.442318\pi\)
−0.861395 + 0.507935i \(0.830409\pi\)
\(132\) 0 0
\(133\) −1.12369 7.81546i −0.0974365 0.677686i
\(134\) 0 0
\(135\) 1.47872 + 1.70653i 0.127268 + 0.146875i
\(136\) 0 0
\(137\) 8.88026 0.758692 0.379346 0.925255i \(-0.376149\pi\)
0.379346 + 0.925255i \(0.376149\pi\)
\(138\) 0 0
\(139\) 9.21716 0.781789 0.390894 0.920435i \(-0.372166\pi\)
0.390894 + 0.920435i \(0.372166\pi\)
\(140\) 0 0
\(141\) −0.975227 1.12547i −0.0821289 0.0947818i
\(142\) 0 0
\(143\) −0.913240 6.35172i −0.0763690 0.531158i
\(144\) 0 0
\(145\) −1.42681 + 3.12427i −0.118490 + 0.259457i
\(146\) 0 0
\(147\) −0.872584 + 6.06896i −0.0719695 + 0.500559i
\(148\) 0 0
\(149\) 9.34024 + 2.74254i 0.765182 + 0.224678i 0.640957 0.767576i \(-0.278537\pi\)
0.124225 + 0.992254i \(0.460356\pi\)
\(150\) 0 0
\(151\) 3.18126 + 6.96599i 0.258887 + 0.566884i 0.993788 0.111291i \(-0.0354985\pi\)
−0.734901 + 0.678175i \(0.762771\pi\)
\(152\) 0 0
\(153\) −0.0264830 + 0.0305630i −0.00214102 + 0.00247087i
\(154\) 0 0
\(155\) −11.8776 7.63329i −0.954035 0.613121i
\(156\) 0 0
\(157\) −8.69925 + 5.59067i −0.694276 + 0.446184i −0.839604 0.543199i \(-0.817213\pi\)
0.145328 + 0.989384i \(0.453576\pi\)
\(158\) 0 0
\(159\) −7.41200 + 2.17636i −0.587809 + 0.172596i
\(160\) 0 0
\(161\) −3.42052 + 2.87725i −0.269575 + 0.226759i
\(162\) 0 0
\(163\) −11.9863 + 3.51950i −0.938840 + 0.275668i −0.715133 0.698988i \(-0.753634\pi\)
−0.223707 + 0.974657i \(0.571816\pi\)
\(164\) 0 0
\(165\) 5.33738 3.43012i 0.415514 0.267035i
\(166\) 0 0
\(167\) −4.66523 2.99816i −0.361006 0.232005i 0.347546 0.937663i \(-0.387015\pi\)
−0.708552 + 0.705658i \(0.750651\pi\)
\(168\) 0 0
\(169\) 5.09741 5.88273i 0.392109 0.452518i
\(170\) 0 0
\(171\) 3.51934 + 7.70628i 0.269131 + 0.589314i
\(172\) 0 0
\(173\) 7.32394 + 2.15050i 0.556829 + 0.163500i 0.548026 0.836462i \(-0.315380\pi\)
0.00880324 + 0.999961i \(0.497198\pi\)
\(174\) 0 0
\(175\) −0.0131125 + 0.0911993i −0.000991211 + 0.00689402i
\(176\) 0 0
\(177\) 1.68906 3.69853i 0.126958 0.277998i
\(178\) 0 0
\(179\) 2.64593 + 18.4029i 0.197766 + 1.37550i 0.810746 + 0.585397i \(0.199062\pi\)
−0.612980 + 0.790098i \(0.710029\pi\)
\(180\) 0 0
\(181\) −1.95986 2.26180i −0.145675 0.168118i 0.678222 0.734857i \(-0.262751\pi\)
−0.823898 + 0.566738i \(0.808205\pi\)
\(182\) 0 0
\(183\) −12.8792 −0.952058
\(184\) 0 0
\(185\) 6.44954 0.474180
\(186\) 0 0
\(187\) 0.0744101 + 0.0858738i 0.00544140 + 0.00627971i
\(188\) 0 0
\(189\) 0.132638 + 0.922519i 0.00964801 + 0.0671034i
\(190\) 0 0
\(191\) −8.74095 + 19.1400i −0.632473 + 1.38492i 0.273618 + 0.961839i \(0.411780\pi\)
−0.906091 + 0.423084i \(0.860948\pi\)
\(192\) 0 0
\(193\) 1.88622 13.1189i 0.135773 0.944320i −0.802063 0.597240i \(-0.796264\pi\)
0.937835 0.347080i \(-0.112827\pi\)
\(194\) 0 0
\(195\) −4.94821 1.45293i −0.354349 0.104046i
\(196\) 0 0
\(197\) 7.46629 + 16.3489i 0.531951 + 1.16481i 0.964713 + 0.263302i \(0.0848116\pi\)
−0.432763 + 0.901508i \(0.642461\pi\)
\(198\) 0 0
\(199\) 7.89139 9.10715i 0.559406 0.645589i −0.403643 0.914917i \(-0.632256\pi\)
0.963049 + 0.269328i \(0.0868016\pi\)
\(200\) 0 0
\(201\) −2.45705 1.57905i −0.173307 0.111377i
\(202\) 0 0
\(203\) −1.19259 + 0.766432i −0.0837035 + 0.0537930i
\(204\) 0 0
\(205\) −8.18093 + 2.40214i −0.571381 + 0.167773i
\(206\) 0 0
\(207\) 2.65165 3.99609i 0.184303 0.277748i
\(208\) 0 0
\(209\) 22.8394 6.70626i 1.57984 0.463882i
\(210\) 0 0
\(211\) −8.97082 + 5.76520i −0.617577 + 0.396893i −0.811692 0.584086i \(-0.801453\pi\)
0.194115 + 0.980979i \(0.437817\pi\)
\(212\) 0 0
\(213\) 2.28564 + 1.46889i 0.156610 + 0.100647i
\(214\) 0 0
\(215\) 16.2744 18.7816i 1.10990 1.28090i
\(216\) 0 0
\(217\) −2.42085 5.30091i −0.164338 0.359849i
\(218\) 0 0
\(219\) −4.88182 1.43343i −0.329883 0.0968624i
\(220\) 0 0
\(221\) 0.0131443 0.0914208i 0.000884184 0.00614963i
\(222\) 0 0
\(223\) 4.43685 9.71535i 0.297114 0.650588i −0.700922 0.713238i \(-0.747228\pi\)
0.998036 + 0.0626499i \(0.0199552\pi\)
\(224\) 0 0
\(225\) −0.0140691 0.0978528i −0.000937941 0.00652352i
\(226\) 0 0
\(227\) 4.97074 + 5.73654i 0.329920 + 0.380748i 0.896339 0.443370i \(-0.146217\pi\)
−0.566419 + 0.824117i \(0.691672\pi\)
\(228\) 0 0
\(229\) 9.26899 0.612512 0.306256 0.951949i \(-0.400924\pi\)
0.306256 + 0.951949i \(0.400924\pi\)
\(230\) 0 0
\(231\) 2.61868 0.172297
\(232\) 0 0
\(233\) −11.6089 13.3973i −0.760521 0.877688i 0.235022 0.971990i \(-0.424484\pi\)
−0.995544 + 0.0943016i \(0.969938\pi\)
\(234\) 0 0
\(235\) 0.478568 + 3.32851i 0.0312183 + 0.217128i
\(236\) 0 0
\(237\) 1.17934 2.58240i 0.0766066 0.167745i
\(238\) 0 0
\(239\) 2.48816 17.3056i 0.160946 1.11940i −0.735909 0.677080i \(-0.763245\pi\)
0.896855 0.442324i \(-0.145846\pi\)
\(240\) 0 0
\(241\) 12.2527 + 3.59773i 0.789269 + 0.231750i 0.651434 0.758705i \(-0.274168\pi\)
0.137834 + 0.990455i \(0.455986\pi\)
\(242\) 0 0
\(243\) −0.415415 0.909632i −0.0266489 0.0583529i
\(244\) 0 0
\(245\) 9.06656 10.4634i 0.579241 0.668480i
\(246\) 0 0
\(247\) −16.2771 10.4606i −1.03568 0.665594i
\(248\) 0 0
\(249\) 4.57441 2.93980i 0.289892 0.186302i
\(250\) 0 0
\(251\) 4.81171 1.41285i 0.303713 0.0891781i −0.126325 0.991989i \(-0.540318\pi\)
0.430038 + 0.902811i \(0.358500\pi\)
\(252\) 0 0
\(253\) −10.0533 8.97249i −0.632049 0.564096i
\(254\) 0 0
\(255\) 0.0876186 0.0257272i 0.00548689 0.00161110i
\(256\) 0 0
\(257\) −5.15314 + 3.31172i −0.321444 + 0.206580i −0.691404 0.722468i \(-0.743008\pi\)
0.369960 + 0.929048i \(0.379371\pi\)
\(258\) 0 0
\(259\) 2.23943 + 1.43920i 0.139151 + 0.0894272i
\(260\) 0 0
\(261\) 0.996083 1.14954i 0.0616560 0.0711548i
\(262\) 0 0
\(263\) 7.91642 + 17.3345i 0.488147 + 1.06889i 0.980142 + 0.198295i \(0.0635405\pi\)
−0.491995 + 0.870598i \(0.663732\pi\)
\(264\) 0 0
\(265\) 16.7368 + 4.91436i 1.02813 + 0.301887i
\(266\) 0 0
\(267\) 0.485347 3.37567i 0.0297028 0.206587i
\(268\) 0 0
\(269\) 11.1423 24.3983i 0.679360 1.48759i −0.183960 0.982934i \(-0.558892\pi\)
0.863320 0.504657i \(-0.168381\pi\)
\(270\) 0 0
\(271\) −0.304677 2.11907i −0.0185078 0.128725i 0.978473 0.206376i \(-0.0661670\pi\)
−0.996981 + 0.0776513i \(0.975258\pi\)
\(272\) 0 0
\(273\) −1.39392 1.60867i −0.0843638 0.0973610i
\(274\) 0 0
\(275\) −0.277767 −0.0167500
\(276\) 0 0
\(277\) 0.653712 0.0392777 0.0196389 0.999807i \(-0.493748\pi\)
0.0196389 + 0.999807i \(0.493748\pi\)
\(278\) 0 0
\(279\) 4.09464 + 4.72546i 0.245140 + 0.282906i
\(280\) 0 0
\(281\) −4.30333 29.9303i −0.256715 1.78549i −0.555852 0.831281i \(-0.687608\pi\)
0.299137 0.954210i \(-0.403301\pi\)
\(282\) 0 0
\(283\) −1.20612 + 2.64103i −0.0716963 + 0.156993i −0.942087 0.335369i \(-0.891139\pi\)
0.870391 + 0.492362i \(0.163866\pi\)
\(284\) 0 0
\(285\) 2.72249 18.9353i 0.161266 1.12163i
\(286\) 0 0
\(287\) −3.37664 0.991471i −0.199317 0.0585247i
\(288\) 0 0
\(289\) −7.06138 15.4623i −0.415375 0.909544i
\(290\) 0 0
\(291\) 0.0755459 0.0871846i 0.00442858 0.00511085i
\(292\) 0 0
\(293\) 14.4496 + 9.28617i 0.844152 + 0.542504i 0.889746 0.456456i \(-0.150882\pi\)
−0.0455937 + 0.998960i \(0.514518\pi\)
\(294\) 0 0
\(295\) −7.72372 + 4.96373i −0.449692 + 0.289000i
\(296\) 0 0
\(297\) −2.69592 + 0.791592i −0.156433 + 0.0459329i
\(298\) 0 0
\(299\) −0.160467 + 10.9518i −0.00928005 + 0.633362i
\(300\) 0 0
\(301\) 9.84189 2.88984i 0.567277 0.166568i
\(302\) 0 0
\(303\) −5.98373 + 3.84551i −0.343756 + 0.220919i
\(304\) 0 0
\(305\) 24.4654 + 15.7230i 1.40088 + 0.900294i
\(306\) 0 0
\(307\) 15.2253 17.5709i 0.868953 1.00282i −0.130982 0.991385i \(-0.541813\pi\)
0.999935 0.0114402i \(-0.00364159\pi\)
\(308\) 0 0
\(309\) 2.38271 + 5.21741i 0.135548 + 0.296808i
\(310\) 0 0
\(311\) 26.9702 + 7.91918i 1.52934 + 0.449055i 0.934849 0.355045i \(-0.115535\pi\)
0.594493 + 0.804101i \(0.297353\pi\)
\(312\) 0 0
\(313\) −3.04737 + 21.1949i −0.172248 + 1.19801i 0.701874 + 0.712301i \(0.252347\pi\)
−0.874121 + 0.485708i \(0.838562\pi\)
\(314\) 0 0
\(315\) 0.874253 1.91435i 0.0492586 0.107861i
\(316\) 0 0
\(317\) −0.880172 6.12173i −0.0494354 0.343831i −0.999495 0.0317634i \(-0.989888\pi\)
0.950060 0.312067i \(-0.101021\pi\)
\(318\) 0 0
\(319\) −2.79872 3.22990i −0.156698 0.180840i
\(320\) 0 0
\(321\) −11.8826 −0.663222
\(322\) 0 0
\(323\) 0.342608 0.0190632
\(324\) 0 0
\(325\) 0.147855 + 0.170634i 0.00820151 + 0.00946505i
\(326\) 0 0
\(327\) −1.70209 11.8383i −0.0941261 0.654661i
\(328\) 0 0
\(329\) −0.576577 + 1.26253i −0.0317877 + 0.0696054i
\(330\) 0 0
\(331\) −4.00912 + 27.8840i −0.220361 + 1.53264i 0.516315 + 0.856399i \(0.327303\pi\)
−0.736676 + 0.676246i \(0.763606\pi\)
\(332\) 0 0
\(333\) −2.74053 0.804692i −0.150180 0.0440968i
\(334\) 0 0
\(335\) 2.73971 + 5.99914i 0.149687 + 0.327768i
\(336\) 0 0
\(337\) −9.39988 + 10.8480i −0.512044 + 0.590931i −0.951621 0.307275i \(-0.900583\pi\)
0.439577 + 0.898205i \(0.355128\pi\)
\(338\) 0 0
\(339\) −17.0863 10.9807i −0.927999 0.596389i
\(340\) 0 0
\(341\) 14.7794 9.49817i 0.800352 0.514355i
\(342\) 0 0
\(343\) 11.7428 3.44798i 0.634049 0.186174i
\(344\) 0 0
\(345\) −9.91553 + 4.35385i −0.533834 + 0.234404i
\(346\) 0 0
\(347\) 11.4880 3.37318i 0.616707 0.181082i 0.0415660 0.999136i \(-0.486765\pi\)
0.575141 + 0.818054i \(0.304947\pi\)
\(348\) 0 0
\(349\) −30.0897 + 19.3375i −1.61067 + 1.03511i −0.649038 + 0.760756i \(0.724828\pi\)
−0.961628 + 0.274357i \(0.911535\pi\)
\(350\) 0 0
\(351\) 1.92131 + 1.23475i 0.102552 + 0.0659061i
\(352\) 0 0
\(353\) −11.4100 + 13.1679i −0.607295 + 0.700856i −0.973243 0.229780i \(-0.926199\pi\)
0.365948 + 0.930635i \(0.380745\pi\)
\(354\) 0 0
\(355\) −2.54859 5.58063i −0.135265 0.296189i
\(356\) 0 0
\(357\) 0.0361642 + 0.0106188i 0.00191401 + 0.000562004i
\(358\) 0 0
\(359\) 1.02689 7.14216i 0.0541970 0.376949i −0.944613 0.328185i \(-0.893563\pi\)
0.998810 0.0487633i \(-0.0155280\pi\)
\(360\) 0 0
\(361\) 21.9225 48.0036i 1.15382 2.52650i
\(362\) 0 0
\(363\) −0.441947 3.07381i −0.0231962 0.161333i
\(364\) 0 0
\(365\) 7.52360 + 8.68270i 0.393803 + 0.454473i
\(366\) 0 0
\(367\) −15.4745 −0.807764 −0.403882 0.914811i \(-0.632339\pi\)
−0.403882 + 0.914811i \(0.632339\pi\)
\(368\) 0 0
\(369\) 3.77593 0.196567
\(370\) 0 0
\(371\) 4.71477 + 5.44114i 0.244779 + 0.282490i
\(372\) 0 0
\(373\) 2.13003 + 14.8147i 0.110289 + 0.767074i 0.967639 + 0.252340i \(0.0812002\pi\)
−0.857350 + 0.514734i \(0.827891\pi\)
\(374\) 0 0
\(375\) 4.59744 10.0670i 0.237411 0.519857i
\(376\) 0 0
\(377\) −0.494387 + 3.43854i −0.0254622 + 0.177094i
\(378\) 0 0
\(379\) 31.9855 + 9.39179i 1.64298 + 0.482424i 0.967060 0.254547i \(-0.0819263\pi\)
0.675925 + 0.736971i \(0.263745\pi\)
\(380\) 0 0
\(381\) 7.70681 + 16.8756i 0.394832 + 0.864561i
\(382\) 0 0
\(383\) 10.8156 12.4818i 0.552650 0.637792i −0.408848 0.912602i \(-0.634070\pi\)
0.961499 + 0.274810i \(0.0886150\pi\)
\(384\) 0 0
\(385\) −4.97447 3.19689i −0.253522 0.162929i
\(386\) 0 0
\(387\) −9.25860 + 5.95014i −0.470641 + 0.302463i
\(388\) 0 0
\(389\) 25.3701 7.44932i 1.28631 0.377696i 0.434088 0.900871i \(-0.357071\pi\)
0.852225 + 0.523175i \(0.175253\pi\)
\(390\) 0 0
\(391\) −0.102454 0.164677i −0.00518131 0.00832807i
\(392\) 0 0
\(393\) −18.0075 + 5.28747i −0.908357 + 0.266718i
\(394\) 0 0
\(395\) −5.39289 + 3.46580i −0.271346 + 0.174383i
\(396\) 0 0
\(397\) 5.96036 + 3.83049i 0.299142 + 0.192247i 0.681598 0.731727i \(-0.261285\pi\)
−0.382456 + 0.923974i \(0.624922\pi\)
\(398\) 0 0
\(399\) 5.17066 5.96727i 0.258857 0.298737i
\(400\) 0 0
\(401\) 0.978177 + 2.14191i 0.0488478 + 0.106962i 0.932482 0.361216i \(-0.117638\pi\)
−0.883635 + 0.468177i \(0.844911\pi\)
\(402\) 0 0
\(403\) −13.7018 4.02322i −0.682537 0.200411i
\(404\) 0 0
\(405\) −0.321356 + 2.23508i −0.0159683 + 0.111062i
\(406\) 0 0
\(407\) −3.33380 + 7.30000i −0.165250 + 0.361847i
\(408\) 0 0
\(409\) −2.78470 19.3680i −0.137695 0.957687i −0.935136 0.354290i \(-0.884723\pi\)
0.797441 0.603397i \(-0.206186\pi\)
\(410\) 0 0
\(411\) 5.81533 + 6.71125i 0.286849 + 0.331042i
\(412\) 0 0
\(413\) −3.78950 −0.186469
\(414\) 0 0
\(415\) −12.2785 −0.602728
\(416\) 0 0
\(417\) 6.03595 + 6.96586i 0.295582 + 0.341120i
\(418\) 0 0
\(419\) −2.76408 19.2246i −0.135034 0.939182i −0.938856 0.344311i \(-0.888112\pi\)
0.803822 0.594870i \(-0.202797\pi\)
\(420\) 0 0
\(421\) −14.2497 + 31.2025i −0.694488 + 1.52072i 0.152041 + 0.988374i \(0.451415\pi\)
−0.846529 + 0.532343i \(0.821312\pi\)
\(422\) 0 0
\(423\) 0.211937 1.47405i 0.0103047 0.0716710i
\(424\) 0 0
\(425\) −0.00383598 0.00112635i −0.000186072 5.46358e-5i
\(426\) 0 0
\(427\) 4.98643 + 10.9187i 0.241310 + 0.528395i
\(428\) 0 0
\(429\) 4.20227 4.84968i 0.202887 0.234145i
\(430\) 0 0
\(431\) −13.8667 8.91157i −0.667934 0.429255i 0.162246 0.986750i \(-0.448126\pi\)
−0.830180 + 0.557495i \(0.811763\pi\)
\(432\) 0 0
\(433\) −4.51061 + 2.89879i −0.216766 + 0.139307i −0.644518 0.764589i \(-0.722942\pi\)
0.427752 + 0.903896i \(0.359306\pi\)
\(434\) 0 0
\(435\) −3.29553 + 0.967654i −0.158008 + 0.0463954i
\(436\) 0 0
\(437\) −40.2965 + 5.19239i −1.92764 + 0.248386i
\(438\) 0 0
\(439\) −36.3707 + 10.6794i −1.73588 + 0.509699i −0.988042 0.154186i \(-0.950725\pi\)
−0.747835 + 0.663885i \(0.768906\pi\)
\(440\) 0 0
\(441\) −5.15803 + 3.31487i −0.245621 + 0.157851i
\(442\) 0 0
\(443\) 14.9953 + 9.63691i 0.712450 + 0.457864i 0.846003 0.533178i \(-0.179002\pi\)
−0.133553 + 0.991042i \(0.542639\pi\)
\(444\) 0 0
\(445\) −5.04299 + 5.81992i −0.239061 + 0.275891i
\(446\) 0 0
\(447\) 4.04388 + 8.85486i 0.191269 + 0.418821i
\(448\) 0 0
\(449\) 10.2578 + 3.01195i 0.484093 + 0.142143i 0.514667 0.857390i \(-0.327915\pi\)
−0.0305741 + 0.999533i \(0.509734\pi\)
\(450\) 0 0
\(451\) 1.50987 10.5014i 0.0710970 0.494490i
\(452\) 0 0
\(453\) −3.18126 + 6.96599i −0.149469 + 0.327291i
\(454\) 0 0
\(455\) 0.684030 + 4.75753i 0.0320678 + 0.223037i
\(456\) 0 0
\(457\) −13.8050 15.9319i −0.645772 0.745261i 0.334612 0.942356i \(-0.391395\pi\)
−0.980384 + 0.197095i \(0.936849\pi\)
\(458\) 0 0
\(459\) −0.0404407 −0.00188761
\(460\) 0 0
\(461\) −19.0885 −0.889040 −0.444520 0.895769i \(-0.646626\pi\)
−0.444520 + 0.895769i \(0.646626\pi\)
\(462\) 0 0
\(463\) −23.9490 27.6386i −1.11300 1.28447i −0.954860 0.297058i \(-0.903995\pi\)
−0.158143 0.987416i \(-0.550551\pi\)
\(464\) 0 0
\(465\) −2.00934 13.9753i −0.0931809 0.648087i
\(466\) 0 0
\(467\) −10.3023 + 22.5589i −0.476735 + 1.04390i 0.506614 + 0.862173i \(0.330897\pi\)
−0.983348 + 0.181730i \(0.941830\pi\)
\(468\) 0 0
\(469\) −0.387396 + 2.69440i −0.0178883 + 0.124416i
\(470\) 0 0
\(471\) −9.92195 2.91335i −0.457179 0.134240i
\(472\) 0 0
\(473\) 12.8459 + 28.1286i 0.590656 + 1.29336i
\(474\) 0 0
\(475\) −0.548459 + 0.632956i −0.0251650 + 0.0290420i
\(476\) 0 0
\(477\) −6.49861 4.17640i −0.297551 0.191224i
\(478\) 0 0
\(479\) −3.75278 + 2.41177i −0.171469 + 0.110196i −0.623560 0.781775i \(-0.714314\pi\)
0.452091 + 0.891972i \(0.350678\pi\)
\(480\) 0 0
\(481\) 6.25899 1.83781i 0.285385 0.0837967i
\(482\) 0 0
\(483\) −4.41445 0.700859i −0.200864 0.0318902i
\(484\) 0 0
\(485\) −0.249943 + 0.0733898i −0.0113493 + 0.00333246i
\(486\) 0 0
\(487\) 1.70711 1.09710i 0.0773567 0.0497142i −0.501391 0.865221i \(-0.667178\pi\)
0.578747 + 0.815507i \(0.303542\pi\)
\(488\) 0 0
\(489\) −10.5092 6.75386i −0.475243 0.305420i
\(490\) 0 0
\(491\) 8.01897 9.25439i 0.361891 0.417645i −0.545381 0.838188i \(-0.683615\pi\)
0.907272 + 0.420543i \(0.138161\pi\)
\(492\) 0 0
\(493\) −0.0255533 0.0559539i −0.00115086 0.00252004i
\(494\) 0 0
\(495\) 6.08756 + 1.78747i 0.273615 + 0.0803407i
\(496\) 0 0
\(497\) 0.360371 2.50644i 0.0161649 0.112429i
\(498\) 0 0
\(499\) 14.5749 31.9145i 0.652460 1.42869i −0.236924 0.971528i \(-0.576139\pi\)
0.889384 0.457160i \(-0.151133\pi\)
\(500\) 0 0
\(501\) −0.789217 5.48913i −0.0352596 0.245236i
\(502\) 0 0
\(503\) 5.57587 + 6.43490i 0.248616 + 0.286918i 0.866317 0.499495i \(-0.166481\pi\)
−0.617701 + 0.786413i \(0.711936\pi\)
\(504\) 0 0
\(505\) 16.0613 0.714720
\(506\) 0 0
\(507\) 7.78397 0.345698
\(508\) 0 0
\(509\) 19.1300 + 22.0772i 0.847924 + 0.978556i 0.999952 0.00982005i \(-0.00312587\pi\)
−0.152028 + 0.988376i \(0.548580\pi\)
\(510\) 0 0
\(511\) 0.674852 + 4.69370i 0.0298537 + 0.207637i
\(512\) 0 0
\(513\) −3.51934 + 7.70628i −0.155383 + 0.340241i
\(514\) 0 0
\(515\) 1.84321 12.8198i 0.0812217 0.564910i
\(516\) 0 0
\(517\) −4.01479 1.17885i −0.176570 0.0518457i
\(518\) 0 0
\(519\) 3.17092 + 6.94334i 0.139188 + 0.304779i
\(520\) 0 0
\(521\) −19.2740 + 22.2434i −0.844410 + 0.974501i −0.999911 0.0133345i \(-0.995755\pi\)
0.155501 + 0.987836i \(0.450301\pi\)
\(522\) 0 0
\(523\) −26.3553 16.9375i −1.15244 0.740627i −0.182315 0.983240i \(-0.558359\pi\)
−0.970123 + 0.242613i \(0.921995\pi\)
\(524\) 0 0
\(525\) −0.0775107 + 0.0498131i −0.00338284 + 0.00217402i
\(526\) 0 0
\(527\) 0.242620 0.0712397i 0.0105687 0.00310325i
\(528\) 0 0
\(529\) 14.5461 + 17.8161i 0.632438 + 0.774611i
\(530\) 0 0
\(531\) 3.90126 1.14551i 0.169300 0.0497110i
\(532\) 0 0
\(533\) −7.25473 + 4.66233i −0.314237 + 0.201948i
\(534\) 0 0
\(535\) 22.5723 + 14.5063i 0.975884 + 0.627163i
\(536\) 0 0
\(537\) −12.1753 + 14.0510i −0.525401 + 0.606345i
\(538\) 0 0
\(539\) 7.15656 + 15.6707i 0.308255 + 0.674984i
\(540\) 0 0
\(541\) −17.8079 5.22886i −0.765620 0.224806i −0.124471 0.992223i \(-0.539723\pi\)
−0.641148 + 0.767417i \(0.721542\pi\)
\(542\) 0 0
\(543\) 0.425919 2.96233i 0.0182779 0.127126i
\(544\) 0 0
\(545\) −11.2190 + 24.5661i −0.480567 + 1.05230i
\(546\) 0 0
\(547\) 1.00508 + 6.99046i 0.0429739 + 0.298890i 0.999962 + 0.00876172i \(0.00278898\pi\)
−0.956988 + 0.290129i \(0.906302\pi\)
\(548\) 0 0
\(549\) −8.43408 9.73345i −0.359958 0.415413i
\(550\) 0 0
\(551\) −12.8862 −0.548971
\(552\) 0 0
\(553\) −2.64592 −0.112516
\(554\) 0 0
\(555\) 4.22355 + 4.87424i 0.179280 + 0.206900i
\(556\) 0 0
\(557\) −5.23979 36.4436i −0.222017 1.54416i −0.730393 0.683027i \(-0.760663\pi\)
0.508376 0.861135i \(-0.330246\pi\)
\(558\) 0 0
\(559\) 10.4417 22.8641i 0.441636 0.967049i
\(560\) 0 0
\(561\) −0.0161709 + 0.112471i −0.000682734 + 0.00474852i
\(562\) 0 0
\(563\) 25.1854 + 7.39511i 1.06144 + 0.311667i 0.765430 0.643519i \(-0.222526\pi\)
0.296008 + 0.955185i \(0.404344\pi\)
\(564\) 0 0
\(565\) 19.0519 + 41.7179i 0.801521 + 1.75509i
\(566\) 0 0
\(567\) −0.610334 + 0.704363i −0.0256316 + 0.0295805i
\(568\) 0 0
\(569\) −32.4914 20.8809i −1.36211 0.875375i −0.363687 0.931521i \(-0.618482\pi\)
−0.998423 + 0.0561463i \(0.982119\pi\)
\(570\) 0 0
\(571\) −32.9974 + 21.2061i −1.38090 + 0.887448i −0.999319 0.0368888i \(-0.988255\pi\)
−0.381577 + 0.924337i \(0.624619\pi\)
\(572\) 0 0
\(573\) −20.1892 + 5.92807i −0.843414 + 0.247649i
\(574\) 0 0
\(575\) 0.468247 + 0.0743411i 0.0195272 + 0.00310024i
\(576\) 0 0
\(577\) 35.2591 10.3530i 1.46786 0.431002i 0.552455 0.833543i \(-0.313691\pi\)
0.915402 + 0.402541i \(0.131873\pi\)
\(578\) 0 0
\(579\) 11.1498 7.16556i 0.463371 0.297790i
\(580\) 0 0
\(581\) −4.26338 2.73991i −0.176875 0.113671i
\(582\) 0 0
\(583\) −14.2137 + 16.4035i −0.588671 + 0.679362i
\(584\) 0 0
\(585\) −2.14234 4.69108i −0.0885750 0.193952i
\(586\) 0 0
\(587\) −26.6714 7.83144i −1.10085 0.323238i −0.319659 0.947533i \(-0.603568\pi\)
−0.781189 + 0.624295i \(0.785386\pi\)
\(588\) 0 0
\(589\) 7.53869 52.4327i 0.310626 2.16045i
\(590\) 0 0
\(591\) −7.46629 + 16.3489i −0.307122 + 0.672503i
\(592\) 0 0
\(593\) 3.97130 + 27.6210i 0.163082 + 1.13426i 0.892781 + 0.450490i \(0.148751\pi\)
−0.729700 + 0.683768i \(0.760340\pi\)
\(594\) 0 0
\(595\) −0.0557342 0.0643207i −0.00228488 0.00263689i
\(596\) 0 0
\(597\) 12.0505 0.493194
\(598\) 0 0
\(599\) 26.4004 1.07869 0.539346 0.842084i \(-0.318671\pi\)
0.539346 + 0.842084i \(0.318671\pi\)
\(600\) 0 0
\(601\) 3.70620 + 4.27718i 0.151179 + 0.174470i 0.826288 0.563249i \(-0.190449\pi\)
−0.675108 + 0.737718i \(0.735903\pi\)
\(602\) 0 0
\(603\) −0.415659 2.89097i −0.0169269 0.117729i
\(604\) 0 0
\(605\) −2.91299 + 6.37855i −0.118430 + 0.259325i
\(606\) 0 0
\(607\) −0.333641 + 2.32053i −0.0135421 + 0.0941873i −0.995472 0.0950600i \(-0.969696\pi\)
0.981929 + 0.189247i \(0.0606048\pi\)
\(608\) 0 0
\(609\) −1.36021 0.399394i −0.0551186 0.0161843i
\(610\) 0 0
\(611\) 1.41289 + 3.09380i 0.0571595 + 0.125162i
\(612\) 0 0
\(613\) −32.0637 + 37.0035i −1.29504 + 1.49456i −0.534684 + 0.845052i \(0.679569\pi\)
−0.760357 + 0.649505i \(0.774976\pi\)
\(614\) 0 0
\(615\) −7.17279 4.60967i −0.289235 0.185880i
\(616\) 0 0
\(617\) −26.7269 + 17.1763i −1.07598 + 0.691493i −0.953626 0.300993i \(-0.902682\pi\)
−0.122358 + 0.992486i \(0.539046\pi\)
\(618\) 0 0
\(619\) 7.08943 2.08164i 0.284948 0.0836683i −0.136135 0.990690i \(-0.543468\pi\)
0.421083 + 0.907022i \(0.361650\pi\)
\(620\) 0 0
\(621\) 4.75651 0.612899i 0.190872 0.0245948i
\(622\) 0 0
\(623\) −3.04974 + 0.895484i −0.122185 + 0.0358768i
\(624\) 0 0
\(625\) −21.4389 + 13.7780i −0.857558 + 0.551119i
\(626\) 0 0
\(627\) 20.0249 + 12.8692i 0.799718 + 0.513947i
\(628\) 0 0
\(629\) −0.0756414 + 0.0872948i −0.00301602 + 0.00348067i
\(630\) 0 0
\(631\) 2.37100 + 5.19177i 0.0943881 + 0.206681i 0.950937 0.309385i \(-0.100123\pi\)
−0.856549 + 0.516066i \(0.827396\pi\)
\(632\) 0 0
\(633\) −10.2317 3.00429i −0.406673 0.119410i
\(634\) 0 0
\(635\) 5.96182 41.4654i 0.236588 1.64550i
\(636\) 0 0
\(637\) 5.81714 12.7378i 0.230484 0.504689i
\(638\) 0 0
\(639\) 0.386662 + 2.68929i 0.0152961 + 0.106387i
\(640\) 0 0
\(641\) −1.02930 1.18787i −0.0406549 0.0469182i 0.735058 0.678004i \(-0.237155\pi\)
−0.775713 + 0.631086i \(0.782609\pi\)
\(642\) 0 0
\(643\) −10.9672 −0.432504 −0.216252 0.976338i \(-0.569383\pi\)
−0.216252 + 0.976338i \(0.569383\pi\)
\(644\) 0 0
\(645\) 24.8516 0.978532
\(646\) 0 0
\(647\) −13.2857 15.3325i −0.522315 0.602783i 0.431894 0.901924i \(-0.357845\pi\)
−0.954209 + 0.299141i \(0.903300\pi\)
\(648\) 0 0
\(649\) −1.62584 11.3080i −0.0638198 0.443877i
\(650\) 0 0
\(651\) 2.42085 5.30091i 0.0948804 0.207759i
\(652\) 0 0
\(653\) 2.95932 20.5825i 0.115807 0.805455i −0.846285 0.532730i \(-0.821166\pi\)
0.962092 0.272725i \(-0.0879249\pi\)
\(654\) 0 0
\(655\) 40.6620 + 11.9395i 1.58880 + 0.466513i
\(656\) 0 0
\(657\) −2.11360 4.62813i −0.0824593 0.180561i
\(658\) 0 0
\(659\) 25.9243 29.9183i 1.00987 1.16545i 0.0236983 0.999719i \(-0.492456\pi\)
0.986171 0.165732i \(-0.0529986\pi\)
\(660\) 0 0
\(661\) −4.03380 2.59236i −0.156897 0.100831i 0.459837 0.888003i \(-0.347908\pi\)
−0.616733 + 0.787172i \(0.711544\pi\)
\(662\) 0 0
\(663\) 0.0776990 0.0499341i 0.00301758 0.00193928i
\(664\) 0 0
\(665\) −17.1071 + 5.02309i −0.663384 + 0.194787i
\(666\) 0 0
\(667\) 3.85351 + 6.19385i 0.149209 + 0.239827i
\(668\) 0 0
\(669\) 10.2479 3.00905i 0.396206 0.116337i
\(670\) 0 0
\(671\) −30.4425 + 19.5642i −1.17522 + 0.755268i
\(672\) 0 0
\(673\) 18.9620 + 12.1861i 0.730930 + 0.469740i 0.852423 0.522852i \(-0.175132\pi\)
−0.121494 + 0.992592i \(0.538768\pi\)
\(674\) 0 0
\(675\) 0.0647389 0.0747127i 0.00249180 0.00287569i
\(676\) 0 0
\(677\) −11.8869 26.0287i −0.456852 1.00037i −0.988194 0.153208i \(-0.951039\pi\)
0.531342 0.847157i \(-0.321688\pi\)
\(678\) 0 0
\(679\) −0.103163 0.0302913i −0.00395902 0.00116247i
\(680\) 0 0
\(681\) −1.08025 + 7.51327i −0.0413951 + 0.287909i
\(682\) 0 0
\(683\) 15.1517 33.1776i 0.579763 1.26950i −0.361671 0.932306i \(-0.617794\pi\)
0.941434 0.337198i \(-0.109479\pi\)
\(684\) 0 0
\(685\) −2.85373 19.8481i −0.109035 0.758357i
\(686\) 0 0
\(687\) 6.06990 + 7.00503i 0.231581 + 0.267259i
\(688\) 0 0
\(689\) 17.6426 0.672131
\(690\) 0 0
\(691\) −2.16621 −0.0824063 −0.0412032 0.999151i \(-0.513119\pi\)
−0.0412032 + 0.999151i \(0.513119\pi\)
\(692\) 0 0
\(693\) 1.71487 + 1.97907i 0.0651426 + 0.0751786i
\(694\) 0 0
\(695\) −2.96199 20.6011i −0.112355 0.781444i
\(696\) 0 0
\(697\) 0.0634344 0.138902i 0.00240275 0.00526129i
\(698\) 0 0
\(699\) 2.52285 17.5468i 0.0954228 0.663680i
\(700\) 0 0
\(701\) −38.4671 11.2950i −1.45288 0.426605i −0.542389 0.840127i \(-0.682480\pi\)
−0.910494 + 0.413522i \(0.864298\pi\)
\(702\) 0 0
\(703\) 10.0520 + 22.0109i 0.379119 + 0.830156i
\(704\) 0 0
\(705\) −2.20213 + 2.54139i −0.0829369 + 0.0957142i
\(706\) 0 0
\(707\) 5.57687 + 3.58404i 0.209740 + 0.134792i
\(708\) 0 0
\(709\) −27.8890 + 17.9231i −1.04739 + 0.673118i −0.946804 0.321810i \(-0.895709\pi\)
−0.100588 + 0.994928i \(0.532072\pi\)
\(710\) 0 0
\(711\) 2.72395 0.799825i 0.102156 0.0299958i
\(712\) 0 0
\(713\) −27.4566 + 12.0560i −1.02826 + 0.451502i
\(714\) 0 0
\(715\) −13.9031 + 4.08233i −0.519948 + 0.152671i
\(716\) 0 0
\(717\) 14.7081 9.45230i 0.549283 0.353003i
\(718\) 0 0
\(719\) 27.5343 + 17.6952i 1.02685 + 0.659920i 0.941702 0.336448i \(-0.109226\pi\)
0.0851530 + 0.996368i \(0.472862\pi\)
\(720\) 0 0
\(721\) 3.50071 4.04004i 0.130373 0.150459i
\(722\) 0 0
\(723\) 5.30486 + 11.6160i 0.197290 + 0.432004i
\(724\) 0 0
\(725\) 0.144280 + 0.0423643i 0.00535841 + 0.00157337i
\(726\) 0 0
\(727\) 1.10307 7.67202i 0.0409106 0.284539i −0.959088 0.283107i \(-0.908635\pi\)
0.999999 0.00143253i \(-0.000455987\pi\)
\(728\) 0 0
\(729\) 0.415415 0.909632i 0.0153857 0.0336901i
\(730\) 0 0
\(731\) 0.0633413 + 0.440548i 0.00234276 + 0.0162943i
\(732\) 0 0
\(733\) 27.9478 + 32.2535i 1.03227 + 1.19131i 0.981275 + 0.192610i \(0.0616952\pi\)
0.0509994 + 0.998699i \(0.483759\pi\)
\(734\) 0 0
\(735\) 13.8450 0.510681
\(736\) 0 0
\(737\) −8.20637 −0.302286
\(738\) 0 0
\(739\) −21.9357 25.3151i −0.806918 0.931233i 0.191822 0.981430i \(-0.438560\pi\)
−0.998739 + 0.0501971i \(0.984015\pi\)
\(740\) 0 0
\(741\) −2.75359 19.1516i −0.101156 0.703553i
\(742\) 0 0
\(743\) 0.407910 0.893197i 0.0149647 0.0327682i −0.902002 0.431732i \(-0.857903\pi\)
0.916967 + 0.398964i \(0.130630\pi\)
\(744\) 0 0
\(745\) 3.12826 21.7575i 0.114611 0.797134i
\(746\) 0 0
\(747\) 5.21736 + 1.53195i 0.190893 + 0.0560513i
\(748\) 0 0
\(749\) 4.60058 + 10.0739i 0.168101 + 0.368091i
\(750\) 0 0
\(751\) −6.42614 + 7.41617i −0.234493 + 0.270620i −0.860785 0.508969i \(-0.830027\pi\)
0.626291 + 0.779589i \(0.284572\pi\)
\(752\) 0 0
\(753\) 4.21876 + 2.71123i 0.153740 + 0.0988028i
\(754\) 0 0
\(755\) 14.5472 9.34894i 0.529428 0.340243i
\(756\) 0 0
\(757\) 49.2469 14.4602i 1.78991 0.525565i 0.793374 0.608735i \(-0.208323\pi\)
0.996535 + 0.0831704i \(0.0265046\pi\)
\(758\) 0 0
\(759\) 0.197415 13.4735i 0.00716572 0.489059i
\(760\) 0 0
\(761\) 17.8747 5.24850i 0.647959 0.190258i 0.0587934 0.998270i \(-0.481275\pi\)
0.589166 + 0.808012i \(0.299456\pi\)
\(762\) 0 0
\(763\) −9.37732 + 6.02644i −0.339482 + 0.218172i
\(764\) 0 0
\(765\) 0.0768213 + 0.0493700i 0.00277748 + 0.00178498i
\(766\) 0 0
\(767\) −6.08110 + 7.01797i −0.219576 + 0.253404i
\(768\) 0 0
\(769\) −0.0920115 0.201477i −0.00331802 0.00726545i 0.907966 0.419044i \(-0.137635\pi\)
−0.911284 + 0.411779i \(0.864908\pi\)
\(770\) 0 0
\(771\) −5.87742 1.72577i −0.211670 0.0621520i
\(772\) 0 0
\(773\) −5.45557 + 37.9443i −0.196223 + 1.36476i 0.618898 + 0.785471i \(0.287579\pi\)
−0.815121 + 0.579291i \(0.803330\pi\)
\(774\) 0 0
\(775\) −0.256782 + 0.562275i −0.00922390 + 0.0201975i
\(776\) 0 0
\(777\) 0.378845 + 2.63492i 0.0135910 + 0.0945273i
\(778\) 0 0
\(779\) −20.9485 24.1758i −0.750557 0.866189i
\(780\) 0 0
\(781\) 7.63389 0.273162
\(782\) 0 0
\(783\) 1.52106 0.0543583
\(784\) 0 0
\(785\) 15.2912 + 17.6469i 0.545765 + 0.629846i
\(786\) 0 0
\(787\) 1.89248 + 13.1625i 0.0674596 + 0.469192i 0.995349 + 0.0963361i \(0.0307124\pi\)
−0.927889 + 0.372856i \(0.878379\pi\)
\(788\) 0 0
\(789\) −7.91642 + 17.3345i −0.281832 + 0.617126i
\(790\) 0 0
\(791\) −2.69395 + 18.7368i −0.0957858 + 0.666205i
\(792\) 0 0
\(793\) 28.2228 + 8.28697i 1.00222 + 0.294279i
\(794\) 0 0
\(795\) 7.24623 + 15.8670i 0.256997 + 0.562745i
\(796\) 0 0
\(797\) 4.35001 5.02018i 0.154085 0.177824i −0.673459 0.739225i \(-0.735192\pi\)
0.827544 + 0.561401i \(0.189737\pi\)
\(798\) 0 0
\(799\) −0.0506643 0.0325600i −0.00179237 0.00115189i
\(800\) 0 0
\(801\) 2.86899 1.84379i 0.101371 0.0651471i
\(802\) 0 0
\(803\) −13.7166 + 4.02756i −0.484048 + 0.142129i
\(804\) 0 0
\(805\) 7.53010 + 6.72053i 0.265401 + 0.236867i
\(806\) 0 0
\(807\) 25.7357 7.55668i 0.905939 0.266008i
\(808\) 0 0
\(809\) 34.3655 22.0854i 1.20823 0.776481i 0.227867 0.973692i \(-0.426825\pi\)
0.980361 + 0.197211i \(0.0631884\pi\)
\(810\) 0 0
\(811\) −40.2107 25.8418i −1.41199 0.907429i −0.411995 0.911186i \(-0.635168\pi\)
−0.999993 + 0.00375690i \(0.998804\pi\)
\(812\) 0 0
\(813\) 1.40197 1.61796i 0.0491692 0.0567443i
\(814\) 0 0
\(815\) 11.7182 + 25.6594i 0.410472 + 0.898808i
\(816\) 0 0
\(817\) 89.4621 + 26.2685i 3.12988 + 0.919017i
\(818\) 0 0
\(819\) 0.302928 2.10691i 0.0105851 0.0736213i
\(820\) 0 0
\(821\) 16.5006 36.1312i 0.575873 1.26099i −0.367737 0.929930i \(-0.619867\pi\)
0.943611 0.331057i \(-0.107405\pi\)
\(822\) 0 0
\(823\) 2.25871 + 15.7097i 0.0787338 + 0.547606i 0.990565 + 0.137041i \(0.0437593\pi\)
−0.911831 + 0.410565i \(0.865332\pi\)
\(824\) 0 0
\(825\) −0.181899 0.209922i −0.00633291 0.00730856i
\(826\) 0 0
\(827\) −17.0293 −0.592166 −0.296083 0.955162i \(-0.595681\pi\)
−0.296083 + 0.955162i \(0.595681\pi\)
\(828\) 0 0
\(829\) 25.5670 0.887978 0.443989 0.896032i \(-0.353563\pi\)
0.443989 + 0.896032i \(0.353563\pi\)
\(830\) 0 0
\(831\) 0.428090 + 0.494042i 0.0148503 + 0.0171381i
\(832\) 0 0
\(833\) 0.0352879 + 0.245433i 0.00122265 + 0.00850374i
\(834\) 0 0
\(835\) −5.20194 + 11.3907i −0.180020 + 0.394190i
\(836\) 0 0
\(837\) −0.889850 + 6.18904i −0.0307577 + 0.213925i
\(838\) 0 0
\(839\) 30.2278 + 8.87568i 1.04358 + 0.306423i 0.758221 0.651998i \(-0.226069\pi\)
0.285359 + 0.958421i \(0.407887\pi\)
\(840\) 0 0
\(841\) −11.0859 24.2748i −0.382273 0.837061i
\(842\) 0 0
\(843\) 19.8017 22.8524i 0.682008 0.787079i
\(844\) 0 0
\(845\) −14.7865 9.50268i −0.508670 0.326902i
\(846\) 0 0
\(847\) −2.43481 + 1.56476i −0.0836611 + 0.0537657i
\(848\) 0 0
\(849\) −2.78580 + 0.817984i −0.0956084 + 0.0280731i
\(850\) 0 0
\(851\) 7.57371 11.4137i 0.259624 0.391258i
\(852\) 0 0
\(853\) −52.4958 + 15.4142i −1.79742 + 0.527771i −0.997391 0.0721871i \(-0.977002\pi\)
−0.800031 + 0.599958i \(0.795184\pi\)
\(854\) 0 0
\(855\) 16.0932 10.3425i 0.550376 0.353705i
\(856\) 0 0
\(857\) −30.1369 19.3678i −1.02946 0.661592i −0.0870995 0.996200i \(-0.527760\pi\)
−0.942357 + 0.334608i \(0.891396\pi\)
\(858\) 0 0
\(859\) 34.2700 39.5497i 1.16928 1.34942i 0.244163 0.969734i \(-0.421487\pi\)
0.925116 0.379686i \(-0.123968\pi\)
\(860\) 0 0
\(861\) −1.46192 3.20117i −0.0498223 0.109096i
\(862\) 0 0
\(863\) −49.8401 14.6344i −1.69658 0.498160i −0.716637 0.697446i \(-0.754320\pi\)
−0.979941 + 0.199286i \(0.936138\pi\)
\(864\) 0 0
\(865\) 2.45296 17.0607i 0.0834030 0.580081i
\(866\) 0 0
\(867\) 7.06138 15.4623i 0.239817 0.525126i
\(868\) 0 0
\(869\) −1.13520 7.89550i −0.0385091 0.267836i
\(870\) 0 0
\(871\) 4.36823 + 5.04121i 0.148012 + 0.170815i
\(872\) 0 0
\(873\) 0.115362 0.00390441
\(874\) 0 0
\(875\) −10.3146 −0.348697
\(876\) 0 0
\(877\) 13.8830 + 16.0218i 0.468795 + 0.541019i 0.940076 0.340965i \(-0.110754\pi\)
−0.471281 + 0.881983i \(0.656208\pi\)
\(878\) 0 0
\(879\) 2.44443 + 17.0014i 0.0824486 + 0.573443i
\(880\) 0 0
\(881\) −0.547771 + 1.19945i −0.0184549 + 0.0404106i −0.918635 0.395107i \(-0.870707\pi\)
0.900180 + 0.435518i \(0.143435\pi\)
\(882\) 0 0
\(883\) 5.88826 40.9537i 0.198156 1.37820i −0.611475 0.791264i \(-0.709424\pi\)
0.809631 0.586939i \(-0.199667\pi\)
\(884\) 0 0
\(885\) −8.80930 2.58664i −0.296121 0.0869491i
\(886\) 0 0
\(887\) −10.4201 22.8169i −0.349873 0.766115i −0.999980 0.00627271i \(-0.998003\pi\)
0.650107 0.759842i \(-0.274724\pi\)
\(888\) 0 0
\(889\) 11.3229 13.0674i 0.379760 0.438266i
\(890\) 0 0
\(891\) −2.36370 1.51905i −0.0791868 0.0508902i
\(892\) 0 0
\(893\) −10.6136 + 6.82095i −0.355171 + 0.228254i
\(894\) 0 0
\(895\) 40.2817 11.8278i 1.34647 0.395358i
\(896\) 0 0
\(897\) −8.38194 + 7.05066i −0.279865 + 0.235415i
\(898\) 0 0
\(899\) −9.12546 + 2.67948i −0.304351 + 0.0893656i
\(900\) 0 0
\(901\) −0.262808 + 0.168896i −0.00875540 + 0.00562675i
\(902\) 0 0
\(903\) 8.62907 + 5.54556i 0.287157 + 0.184545i
\(904\) 0 0
\(905\) −4.42550 + 5.10730i −0.147109 + 0.169772i
\(906\) 0 0
\(907\) −16.8916 36.9875i −0.560877 1.22815i −0.951514 0.307605i \(-0.900473\pi\)
0.390637 0.920545i \(-0.372255\pi\)
\(908\) 0 0
\(909\) −6.82475 2.00393i −0.226363 0.0664661i
\(910\) 0 0
\(911\) −1.32978 + 9.24883i −0.0440576 + 0.306428i 0.955863 + 0.293813i \(0.0949244\pi\)
−0.999920 + 0.0126142i \(0.995985\pi\)
\(912\) 0 0
\(913\) 6.34681 13.8976i 0.210049 0.459943i
\(914\) 0 0
\(915\) 4.13881 + 28.7861i 0.136825 + 0.951637i
\(916\) 0 0
\(917\) 11.4546 + 13.2193i 0.378263 + 0.436538i
\(918\) 0 0
\(919\) −21.5484 −0.710817 −0.355409 0.934711i \(-0.615658\pi\)
−0.355409 + 0.934711i \(0.615658\pi\)
\(920\) 0 0
\(921\) 23.2496 0.766102
\(922\) 0 0
\(923\) −4.06350 4.68953i −0.133752 0.154358i
\(924\) 0 0
\(925\) −0.0401845 0.279490i −0.00132126 0.00918956i
\(926\) 0 0
\(927\) −2.38271 + 5.21741i −0.0782585 + 0.171362i
\(928\) 0 0
\(929\) 6.87624 47.8253i 0.225602 1.56910i −0.490713 0.871321i \(-0.663264\pi\)
0.716315 0.697777i \(-0.245827\pi\)
\(930\) 0 0
\(931\) 49.8400 + 14.6343i 1.63344 + 0.479621i
\(932\) 0 0
\(933\) 11.6768 + 25.5687i 0.382283 + 0.837082i
\(934\) 0 0
\(935\) 0.168023 0.193909i 0.00549493 0.00634149i
\(936\) 0 0
\(937\) −1.65747 1.06519i −0.0541472 0.0347983i 0.513287 0.858217i \(-0.328428\pi\)
−0.567434 + 0.823419i \(0.692064\pi\)
\(938\) 0 0
\(939\) −18.0137 + 11.5767i −0.587854 + 0.377791i
\(940\) 0 0
\(941\) 33.5991 9.86557i 1.09530 0.321609i 0.316316 0.948654i \(-0.397554\pi\)
0.778983 + 0.627045i \(0.215736\pi\)
\(942\) 0 0
\(943\) −5.35583 + 17.2986i −0.174410 + 0.563320i
\(944\) 0 0
\(945\) 2.01928 0.592914i 0.0656872 0.0192875i
\(946\) 0 0
\(947\) −35.6557 + 22.9145i −1.15866 + 0.744623i −0.971344 0.237678i \(-0.923614\pi\)
−0.187311 + 0.982301i \(0.559977\pi\)
\(948\) 0 0
\(949\) 9.77546 + 6.28231i 0.317325 + 0.203932i
\(950\) 0 0
\(951\) 4.05010 4.67407i 0.131334 0.151567i
\(952\) 0 0
\(953\) −12.5266 27.4295i −0.405777 0.888528i −0.996652 0.0817648i \(-0.973944\pi\)
0.590874 0.806764i \(-0.298783\pi\)
\(954\) 0 0
\(955\) 45.5884 + 13.3860i 1.47521 + 0.433160i
\(956\) 0 0
\(957\) 0.608221 4.23027i 0.0196610 0.136745i
\(958\) 0 0
\(959\) 3.43816 7.52852i 0.111024 0.243109i
\(960\) 0 0
\(961\) −1.15219 8.01367i −0.0371675 0.258506i
\(962\) 0 0
\(963\) −7.78145 8.98028i −0.250754 0.289385i
\(964\) 0 0
\(965\) −29.9280 −0.963416
\(966\) 0 0
\(967\) −48.7926 −1.56906 −0.784532 0.620089i \(-0.787097\pi\)
−0.784532 + 0.620089i \(0.787097\pi\)
\(968\) 0 0
\(969\) 0.224360 + 0.258926i 0.00720749 + 0.00831789i
\(970\) 0 0
\(971\) −3.23170 22.4769i −0.103710 0.721320i −0.973631 0.228128i \(-0.926739\pi\)
0.869921 0.493191i \(-0.164170\pi\)
\(972\) 0 0
\(973\) 3.56860 7.81414i 0.114404 0.250510i
\(974\) 0 0
\(975\) −0.0321319 + 0.223482i −0.00102905 + 0.00715717i
\(976\) 0 0
\(977\) −0.222080 0.0652085i −0.00710496 0.00208620i 0.278178 0.960529i \(-0.410269\pi\)
−0.285283 + 0.958443i \(0.592088\pi\)
\(978\) 0 0
\(979\) −3.98061 8.71632i −0.127221 0.278575i
\(980\) 0 0
\(981\) 7.83218 9.03881i 0.250062 0.288587i
\(982\) 0 0
\(983\) 24.9910 + 16.0607i 0.797089 + 0.512258i 0.874665 0.484729i \(-0.161082\pi\)
−0.0775758 + 0.996986i \(0.524718\pi\)
\(984\) 0 0
\(985\) 34.1418 21.9416i 1.08785 0.699117i
\(986\) 0 0
\(987\) −1.33173 + 0.391032i −0.0423895 + 0.0124467i
\(988\) 0 0
\(989\) −14.1267 50.8560i −0.449204 1.61713i
\(990\) 0 0
\(991\) −17.9388 + 5.26730i −0.569844 + 0.167321i −0.553946 0.832552i \(-0.686879\pi\)
−0.0158976 + 0.999874i \(0.505061\pi\)
\(992\) 0 0
\(993\) −23.6988 + 15.2303i −0.752057 + 0.483318i
\(994\) 0 0
\(995\) −22.8912 14.7113i −0.725699 0.466378i
\(996\) 0 0
\(997\) −2.03865 + 2.35272i −0.0645646 + 0.0745115i −0.787113 0.616809i \(-0.788425\pi\)
0.722548 + 0.691320i \(0.242971\pi\)
\(998\) 0 0
\(999\) −1.18652 2.59811i −0.0375398 0.0822007i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.2.q.c.193.1 30
23.18 even 11 inner 552.2.q.c.409.1 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.q.c.193.1 30 1.1 even 1 trivial
552.2.q.c.409.1 yes 30 23.18 even 11 inner