Properties

Label 552.2.q.b.193.1
Level $552$
Weight $2$
Character 552.193
Analytic conductor $4.408$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,2,Mod(25,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,-3,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 193.1
Character \(\chi\) \(=\) 552.193
Dual form 552.2.q.b.409.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.654861 - 0.755750i) q^{3} +(-0.412187 - 2.86682i) q^{5} +(1.09223 - 2.39166i) q^{7} +(-0.142315 + 0.989821i) q^{9} +(4.14692 + 1.21765i) q^{11} +(0.129857 + 0.284348i) q^{13} +(-1.89667 + 2.18888i) q^{15} +(-5.58671 - 3.59036i) q^{17} +(-4.72362 + 3.03569i) q^{19} +(-2.52276 + 0.740748i) q^{21} +(2.39283 - 4.15624i) q^{23} +(-3.25130 + 0.954669i) q^{25} +(0.841254 - 0.540641i) q^{27} +(-7.53744 - 4.84402i) q^{29} +(-0.650893 + 0.751170i) q^{31} +(-1.79542 - 3.93142i) q^{33} +(-7.30666 - 2.14543i) q^{35} +(0.640372 - 4.45388i) q^{37} +(0.129857 - 0.284348i) q^{39} +(-0.241654 - 1.68074i) q^{41} +(6.05274 + 6.98524i) q^{43} +2.89630 q^{45} +11.7494 q^{47} +(0.0569713 + 0.0657483i) q^{49} +(0.945104 + 6.57335i) q^{51} +(-0.186011 + 0.407308i) q^{53} +(1.78147 - 12.3904i) q^{55} +(5.38754 + 1.58192i) q^{57} +(-4.56913 - 10.0050i) q^{59} +(-8.24195 + 9.51171i) q^{61} +(2.21187 + 1.42148i) q^{63} +(0.761649 - 0.489482i) q^{65} +(-5.67876 + 1.66743i) q^{67} +(-4.70805 + 0.913379i) q^{69} +(4.55812 - 1.33838i) q^{71} +(2.71365 - 1.74396i) q^{73} +(2.85064 + 1.83200i) q^{75} +(7.44160 - 8.58807i) q^{77} +(-1.36131 - 2.98085i) q^{79} +(-0.959493 - 0.281733i) q^{81} +(-1.39423 + 9.69705i) q^{83} +(-7.99016 + 17.4960i) q^{85} +(1.27511 + 8.86858i) q^{87} +(3.70155 + 4.27182i) q^{89} +0.821897 q^{91} +0.993941 q^{93} +(10.6498 + 12.2905i) q^{95} +(-1.46177 - 10.1668i) q^{97} +(-1.79542 + 3.93142i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 3 q^{3} - 3 q^{9} + 9 q^{11} + 13 q^{13} + 17 q^{17} - 9 q^{19} - 11 q^{21} - 12 q^{23} - 23 q^{25} - 3 q^{27} - q^{29} - 37 q^{31} + 9 q^{33} + 10 q^{35} + 7 q^{37} + 13 q^{39} + 16 q^{41} + 20 q^{43}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(e\left(\frac{5}{11}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.654861 0.755750i −0.378084 0.436332i
\(4\) 0 0
\(5\) −0.412187 2.86682i −0.184336 1.28208i −0.846365 0.532604i \(-0.821214\pi\)
0.662029 0.749478i \(-0.269695\pi\)
\(6\) 0 0
\(7\) 1.09223 2.39166i 0.412826 0.903962i −0.582982 0.812485i \(-0.698114\pi\)
0.995807 0.0914765i \(-0.0291586\pi\)
\(8\) 0 0
\(9\) −0.142315 + 0.989821i −0.0474383 + 0.329940i
\(10\) 0 0
\(11\) 4.14692 + 1.21765i 1.25034 + 0.367134i 0.838892 0.544297i \(-0.183204\pi\)
0.411452 + 0.911432i \(0.365022\pi\)
\(12\) 0 0
\(13\) 0.129857 + 0.284348i 0.0360159 + 0.0788639i 0.926785 0.375593i \(-0.122561\pi\)
−0.890769 + 0.454456i \(0.849834\pi\)
\(14\) 0 0
\(15\) −1.89667 + 2.18888i −0.489719 + 0.565166i
\(16\) 0 0
\(17\) −5.58671 3.59036i −1.35498 0.870791i −0.356984 0.934111i \(-0.616195\pi\)
−0.997993 + 0.0633195i \(0.979831\pi\)
\(18\) 0 0
\(19\) −4.72362 + 3.03569i −1.08367 + 0.696435i −0.955403 0.295305i \(-0.904579\pi\)
−0.128270 + 0.991739i \(0.540942\pi\)
\(20\) 0 0
\(21\) −2.52276 + 0.740748i −0.550510 + 0.161644i
\(22\) 0 0
\(23\) 2.39283 4.15624i 0.498940 0.866637i
\(24\) 0 0
\(25\) −3.25130 + 0.954669i −0.650261 + 0.190934i
\(26\) 0 0
\(27\) 0.841254 0.540641i 0.161899 0.104046i
\(28\) 0 0
\(29\) −7.53744 4.84402i −1.39967 0.899512i −0.399814 0.916596i \(-0.630925\pi\)
−0.999854 + 0.0170839i \(0.994562\pi\)
\(30\) 0 0
\(31\) −0.650893 + 0.751170i −0.116904 + 0.134914i −0.811185 0.584790i \(-0.801177\pi\)
0.694281 + 0.719704i \(0.255722\pi\)
\(32\) 0 0
\(33\) −1.79542 3.93142i −0.312543 0.684373i
\(34\) 0 0
\(35\) −7.30666 2.14543i −1.23505 0.362644i
\(36\) 0 0
\(37\) 0.640372 4.45388i 0.105276 0.732214i −0.866988 0.498329i \(-0.833947\pi\)
0.972264 0.233885i \(-0.0751438\pi\)
\(38\) 0 0
\(39\) 0.129857 0.284348i 0.0207938 0.0455321i
\(40\) 0 0
\(41\) −0.241654 1.68074i −0.0377401 0.262488i 0.962212 0.272302i \(-0.0877850\pi\)
−0.999952 + 0.00981435i \(0.996876\pi\)
\(42\) 0 0
\(43\) 6.05274 + 6.98524i 0.923034 + 1.06524i 0.997683 + 0.0680285i \(0.0216709\pi\)
−0.0746491 + 0.997210i \(0.523784\pi\)
\(44\) 0 0
\(45\) 2.89630 0.431755
\(46\) 0 0
\(47\) 11.7494 1.71383 0.856913 0.515462i \(-0.172380\pi\)
0.856913 + 0.515462i \(0.172380\pi\)
\(48\) 0 0
\(49\) 0.0569713 + 0.0657483i 0.00813875 + 0.00939262i
\(50\) 0 0
\(51\) 0.945104 + 6.57335i 0.132341 + 0.920452i
\(52\) 0 0
\(53\) −0.186011 + 0.407308i −0.0255506 + 0.0559481i −0.921977 0.387244i \(-0.873427\pi\)
0.896426 + 0.443193i \(0.146154\pi\)
\(54\) 0 0
\(55\) 1.78147 12.3904i 0.240213 1.67072i
\(56\) 0 0
\(57\) 5.38754 + 1.58192i 0.713596 + 0.209531i
\(58\) 0 0
\(59\) −4.56913 10.0050i −0.594851 1.30254i −0.932466 0.361257i \(-0.882348\pi\)
0.337616 0.941284i \(-0.390380\pi\)
\(60\) 0 0
\(61\) −8.24195 + 9.51171i −1.05527 + 1.21785i −0.0800121 + 0.996794i \(0.525496\pi\)
−0.975261 + 0.221056i \(0.929050\pi\)
\(62\) 0 0
\(63\) 2.21187 + 1.42148i 0.278670 + 0.179090i
\(64\) 0 0
\(65\) 0.761649 0.489482i 0.0944709 0.0607128i
\(66\) 0 0
\(67\) −5.67876 + 1.66743i −0.693771 + 0.203710i −0.609562 0.792739i \(-0.708655\pi\)
−0.0842091 + 0.996448i \(0.526836\pi\)
\(68\) 0 0
\(69\) −4.70805 + 0.913379i −0.566783 + 0.109958i
\(70\) 0 0
\(71\) 4.55812 1.33838i 0.540949 0.158837i 0.000167524 1.00000i \(-0.499947\pi\)
0.540782 + 0.841163i \(0.318128\pi\)
\(72\) 0 0
\(73\) 2.71365 1.74396i 0.317608 0.204115i −0.372117 0.928186i \(-0.621368\pi\)
0.689725 + 0.724071i \(0.257731\pi\)
\(74\) 0 0
\(75\) 2.85064 + 1.83200i 0.329164 + 0.211541i
\(76\) 0 0
\(77\) 7.44160 8.58807i 0.848049 0.978701i
\(78\) 0 0
\(79\) −1.36131 2.98085i −0.153159 0.335372i 0.817463 0.575981i \(-0.195380\pi\)
−0.970622 + 0.240610i \(0.922653\pi\)
\(80\) 0 0
\(81\) −0.959493 0.281733i −0.106610 0.0313036i
\(82\) 0 0
\(83\) −1.39423 + 9.69705i −0.153036 + 1.06439i 0.758057 + 0.652189i \(0.226149\pi\)
−0.911093 + 0.412201i \(0.864760\pi\)
\(84\) 0 0
\(85\) −7.99016 + 17.4960i −0.866655 + 1.89771i
\(86\) 0 0
\(87\) 1.27511 + 8.86858i 0.136706 + 0.950812i
\(88\) 0 0
\(89\) 3.70155 + 4.27182i 0.392364 + 0.452812i 0.917221 0.398378i \(-0.130427\pi\)
−0.524857 + 0.851190i \(0.675881\pi\)
\(90\) 0 0
\(91\) 0.821897 0.0861582
\(92\) 0 0
\(93\) 0.993941 0.103067
\(94\) 0 0
\(95\) 10.6498 + 12.2905i 1.09265 + 1.26098i
\(96\) 0 0
\(97\) −1.46177 10.1668i −0.148420 1.03228i −0.918807 0.394707i \(-0.870846\pi\)
0.770387 0.637577i \(-0.220063\pi\)
\(98\) 0 0
\(99\) −1.79542 + 3.93142i −0.180447 + 0.395123i
\(100\) 0 0
\(101\) 1.32306 9.20206i 0.131649 0.915639i −0.811756 0.583997i \(-0.801488\pi\)
0.943405 0.331643i \(-0.107603\pi\)
\(102\) 0 0
\(103\) 13.0357 + 3.82763i 1.28445 + 0.377147i 0.851539 0.524291i \(-0.175670\pi\)
0.432907 + 0.901439i \(0.357488\pi\)
\(104\) 0 0
\(105\) 3.16344 + 6.92696i 0.308720 + 0.676002i
\(106\) 0 0
\(107\) −3.73449 + 4.30983i −0.361027 + 0.416647i −0.906984 0.421166i \(-0.861621\pi\)
0.545956 + 0.837814i \(0.316166\pi\)
\(108\) 0 0
\(109\) 6.90876 + 4.43999i 0.661739 + 0.425274i 0.827939 0.560818i \(-0.189513\pi\)
−0.166200 + 0.986092i \(0.553150\pi\)
\(110\) 0 0
\(111\) −3.78537 + 2.43271i −0.359292 + 0.230903i
\(112\) 0 0
\(113\) 18.1122 5.31823i 1.70385 0.500297i 0.722316 0.691563i \(-0.243078\pi\)
0.981538 + 0.191267i \(0.0612595\pi\)
\(114\) 0 0
\(115\) −12.9015 5.14667i −1.20307 0.479930i
\(116\) 0 0
\(117\) −0.299934 + 0.0880686i −0.0277289 + 0.00814195i
\(118\) 0 0
\(119\) −14.6889 + 9.43999i −1.34653 + 0.865363i
\(120\) 0 0
\(121\) 6.46051 + 4.15192i 0.587319 + 0.377447i
\(122\) 0 0
\(123\) −1.11197 + 1.28328i −0.100263 + 0.115710i
\(124\) 0 0
\(125\) −1.93883 4.24544i −0.173414 0.379724i
\(126\) 0 0
\(127\) 7.95735 + 2.33649i 0.706101 + 0.207330i 0.615018 0.788513i \(-0.289149\pi\)
0.0910832 + 0.995843i \(0.470967\pi\)
\(128\) 0 0
\(129\) 1.31539 9.14871i 0.115813 0.805499i
\(130\) 0 0
\(131\) 8.26738 18.1030i 0.722325 1.58167i −0.0882930 0.996095i \(-0.528141\pi\)
0.810618 0.585576i \(-0.199132\pi\)
\(132\) 0 0
\(133\) 2.10103 + 14.6130i 0.182182 + 1.26711i
\(134\) 0 0
\(135\) −1.89667 2.18888i −0.163240 0.188389i
\(136\) 0 0
\(137\) −7.45375 −0.636817 −0.318408 0.947954i \(-0.603148\pi\)
−0.318408 + 0.947954i \(0.603148\pi\)
\(138\) 0 0
\(139\) 5.27576 0.447485 0.223742 0.974648i \(-0.428173\pi\)
0.223742 + 0.974648i \(0.428173\pi\)
\(140\) 0 0
\(141\) −7.69422 8.87960i −0.647970 0.747797i
\(142\) 0 0
\(143\) 0.192273 + 1.33729i 0.0160787 + 0.111830i
\(144\) 0 0
\(145\) −10.7801 + 23.6052i −0.895240 + 1.96030i
\(146\) 0 0
\(147\) 0.0123810 0.0861120i 0.00102117 0.00710240i
\(148\) 0 0
\(149\) 17.8019 + 5.22711i 1.45839 + 0.428221i 0.912306 0.409510i \(-0.134300\pi\)
0.546082 + 0.837731i \(0.316119\pi\)
\(150\) 0 0
\(151\) 4.26877 + 9.34730i 0.347387 + 0.760672i 0.999996 + 0.00297680i \(0.000947546\pi\)
−0.652608 + 0.757696i \(0.726325\pi\)
\(152\) 0 0
\(153\) 4.34889 5.01889i 0.351587 0.405753i
\(154\) 0 0
\(155\) 2.42176 + 1.55637i 0.194520 + 0.125011i
\(156\) 0 0
\(157\) 10.2301 6.57448i 0.816450 0.524701i −0.0644956 0.997918i \(-0.520544\pi\)
0.880946 + 0.473217i \(0.156907\pi\)
\(158\) 0 0
\(159\) 0.429635 0.126152i 0.0340722 0.0100045i
\(160\) 0 0
\(161\) −7.32678 10.2624i −0.577431 0.808792i
\(162\) 0 0
\(163\) 1.35305 0.397292i 0.105979 0.0311183i −0.228313 0.973588i \(-0.573321\pi\)
0.334292 + 0.942469i \(0.391503\pi\)
\(164\) 0 0
\(165\) −10.5306 + 6.76763i −0.819809 + 0.526859i
\(166\) 0 0
\(167\) −10.5689 6.79219i −0.817843 0.525596i 0.0635507 0.997979i \(-0.479758\pi\)
−0.881393 + 0.472383i \(0.843394\pi\)
\(168\) 0 0
\(169\) 8.44920 9.75090i 0.649938 0.750069i
\(170\) 0 0
\(171\) −2.33255 5.10757i −0.178374 0.390585i
\(172\) 0 0
\(173\) 6.54140 + 1.92073i 0.497334 + 0.146030i 0.520773 0.853695i \(-0.325644\pi\)
−0.0234398 + 0.999725i \(0.507462\pi\)
\(174\) 0 0
\(175\) −1.26794 + 8.81873i −0.0958474 + 0.666633i
\(176\) 0 0
\(177\) −4.56913 + 10.0050i −0.343437 + 0.752022i
\(178\) 0 0
\(179\) 0.00680195 + 0.0473086i 0.000508401 + 0.00353601i 0.990074 0.140547i \(-0.0448860\pi\)
−0.989566 + 0.144083i \(0.953977\pi\)
\(180\) 0 0
\(181\) 14.4251 + 16.6475i 1.07221 + 1.23740i 0.970121 + 0.242622i \(0.0780074\pi\)
0.102090 + 0.994775i \(0.467447\pi\)
\(182\) 0 0
\(183\) 12.5858 0.930369
\(184\) 0 0
\(185\) −13.0324 −0.958164
\(186\) 0 0
\(187\) −18.7959 21.6916i −1.37449 1.58625i
\(188\) 0 0
\(189\) −0.374183 2.60250i −0.0272178 0.189304i
\(190\) 0 0
\(191\) −4.35780 + 9.54224i −0.315319 + 0.690453i −0.999235 0.0391083i \(-0.987548\pi\)
0.683916 + 0.729561i \(0.260276\pi\)
\(192\) 0 0
\(193\) 1.21134 8.42507i 0.0871944 0.606450i −0.898635 0.438698i \(-0.855440\pi\)
0.985829 0.167753i \(-0.0536510\pi\)
\(194\) 0 0
\(195\) −0.868700 0.255073i −0.0622089 0.0182662i
\(196\) 0 0
\(197\) 6.21042 + 13.5989i 0.442474 + 0.968882i 0.991138 + 0.132839i \(0.0424094\pi\)
−0.548664 + 0.836043i \(0.684863\pi\)
\(198\) 0 0
\(199\) 10.1890 11.7588i 0.722282 0.833558i −0.269297 0.963057i \(-0.586791\pi\)
0.991580 + 0.129499i \(0.0413369\pi\)
\(200\) 0 0
\(201\) 4.97896 + 3.19978i 0.351189 + 0.225695i
\(202\) 0 0
\(203\) −19.8179 + 12.7362i −1.39094 + 0.893905i
\(204\) 0 0
\(205\) −4.71878 + 1.38556i −0.329574 + 0.0967717i
\(206\) 0 0
\(207\) 3.77340 + 2.95997i 0.262270 + 0.205732i
\(208\) 0 0
\(209\) −23.2849 + 6.83706i −1.61065 + 0.472929i
\(210\) 0 0
\(211\) 5.01325 3.22182i 0.345126 0.221799i −0.356581 0.934264i \(-0.616058\pi\)
0.701708 + 0.712465i \(0.252421\pi\)
\(212\) 0 0
\(213\) −3.99642 2.56834i −0.273830 0.175980i
\(214\) 0 0
\(215\) 17.5306 20.2313i 1.19557 1.37977i
\(216\) 0 0
\(217\) 1.08562 + 2.37717i 0.0736964 + 0.161373i
\(218\) 0 0
\(219\) −3.09505 0.908790i −0.209144 0.0614103i
\(220\) 0 0
\(221\) 0.295436 2.05480i 0.0198732 0.138221i
\(222\) 0 0
\(223\) 3.96432 8.68065i 0.265470 0.581299i −0.729212 0.684288i \(-0.760113\pi\)
0.994683 + 0.102989i \(0.0328405\pi\)
\(224\) 0 0
\(225\) −0.482243 3.35407i −0.0321495 0.223605i
\(226\) 0 0
\(227\) 0.312621 + 0.360783i 0.0207494 + 0.0239460i 0.766029 0.642806i \(-0.222230\pi\)
−0.745280 + 0.666752i \(0.767684\pi\)
\(228\) 0 0
\(229\) −15.1584 −1.00169 −0.500847 0.865536i \(-0.666978\pi\)
−0.500847 + 0.865536i \(0.666978\pi\)
\(230\) 0 0
\(231\) −11.3636 −0.747673
\(232\) 0 0
\(233\) 12.8467 + 14.8259i 0.841618 + 0.971279i 0.999870 0.0161198i \(-0.00513132\pi\)
−0.158252 + 0.987399i \(0.550586\pi\)
\(234\) 0 0
\(235\) −4.84294 33.6834i −0.315919 2.19726i
\(236\) 0 0
\(237\) −1.36131 + 2.98085i −0.0884265 + 0.193627i
\(238\) 0 0
\(239\) 0.0768347 0.534397i 0.00497003 0.0345673i −0.987186 0.159577i \(-0.948987\pi\)
0.992156 + 0.125009i \(0.0398961\pi\)
\(240\) 0 0
\(241\) −21.3690 6.27452i −1.37650 0.404177i −0.491951 0.870623i \(-0.663716\pi\)
−0.884550 + 0.466445i \(0.845534\pi\)
\(242\) 0 0
\(243\) 0.415415 + 0.909632i 0.0266489 + 0.0583529i
\(244\) 0 0
\(245\) 0.165006 0.190427i 0.0105418 0.0121659i
\(246\) 0 0
\(247\) −1.47659 0.948946i −0.0939530 0.0603800i
\(248\) 0 0
\(249\) 8.24157 5.29653i 0.522288 0.335654i
\(250\) 0 0
\(251\) −15.5943 + 4.57891i −0.984306 + 0.289018i −0.734001 0.679149i \(-0.762349\pi\)
−0.250305 + 0.968167i \(0.580531\pi\)
\(252\) 0 0
\(253\) 14.9837 14.3220i 0.942018 0.900416i
\(254\) 0 0
\(255\) 18.4550 5.41889i 1.15570 0.339344i
\(256\) 0 0
\(257\) −17.0242 + 10.9408i −1.06194 + 0.682469i −0.950318 0.311281i \(-0.899242\pi\)
−0.111625 + 0.993750i \(0.535606\pi\)
\(258\) 0 0
\(259\) −9.95273 6.39623i −0.618432 0.397442i
\(260\) 0 0
\(261\) 5.86741 6.77135i 0.363183 0.419136i
\(262\) 0 0
\(263\) −3.82651 8.37888i −0.235953 0.516664i 0.754202 0.656643i \(-0.228024\pi\)
−0.990155 + 0.139978i \(0.955297\pi\)
\(264\) 0 0
\(265\) 1.24435 + 0.365375i 0.0764399 + 0.0224448i
\(266\) 0 0
\(267\) 0.804424 5.59489i 0.0492300 0.342402i
\(268\) 0 0
\(269\) 4.77946 10.4655i 0.291409 0.638096i −0.706140 0.708072i \(-0.749565\pi\)
0.997549 + 0.0699764i \(0.0222924\pi\)
\(270\) 0 0
\(271\) −0.914470 6.36028i −0.0555501 0.386360i −0.998562 0.0536016i \(-0.982930\pi\)
0.943012 0.332758i \(-0.107979\pi\)
\(272\) 0 0
\(273\) −0.538228 0.621148i −0.0325751 0.0375936i
\(274\) 0 0
\(275\) −14.6453 −0.883148
\(276\) 0 0
\(277\) 4.85754 0.291861 0.145931 0.989295i \(-0.453382\pi\)
0.145931 + 0.989295i \(0.453382\pi\)
\(278\) 0 0
\(279\) −0.650893 0.751170i −0.0389679 0.0449714i
\(280\) 0 0
\(281\) 2.44835 + 17.0286i 0.146056 + 1.01584i 0.922594 + 0.385772i \(0.126065\pi\)
−0.776538 + 0.630070i \(0.783026\pi\)
\(282\) 0 0
\(283\) −6.12365 + 13.4089i −0.364013 + 0.797078i 0.635671 + 0.771960i \(0.280723\pi\)
−0.999684 + 0.0251182i \(0.992004\pi\)
\(284\) 0 0
\(285\) 2.31442 16.0971i 0.137094 0.953513i
\(286\) 0 0
\(287\) −4.28370 1.25781i −0.252859 0.0742461i
\(288\) 0 0
\(289\) 11.2586 + 24.6529i 0.662271 + 1.45017i
\(290\) 0 0
\(291\) −6.72632 + 7.76258i −0.394304 + 0.455051i
\(292\) 0 0
\(293\) −21.0879 13.5524i −1.23197 0.791738i −0.247772 0.968818i \(-0.579699\pi\)
−0.984196 + 0.177080i \(0.943335\pi\)
\(294\) 0 0
\(295\) −26.7992 + 17.2228i −1.56031 + 1.00275i
\(296\) 0 0
\(297\) 4.14692 1.21765i 0.240629 0.0706550i
\(298\) 0 0
\(299\) 1.49255 + 0.140678i 0.0863161 + 0.00813562i
\(300\) 0 0
\(301\) 23.3173 6.84658i 1.34399 0.394630i
\(302\) 0 0
\(303\) −7.82087 + 5.02617i −0.449297 + 0.288746i
\(304\) 0 0
\(305\) 30.6656 + 19.7076i 1.75591 + 1.12845i
\(306\) 0 0
\(307\) −19.9579 + 23.0327i −1.13906 + 1.31454i −0.196501 + 0.980504i \(0.562958\pi\)
−0.942559 + 0.334041i \(0.891588\pi\)
\(308\) 0 0
\(309\) −5.64384 12.3583i −0.321067 0.703038i
\(310\) 0 0
\(311\) 14.3111 + 4.20212i 0.811509 + 0.238281i 0.661056 0.750337i \(-0.270109\pi\)
0.150453 + 0.988617i \(0.451927\pi\)
\(312\) 0 0
\(313\) 3.11042 21.6334i 0.175811 1.22279i −0.690516 0.723317i \(-0.742617\pi\)
0.866327 0.499477i \(-0.166474\pi\)
\(314\) 0 0
\(315\) 3.16344 6.92696i 0.178240 0.390290i
\(316\) 0 0
\(317\) −0.808250 5.62150i −0.0453958 0.315735i −0.999849 0.0173744i \(-0.994469\pi\)
0.954453 0.298361i \(-0.0964398\pi\)
\(318\) 0 0
\(319\) −25.3589 29.2657i −1.41983 1.63857i
\(320\) 0 0
\(321\) 5.70273 0.318295
\(322\) 0 0
\(323\) 37.2888 2.07480
\(324\) 0 0
\(325\) −0.693663 0.800530i −0.0384775 0.0444054i
\(326\) 0 0
\(327\) −1.16875 8.12886i −0.0646323 0.449527i
\(328\) 0 0
\(329\) 12.8331 28.1005i 0.707511 1.54923i
\(330\) 0 0
\(331\) 1.41654 9.85224i 0.0778600 0.541528i −0.913138 0.407651i \(-0.866348\pi\)
0.990998 0.133877i \(-0.0427428\pi\)
\(332\) 0 0
\(333\) 4.31741 + 1.26771i 0.236593 + 0.0694699i
\(334\) 0 0
\(335\) 7.12095 + 15.5927i 0.389059 + 0.851920i
\(336\) 0 0
\(337\) 4.70660 5.43171i 0.256385 0.295884i −0.612936 0.790133i \(-0.710011\pi\)
0.869320 + 0.494249i \(0.164557\pi\)
\(338\) 0 0
\(339\) −15.8802 10.2056i −0.862496 0.554292i
\(340\) 0 0
\(341\) −3.61386 + 2.32249i −0.195702 + 0.125770i
\(342\) 0 0
\(343\) 17.8788 5.24968i 0.965362 0.283456i
\(344\) 0 0
\(345\) 4.55909 + 13.1207i 0.245453 + 0.706392i
\(346\) 0 0
\(347\) −18.7330 + 5.50051i −1.00564 + 0.295283i −0.742769 0.669547i \(-0.766488\pi\)
−0.262873 + 0.964831i \(0.584670\pi\)
\(348\) 0 0
\(349\) −20.5592 + 13.2126i −1.10051 + 0.707253i −0.959204 0.282713i \(-0.908766\pi\)
−0.141303 + 0.989966i \(0.545129\pi\)
\(350\) 0 0
\(351\) 0.262973 + 0.169002i 0.0140365 + 0.00902068i
\(352\) 0 0
\(353\) 2.77546 3.20305i 0.147723 0.170481i −0.677066 0.735923i \(-0.736749\pi\)
0.824789 + 0.565441i \(0.191294\pi\)
\(354\) 0 0
\(355\) −5.71571 12.5157i −0.303358 0.664262i
\(356\) 0 0
\(357\) 16.7535 + 4.91926i 0.886688 + 0.260355i
\(358\) 0 0
\(359\) −2.48258 + 17.2667i −0.131026 + 0.911303i 0.813196 + 0.581990i \(0.197726\pi\)
−0.944221 + 0.329312i \(0.893183\pi\)
\(360\) 0 0
\(361\) 5.20433 11.3959i 0.273912 0.599783i
\(362\) 0 0
\(363\) −1.09292 7.60146i −0.0573637 0.398973i
\(364\) 0 0
\(365\) −6.11814 7.06071i −0.320238 0.369574i
\(366\) 0 0
\(367\) 4.04228 0.211005 0.105503 0.994419i \(-0.466355\pi\)
0.105503 + 0.994419i \(0.466355\pi\)
\(368\) 0 0
\(369\) 1.69803 0.0883957
\(370\) 0 0
\(371\) 0.770974 + 0.889752i 0.0400270 + 0.0461936i
\(372\) 0 0
\(373\) −4.89852 34.0700i −0.253636 1.76408i −0.575989 0.817457i \(-0.695383\pi\)
0.322353 0.946620i \(-0.395526\pi\)
\(374\) 0 0
\(375\) −1.93883 + 4.24544i −0.100121 + 0.219234i
\(376\) 0 0
\(377\) 0.398595 2.77229i 0.0205287 0.142780i
\(378\) 0 0
\(379\) 5.86682 + 1.72265i 0.301358 + 0.0884868i 0.428916 0.903344i \(-0.358896\pi\)
−0.127558 + 0.991831i \(0.540714\pi\)
\(380\) 0 0
\(381\) −3.44516 7.54384i −0.176501 0.386483i
\(382\) 0 0
\(383\) −1.53867 + 1.77571i −0.0786221 + 0.0907348i −0.793698 0.608312i \(-0.791847\pi\)
0.715076 + 0.699047i \(0.246392\pi\)
\(384\) 0 0
\(385\) −27.6878 17.7939i −1.41110 0.906859i
\(386\) 0 0
\(387\) −7.77553 + 4.99703i −0.395252 + 0.254013i
\(388\) 0 0
\(389\) −32.2855 + 9.47989i −1.63694 + 0.480649i −0.965499 0.260407i \(-0.916143\pi\)
−0.671443 + 0.741057i \(0.734325\pi\)
\(390\) 0 0
\(391\) −28.2905 + 14.6286i −1.43071 + 0.739800i
\(392\) 0 0
\(393\) −19.0954 + 5.60690i −0.963233 + 0.282831i
\(394\) 0 0
\(395\) −7.98445 + 5.13130i −0.401741 + 0.258184i
\(396\) 0 0
\(397\) 24.2276 + 15.5701i 1.21595 + 0.781443i 0.981645 0.190720i \(-0.0610822\pi\)
0.234305 + 0.972163i \(0.424719\pi\)
\(398\) 0 0
\(399\) 9.66787 11.1573i 0.483999 0.558564i
\(400\) 0 0
\(401\) 15.4493 + 33.8292i 0.771500 + 1.68935i 0.723323 + 0.690510i \(0.242614\pi\)
0.0481763 + 0.998839i \(0.484659\pi\)
\(402\) 0 0
\(403\) −0.298117 0.0875350i −0.0148503 0.00436043i
\(404\) 0 0
\(405\) −0.412187 + 2.86682i −0.0204817 + 0.142454i
\(406\) 0 0
\(407\) 8.07882 17.6902i 0.400452 0.876869i
\(408\) 0 0
\(409\) −2.84719 19.8026i −0.140784 0.979176i −0.930654 0.365901i \(-0.880761\pi\)
0.789869 0.613275i \(-0.210148\pi\)
\(410\) 0 0
\(411\) 4.88117 + 5.63317i 0.240770 + 0.277864i
\(412\) 0 0
\(413\) −28.9191 −1.42302
\(414\) 0 0
\(415\) 28.3744 1.39284
\(416\) 0 0
\(417\) −3.45489 3.98716i −0.169187 0.195252i
\(418\) 0 0
\(419\) 1.57725 + 10.9700i 0.0770539 + 0.535921i 0.991388 + 0.130960i \(0.0418059\pi\)
−0.914334 + 0.404961i \(0.867285\pi\)
\(420\) 0 0
\(421\) −3.50534 + 7.67563i −0.170840 + 0.374087i −0.975614 0.219494i \(-0.929559\pi\)
0.804774 + 0.593582i \(0.202287\pi\)
\(422\) 0 0
\(423\) −1.67211 + 11.6298i −0.0813009 + 0.565460i
\(424\) 0 0
\(425\) 21.5917 + 6.33990i 1.04735 + 0.307530i
\(426\) 0 0
\(427\) 13.7466 + 30.1009i 0.665246 + 1.45669i
\(428\) 0 0
\(429\) 0.884743 1.02105i 0.0427158 0.0492967i
\(430\) 0 0
\(431\) −16.8909 10.8551i −0.813606 0.522873i 0.0664238 0.997791i \(-0.478841\pi\)
−0.880030 + 0.474919i \(0.842477\pi\)
\(432\) 0 0
\(433\) −28.8902 + 18.5666i −1.38838 + 0.892255i −0.999577 0.0290676i \(-0.990746\pi\)
−0.388799 + 0.921323i \(0.627110\pi\)
\(434\) 0 0
\(435\) 24.8991 7.31102i 1.19382 0.350537i
\(436\) 0 0
\(437\) 1.31422 + 26.8964i 0.0628677 + 1.28663i
\(438\) 0 0
\(439\) 16.8863 4.95826i 0.805938 0.236645i 0.147288 0.989094i \(-0.452946\pi\)
0.658651 + 0.752449i \(0.271128\pi\)
\(440\) 0 0
\(441\) −0.0731870 + 0.0470344i −0.00348509 + 0.00223973i
\(442\) 0 0
\(443\) 22.9343 + 14.7390i 1.08964 + 0.700272i 0.956765 0.290861i \(-0.0939417\pi\)
0.132878 + 0.991132i \(0.457578\pi\)
\(444\) 0 0
\(445\) 10.7208 12.3725i 0.508215 0.586512i
\(446\) 0 0
\(447\) −7.70738 16.8768i −0.364546 0.798245i
\(448\) 0 0
\(449\) −22.1264 6.49690i −1.04421 0.306608i −0.285734 0.958309i \(-0.592237\pi\)
−0.758476 + 0.651701i \(0.774056\pi\)
\(450\) 0 0
\(451\) 1.04443 7.26416i 0.0491802 0.342056i
\(452\) 0 0
\(453\) 4.26877 9.34730i 0.200564 0.439174i
\(454\) 0 0
\(455\) −0.338775 2.35623i −0.0158820 0.110462i
\(456\) 0 0
\(457\) −3.52888 4.07254i −0.165074 0.190505i 0.667186 0.744891i \(-0.267499\pi\)
−0.832260 + 0.554386i \(0.812953\pi\)
\(458\) 0 0
\(459\) −6.64094 −0.309973
\(460\) 0 0
\(461\) 16.0302 0.746601 0.373300 0.927711i \(-0.378226\pi\)
0.373300 + 0.927711i \(0.378226\pi\)
\(462\) 0 0
\(463\) 16.0244 + 18.4931i 0.744717 + 0.859449i 0.994045 0.108970i \(-0.0347551\pi\)
−0.249328 + 0.968419i \(0.580210\pi\)
\(464\) 0 0
\(465\) −0.409689 2.84945i −0.0189989 0.132140i
\(466\) 0 0
\(467\) −8.57426 + 18.7750i −0.396769 + 0.868804i 0.600818 + 0.799386i \(0.294841\pi\)
−0.997588 + 0.0694180i \(0.977886\pi\)
\(468\) 0 0
\(469\) −2.21460 + 15.4029i −0.102261 + 0.711239i
\(470\) 0 0
\(471\) −11.6679 3.42602i −0.537630 0.157863i
\(472\) 0 0
\(473\) 16.5947 + 36.3373i 0.763025 + 1.67079i
\(474\) 0 0
\(475\) 12.4599 14.3794i 0.571697 0.659774i
\(476\) 0 0
\(477\) −0.376690 0.242084i −0.0172475 0.0110843i
\(478\) 0 0
\(479\) −10.8658 + 6.98303i −0.496471 + 0.319063i −0.764803 0.644264i \(-0.777164\pi\)
0.268332 + 0.963326i \(0.413528\pi\)
\(480\) 0 0
\(481\) 1.34961 0.396281i 0.0615369 0.0180689i
\(482\) 0 0
\(483\) −2.95780 + 12.2577i −0.134585 + 0.557743i
\(484\) 0 0
\(485\) −28.5439 + 8.38126i −1.29611 + 0.380573i
\(486\) 0 0
\(487\) 16.1293 10.3657i 0.730889 0.469714i −0.121521 0.992589i \(-0.538777\pi\)
0.852409 + 0.522875i \(0.175141\pi\)
\(488\) 0 0
\(489\) −1.18631 0.762398i −0.0536470 0.0344768i
\(490\) 0 0
\(491\) −23.5688 + 27.1998i −1.06364 + 1.22751i −0.0908435 + 0.995865i \(0.528956\pi\)
−0.972800 + 0.231645i \(0.925589\pi\)
\(492\) 0 0
\(493\) 24.7178 + 54.1243i 1.11323 + 2.43764i
\(494\) 0 0
\(495\) 12.0107 + 3.52667i 0.539842 + 0.158512i
\(496\) 0 0
\(497\) 1.77757 12.3633i 0.0797350 0.554569i
\(498\) 0 0
\(499\) 7.59583 16.6325i 0.340036 0.744575i −0.659941 0.751317i \(-0.729419\pi\)
0.999977 + 0.00674220i \(0.00214613\pi\)
\(500\) 0 0
\(501\) 1.78793 + 12.4353i 0.0798790 + 0.555570i
\(502\) 0 0
\(503\) 9.09824 + 10.4999i 0.405671 + 0.468169i 0.921419 0.388571i \(-0.127031\pi\)
−0.515748 + 0.856740i \(0.672486\pi\)
\(504\) 0 0
\(505\) −26.9260 −1.19819
\(506\) 0 0
\(507\) −12.9023 −0.573011
\(508\) 0 0
\(509\) −5.89270 6.80053i −0.261189 0.301428i 0.609975 0.792421i \(-0.291180\pi\)
−0.871164 + 0.490993i \(0.836634\pi\)
\(510\) 0 0
\(511\) −1.20701 8.39492i −0.0533949 0.371370i
\(512\) 0 0
\(513\) −2.33255 + 5.10757i −0.102984 + 0.225505i
\(514\) 0 0
\(515\) 5.59998 38.9487i 0.246765 1.71629i
\(516\) 0 0
\(517\) 48.7238 + 14.3066i 2.14287 + 0.629204i
\(518\) 0 0
\(519\) −2.83212 6.20147i −0.124316 0.272214i
\(520\) 0 0
\(521\) 3.85414 4.44791i 0.168853 0.194867i −0.665016 0.746829i \(-0.731575\pi\)
0.833869 + 0.551962i \(0.186121\pi\)
\(522\) 0 0
\(523\) 31.0642 + 19.9637i 1.35834 + 0.872953i 0.998202 0.0599458i \(-0.0190928\pi\)
0.360139 + 0.932899i \(0.382729\pi\)
\(524\) 0 0
\(525\) 7.49507 4.81679i 0.327112 0.210222i
\(526\) 0 0
\(527\) 6.33333 1.85963i 0.275884 0.0810069i
\(528\) 0 0
\(529\) −11.5487 19.8904i −0.502118 0.864799i
\(530\) 0 0
\(531\) 10.5534 3.09877i 0.457980 0.134475i
\(532\) 0 0
\(533\) 0.446535 0.286970i 0.0193416 0.0124301i
\(534\) 0 0
\(535\) 13.8948 + 8.92967i 0.600726 + 0.386063i
\(536\) 0 0
\(537\) 0.0312991 0.0361211i 0.00135066 0.00155874i
\(538\) 0 0
\(539\) 0.156197 + 0.342024i 0.00672789 + 0.0147320i
\(540\) 0 0
\(541\) 2.20541 + 0.647567i 0.0948181 + 0.0278411i 0.328797 0.944400i \(-0.393357\pi\)
−0.233979 + 0.972242i \(0.575175\pi\)
\(542\) 0 0
\(543\) 3.13488 21.8036i 0.134530 0.935680i
\(544\) 0 0
\(545\) 9.88096 21.6363i 0.423254 0.926796i
\(546\) 0 0
\(547\) 5.04108 + 35.0615i 0.215541 + 1.49912i 0.754227 + 0.656614i \(0.228012\pi\)
−0.538686 + 0.842506i \(0.681079\pi\)
\(548\) 0 0
\(549\) −8.24195 9.51171i −0.351758 0.405950i
\(550\) 0 0
\(551\) 50.3090 2.14323
\(552\) 0 0
\(553\) −8.61604 −0.366391
\(554\) 0 0
\(555\) 8.53443 + 9.84926i 0.362266 + 0.418078i
\(556\) 0 0
\(557\) −1.66901 11.6082i −0.0707184 0.491857i −0.994143 0.108076i \(-0.965531\pi\)
0.923424 0.383781i \(-0.125378\pi\)
\(558\) 0 0
\(559\) −1.20024 + 2.62817i −0.0507649 + 0.111160i
\(560\) 0 0
\(561\) −4.08473 + 28.4100i −0.172458 + 1.19947i
\(562\) 0 0
\(563\) 10.2680 + 3.01495i 0.432744 + 0.127065i 0.490847 0.871246i \(-0.336687\pi\)
−0.0581038 + 0.998311i \(0.518505\pi\)
\(564\) 0 0
\(565\) −22.7120 49.7324i −0.955502 2.09226i
\(566\) 0 0
\(567\) −1.72180 + 1.98706i −0.0723087 + 0.0834487i
\(568\) 0 0
\(569\) −29.4973 18.9568i −1.23659 0.794709i −0.251686 0.967809i \(-0.580985\pi\)
−0.984904 + 0.173100i \(0.944622\pi\)
\(570\) 0 0
\(571\) 29.2572 18.8025i 1.22438 0.786860i 0.241371 0.970433i \(-0.422403\pi\)
0.983006 + 0.183573i \(0.0587664\pi\)
\(572\) 0 0
\(573\) 10.0653 2.95544i 0.420484 0.123465i
\(574\) 0 0
\(575\) −3.81199 + 15.7976i −0.158971 + 0.658804i
\(576\) 0 0
\(577\) 28.0950 8.24943i 1.16961 0.343428i 0.361450 0.932392i \(-0.382282\pi\)
0.808160 + 0.588963i \(0.200464\pi\)
\(578\) 0 0
\(579\) −7.16051 + 4.60178i −0.297580 + 0.191243i
\(580\) 0 0
\(581\) 21.6692 + 13.9260i 0.898991 + 0.577746i
\(582\) 0 0
\(583\) −1.26733 + 1.46258i −0.0524875 + 0.0605738i
\(584\) 0 0
\(585\) 0.376106 + 0.823557i 0.0155501 + 0.0340499i
\(586\) 0 0
\(587\) 17.2522 + 5.06569i 0.712073 + 0.209084i 0.617655 0.786449i \(-0.288083\pi\)
0.0944181 + 0.995533i \(0.469901\pi\)
\(588\) 0 0
\(589\) 0.794253 5.52415i 0.0327266 0.227619i
\(590\) 0 0
\(591\) 6.21042 13.5989i 0.255462 0.559385i
\(592\) 0 0
\(593\) −0.417677 2.90500i −0.0171519 0.119294i 0.979447 0.201703i \(-0.0646477\pi\)
−0.996599 + 0.0824091i \(0.973739\pi\)
\(594\) 0 0
\(595\) 33.1174 + 38.2195i 1.35768 + 1.56685i
\(596\) 0 0
\(597\) −15.5591 −0.636792
\(598\) 0 0
\(599\) 4.34172 0.177398 0.0886990 0.996058i \(-0.471729\pi\)
0.0886990 + 0.996058i \(0.471729\pi\)
\(600\) 0 0
\(601\) −7.39390 8.53301i −0.301603 0.348069i 0.584637 0.811295i \(-0.301237\pi\)
−0.886240 + 0.463226i \(0.846692\pi\)
\(602\) 0 0
\(603\) −0.842290 5.85826i −0.0343007 0.238567i
\(604\) 0 0
\(605\) 9.23987 20.2325i 0.375654 0.822568i
\(606\) 0 0
\(607\) −6.00277 + 41.7502i −0.243645 + 1.69459i 0.389880 + 0.920866i \(0.372517\pi\)
−0.633525 + 0.773722i \(0.718393\pi\)
\(608\) 0 0
\(609\) 22.6033 + 6.63694i 0.915933 + 0.268942i
\(610\) 0 0
\(611\) 1.52574 + 3.34091i 0.0617250 + 0.135159i
\(612\) 0 0
\(613\) 1.85574 2.14164i 0.0749528 0.0865001i −0.717035 0.697038i \(-0.754501\pi\)
0.791987 + 0.610537i \(0.209047\pi\)
\(614\) 0 0
\(615\) 4.13728 + 2.65887i 0.166831 + 0.107216i
\(616\) 0 0
\(617\) −1.94573 + 1.25045i −0.0783323 + 0.0503411i −0.579221 0.815171i \(-0.696643\pi\)
0.500888 + 0.865512i \(0.333007\pi\)
\(618\) 0 0
\(619\) −27.3476 + 8.02999i −1.09919 + 0.322753i −0.780532 0.625116i \(-0.785052\pi\)
−0.318662 + 0.947868i \(0.603234\pi\)
\(620\) 0 0
\(621\) −0.234056 4.79012i −0.00939235 0.192221i
\(622\) 0 0
\(623\) 14.2597 4.18702i 0.571303 0.167750i
\(624\) 0 0
\(625\) −25.6250 + 16.4682i −1.02500 + 0.658727i
\(626\) 0 0
\(627\) 20.4155 + 13.1202i 0.815315 + 0.523971i
\(628\) 0 0
\(629\) −19.5686 + 22.5834i −0.780252 + 0.900459i
\(630\) 0 0
\(631\) 14.1868 + 31.0648i 0.564769 + 1.23667i 0.949536 + 0.313658i \(0.101555\pi\)
−0.384767 + 0.923014i \(0.625718\pi\)
\(632\) 0 0
\(633\) −5.71787 1.67892i −0.227265 0.0667310i
\(634\) 0 0
\(635\) 3.41838 23.7754i 0.135654 0.943497i
\(636\) 0 0
\(637\) −0.0112973 + 0.0247375i −0.000447614 + 0.000980137i
\(638\) 0 0
\(639\) 0.676074 + 4.70220i 0.0267451 + 0.186016i
\(640\) 0 0
\(641\) 14.4177 + 16.6389i 0.569465 + 0.657198i 0.965306 0.261121i \(-0.0840922\pi\)
−0.395841 + 0.918319i \(0.629547\pi\)
\(642\) 0 0
\(643\) 19.6699 0.775707 0.387854 0.921721i \(-0.373217\pi\)
0.387854 + 0.921721i \(0.373217\pi\)
\(644\) 0 0
\(645\) −26.7699 −1.05406
\(646\) 0 0
\(647\) −25.7300 29.6940i −1.01155 1.16739i −0.985835 0.167721i \(-0.946359\pi\)
−0.0257149 0.999669i \(-0.508186\pi\)
\(648\) 0 0
\(649\) −6.76528 47.0536i −0.265561 1.84701i
\(650\) 0 0
\(651\) 1.08562 2.37717i 0.0425486 0.0931685i
\(652\) 0 0
\(653\) −4.71477 + 32.7919i −0.184503 + 1.28325i 0.661450 + 0.749990i \(0.269942\pi\)
−0.845953 + 0.533258i \(0.820968\pi\)
\(654\) 0 0
\(655\) −55.3059 16.2393i −2.16098 0.634521i
\(656\) 0 0
\(657\) 1.34001 + 2.93422i 0.0522789 + 0.114475i
\(658\) 0 0
\(659\) −18.7369 + 21.6235i −0.729886 + 0.842333i −0.992459 0.122579i \(-0.960883\pi\)
0.262573 + 0.964912i \(0.415429\pi\)
\(660\) 0 0
\(661\) −35.9566 23.1079i −1.39855 0.898794i −0.398718 0.917074i \(-0.630545\pi\)
−0.999833 + 0.0182799i \(0.994181\pi\)
\(662\) 0 0
\(663\) −1.74639 + 1.12234i −0.0678241 + 0.0435879i
\(664\) 0 0
\(665\) 41.0268 12.0465i 1.59095 0.467145i
\(666\) 0 0
\(667\) −38.1688 + 19.7365i −1.47790 + 0.764201i
\(668\) 0 0
\(669\) −9.15647 + 2.68858i −0.354010 + 0.103947i
\(670\) 0 0
\(671\) −45.7606 + 29.4086i −1.76657 + 1.13530i
\(672\) 0 0
\(673\) −9.07808 5.83413i −0.349934 0.224889i 0.353851 0.935302i \(-0.384872\pi\)
−0.703785 + 0.710413i \(0.748508\pi\)
\(674\) 0 0
\(675\) −2.21904 + 2.56091i −0.0854108 + 0.0985693i
\(676\) 0 0
\(677\) −15.2452 33.3824i −0.585922 1.28299i −0.937875 0.346973i \(-0.887210\pi\)
0.351953 0.936018i \(-0.385518\pi\)
\(678\) 0 0
\(679\) −25.9121 7.60849i −0.994417 0.291987i
\(680\) 0 0
\(681\) 0.0679390 0.472526i 0.00260343 0.0181072i
\(682\) 0 0
\(683\) 13.6978 29.9939i 0.524130 1.14768i −0.443722 0.896164i \(-0.646342\pi\)
0.967852 0.251520i \(-0.0809304\pi\)
\(684\) 0 0
\(685\) 3.07234 + 21.3686i 0.117388 + 0.816451i
\(686\) 0 0
\(687\) 9.92662 + 11.4559i 0.378724 + 0.437071i
\(688\) 0 0
\(689\) −0.139972 −0.00533251
\(690\) 0 0
\(691\) −33.8299 −1.28695 −0.643475 0.765467i \(-0.722508\pi\)
−0.643475 + 0.765467i \(0.722508\pi\)
\(692\) 0 0
\(693\) 7.44160 + 8.58807i 0.282683 + 0.326234i
\(694\) 0 0
\(695\) −2.17460 15.1247i −0.0824873 0.573712i
\(696\) 0 0
\(697\) −4.68442 + 10.2575i −0.177435 + 0.388529i
\(698\) 0 0
\(699\) 2.79186 19.4178i 0.105598 0.734450i
\(700\) 0 0
\(701\) 26.0282 + 7.64258i 0.983072 + 0.288656i 0.733492 0.679698i \(-0.237889\pi\)
0.249580 + 0.968354i \(0.419707\pi\)
\(702\) 0 0
\(703\) 10.4957 + 22.9824i 0.395854 + 0.866799i
\(704\) 0 0
\(705\) −22.2848 + 25.7180i −0.839293 + 0.968596i
\(706\) 0 0
\(707\) −20.5631 13.2151i −0.773355 0.497005i
\(708\) 0 0
\(709\) −8.68549 + 5.58182i −0.326190 + 0.209630i −0.693478 0.720477i \(-0.743923\pi\)
0.367288 + 0.930107i \(0.380286\pi\)
\(710\) 0 0
\(711\) 3.14424 0.923233i 0.117918 0.0346240i
\(712\) 0 0
\(713\) 1.56457 + 4.50269i 0.0585936 + 0.168627i
\(714\) 0 0
\(715\) 3.75451 1.10242i 0.140411 0.0412284i
\(716\) 0 0
\(717\) −0.454187 + 0.291888i −0.0169619 + 0.0109008i
\(718\) 0 0
\(719\) −13.2115 8.49049i −0.492704 0.316642i 0.270588 0.962695i \(-0.412782\pi\)
−0.763292 + 0.646053i \(0.776418\pi\)
\(720\) 0 0
\(721\) 23.3924 26.9963i 0.871179 1.00539i
\(722\) 0 0
\(723\) 9.25179 + 20.2586i 0.344078 + 0.753425i
\(724\) 0 0
\(725\) 29.1310 + 8.55362i 1.08190 + 0.317673i
\(726\) 0 0
\(727\) −5.58275 + 38.8288i −0.207053 + 1.44008i 0.575655 + 0.817693i \(0.304747\pi\)
−0.782708 + 0.622390i \(0.786162\pi\)
\(728\) 0 0
\(729\) 0.415415 0.909632i 0.0153857 0.0336901i
\(730\) 0 0
\(731\) −8.73540 60.7561i −0.323091 2.24714i
\(732\) 0 0
\(733\) −22.5141 25.9826i −0.831576 0.959690i 0.168084 0.985773i \(-0.446242\pi\)
−0.999660 + 0.0260829i \(0.991697\pi\)
\(734\) 0 0
\(735\) −0.251971 −0.00929409
\(736\) 0 0
\(737\) −25.5797 −0.942241
\(738\) 0 0
\(739\) 6.17701 + 7.12865i 0.227225 + 0.262231i 0.857901 0.513814i \(-0.171768\pi\)
−0.630677 + 0.776046i \(0.717223\pi\)
\(740\) 0 0
\(741\) 0.249794 + 1.73736i 0.00917643 + 0.0638234i
\(742\) 0 0
\(743\) −7.35084 + 16.0961i −0.269676 + 0.590508i −0.995219 0.0976686i \(-0.968861\pi\)
0.725543 + 0.688177i \(0.241589\pi\)
\(744\) 0 0
\(745\) 7.64748 53.1894i 0.280182 1.94871i
\(746\) 0 0
\(747\) −9.39993 2.76007i −0.343926 0.100986i
\(748\) 0 0
\(749\) 6.22871 + 13.6390i 0.227592 + 0.498357i
\(750\) 0 0
\(751\) 1.89776 2.19013i 0.0692503 0.0799191i −0.720067 0.693904i \(-0.755889\pi\)
0.789318 + 0.613985i \(0.210435\pi\)
\(752\) 0 0
\(753\) 13.6726 + 8.78687i 0.498258 + 0.320211i
\(754\) 0 0
\(755\) 25.0375 16.0906i 0.911208 0.585598i
\(756\) 0 0
\(757\) −16.6969 + 4.90265i −0.606859 + 0.178190i −0.570704 0.821156i \(-0.693329\pi\)
−0.0361559 + 0.999346i \(0.511511\pi\)
\(758\) 0 0
\(759\) −20.6361 1.94503i −0.749043 0.0706001i
\(760\) 0 0
\(761\) 2.46973 0.725178i 0.0895276 0.0262877i −0.236662 0.971592i \(-0.576053\pi\)
0.326190 + 0.945304i \(0.394235\pi\)
\(762\) 0 0
\(763\) 18.1649 11.6739i 0.657614 0.422623i
\(764\) 0 0
\(765\) −16.1808 10.3988i −0.585018 0.375969i
\(766\) 0 0
\(767\) 2.25157 2.59845i 0.0812994 0.0938245i
\(768\) 0 0
\(769\) 6.22422 + 13.6291i 0.224451 + 0.491479i 0.988035 0.154229i \(-0.0492895\pi\)
−0.763584 + 0.645708i \(0.776562\pi\)
\(770\) 0 0
\(771\) 19.4170 + 5.70135i 0.699287 + 0.205329i
\(772\) 0 0
\(773\) 1.60275 11.1474i 0.0576469 0.400943i −0.940484 0.339837i \(-0.889628\pi\)
0.998131 0.0611061i \(-0.0194628\pi\)
\(774\) 0 0
\(775\) 1.39913 3.06367i 0.0502583 0.110050i
\(776\) 0 0
\(777\) 1.68370 + 11.7104i 0.0604025 + 0.420109i
\(778\) 0 0
\(779\) 6.24369 + 7.20561i 0.223704 + 0.258168i
\(780\) 0 0
\(781\) 20.5318 0.734687
\(782\) 0 0
\(783\) −8.95978 −0.320196
\(784\) 0 0
\(785\) −23.0646 26.6179i −0.823210 0.950035i
\(786\) 0 0
\(787\) −5.89529 41.0026i −0.210144 1.46159i −0.772671 0.634807i \(-0.781080\pi\)
0.562526 0.826779i \(-0.309829\pi\)
\(788\) 0 0
\(789\) −3.82651 + 8.37888i −0.136227 + 0.298296i
\(790\) 0 0
\(791\) 7.06339 49.1270i 0.251145 1.74675i
\(792\) 0 0
\(793\) −3.77491 1.10841i −0.134051 0.0393609i
\(794\) 0 0
\(795\) −0.538745 1.17969i −0.0191073 0.0418392i
\(796\) 0 0
\(797\) 24.0182 27.7185i 0.850769 0.981840i −0.149206 0.988806i \(-0.547672\pi\)
0.999976 + 0.00696579i \(0.00221730\pi\)
\(798\) 0 0
\(799\) −65.6405 42.1846i −2.32219 1.49238i
\(800\) 0 0
\(801\) −4.75513 + 3.05593i −0.168014 + 0.107976i
\(802\) 0 0
\(803\) 13.3768 3.92778i 0.472057 0.138608i
\(804\) 0 0
\(805\) −26.4005 + 25.2346i −0.930497 + 0.889403i
\(806\) 0 0
\(807\) −11.0392 + 3.24141i −0.388599 + 0.114103i
\(808\) 0 0
\(809\) 39.7671 25.5568i 1.39814 0.898529i 0.398313 0.917249i \(-0.369596\pi\)
0.999825 + 0.0187208i \(0.00595935\pi\)
\(810\) 0 0
\(811\) 29.8740 + 19.1989i 1.04902 + 0.674163i 0.947201 0.320640i \(-0.103898\pi\)
0.101817 + 0.994803i \(0.467534\pi\)
\(812\) 0 0
\(813\) −4.20793 + 4.85621i −0.147579 + 0.170315i
\(814\) 0 0
\(815\) −1.69668 3.71520i −0.0594320 0.130138i
\(816\) 0 0
\(817\) −49.7959 14.6214i −1.74214 0.511537i
\(818\) 0 0
\(819\) −0.116968 + 0.813531i −0.00408720 + 0.0284271i
\(820\) 0 0
\(821\) −2.42578 + 5.31172i −0.0846603 + 0.185380i −0.947227 0.320563i \(-0.896128\pi\)
0.862567 + 0.505943i \(0.168855\pi\)
\(822\) 0 0
\(823\) 1.86243 + 12.9535i 0.0649202 + 0.451530i 0.996191 + 0.0872013i \(0.0277923\pi\)
−0.931271 + 0.364328i \(0.881299\pi\)
\(824\) 0 0
\(825\) 9.59066 + 11.0682i 0.333904 + 0.385346i
\(826\) 0 0
\(827\) 36.4216 1.26650 0.633251 0.773946i \(-0.281720\pi\)
0.633251 + 0.773946i \(0.281720\pi\)
\(828\) 0 0
\(829\) 24.9420 0.866271 0.433135 0.901329i \(-0.357407\pi\)
0.433135 + 0.901329i \(0.357407\pi\)
\(830\) 0 0
\(831\) −3.18101 3.67109i −0.110348 0.127349i
\(832\) 0 0
\(833\) −0.0822217 0.571865i −0.00284881 0.0198139i
\(834\) 0 0
\(835\) −15.1157 + 33.0987i −0.523099 + 1.14543i
\(836\) 0 0
\(837\) −0.141453 + 0.983824i −0.00488931 + 0.0340059i
\(838\) 0 0
\(839\) −0.413314 0.121360i −0.0142692 0.00418981i 0.274590 0.961561i \(-0.411458\pi\)
−0.288859 + 0.957372i \(0.593276\pi\)
\(840\) 0 0
\(841\) 21.3015 + 46.6438i 0.734534 + 1.60841i
\(842\) 0 0
\(843\) 11.2660 13.0017i 0.388023 0.447803i
\(844\) 0 0
\(845\) −31.4367 20.2032i −1.08146 0.695010i
\(846\) 0 0
\(847\) 16.9864 10.9165i 0.583658 0.375094i
\(848\) 0 0
\(849\) 14.1439 4.15303i 0.485419 0.142532i
\(850\) 0 0
\(851\) −16.9791 13.3189i −0.582037 0.456567i
\(852\) 0 0
\(853\) 25.0875 7.36636i 0.858980 0.252219i 0.177558 0.984110i \(-0.443180\pi\)
0.681422 + 0.731891i \(0.261362\pi\)
\(854\) 0 0
\(855\) −13.6810 + 8.79227i −0.467882 + 0.300689i
\(856\) 0 0
\(857\) −27.6883 17.7942i −0.945816 0.607839i −0.0257776 0.999668i \(-0.508206\pi\)
−0.920038 + 0.391829i \(0.871843\pi\)
\(858\) 0 0
\(859\) 19.5531 22.5655i 0.667145 0.769926i −0.316782 0.948498i \(-0.602602\pi\)
0.983927 + 0.178572i \(0.0571478\pi\)
\(860\) 0 0
\(861\) 1.85464 + 4.06110i 0.0632060 + 0.138402i
\(862\) 0 0
\(863\) 20.3495 + 5.97514i 0.692704 + 0.203396i 0.609089 0.793102i \(-0.291535\pi\)
0.0836150 + 0.996498i \(0.473353\pi\)
\(864\) 0 0
\(865\) 2.81011 19.5447i 0.0955466 0.664541i
\(866\) 0 0
\(867\) 11.2586 24.6529i 0.382363 0.837257i
\(868\) 0 0
\(869\) −2.01562 14.0189i −0.0683752 0.475560i
\(870\) 0 0
\(871\) −1.21156 1.39821i −0.0410521 0.0473767i
\(872\) 0 0
\(873\) 10.2714 0.347633
\(874\) 0 0
\(875\) −12.2713 −0.414845
\(876\) 0 0
\(877\) 7.96859 + 9.19625i 0.269080 + 0.310535i 0.874168 0.485624i \(-0.161407\pi\)
−0.605088 + 0.796159i \(0.706862\pi\)
\(878\) 0 0
\(879\) 3.56744 + 24.8121i 0.120327 + 0.836891i
\(880\) 0 0
\(881\) −16.5126 + 36.1575i −0.556322 + 1.21818i 0.397444 + 0.917626i \(0.369897\pi\)
−0.953766 + 0.300549i \(0.902830\pi\)
\(882\) 0 0
\(883\) 3.36234 23.3856i 0.113152 0.786989i −0.851669 0.524080i \(-0.824409\pi\)
0.964821 0.262908i \(-0.0846817\pi\)
\(884\) 0 0
\(885\) 30.5659 + 8.97496i 1.02746 + 0.301690i
\(886\) 0 0
\(887\) −17.6960 38.7487i −0.594172 1.30106i −0.932888 0.360167i \(-0.882720\pi\)
0.338716 0.940889i \(-0.390007\pi\)
\(888\) 0 0
\(889\) 14.2794 16.4793i 0.478915 0.552697i
\(890\) 0 0
\(891\) −3.63589 2.33665i −0.121807 0.0782806i
\(892\) 0 0
\(893\) −55.4997 + 35.6675i −1.85723 + 1.19357i
\(894\) 0 0
\(895\) 0.132822 0.0389999i 0.00443974 0.00130362i
\(896\) 0 0
\(897\) −0.871092 1.22011i −0.0290849 0.0407385i
\(898\) 0 0
\(899\) 8.54475 2.50897i 0.284983 0.0836787i
\(900\) 0 0
\(901\) 2.50158 1.60767i 0.0833396 0.0535591i
\(902\) 0 0
\(903\) −20.4439 13.1385i −0.680330 0.437221i
\(904\) 0 0
\(905\) 41.7795 48.2161i 1.38880 1.60276i
\(906\) 0 0
\(907\) −12.3569 27.0579i −0.410306 0.898444i −0.996121 0.0879990i \(-0.971953\pi\)
0.585815 0.810445i \(-0.300775\pi\)
\(908\) 0 0
\(909\) 8.92011 + 2.61918i 0.295861 + 0.0868727i
\(910\) 0 0
\(911\) 4.61595 32.1047i 0.152933 1.06368i −0.758336 0.651864i \(-0.773987\pi\)
0.911269 0.411811i \(-0.135104\pi\)
\(912\) 0 0
\(913\) −17.5893 + 38.5153i −0.582122 + 1.27467i
\(914\) 0 0
\(915\) −5.18770 36.0812i −0.171500 1.19281i
\(916\) 0 0
\(917\) −34.2664 39.5455i −1.13158 1.30591i
\(918\) 0 0
\(919\) −41.6575 −1.37415 −0.687077 0.726585i \(-0.741106\pi\)
−0.687077 + 0.726585i \(0.741106\pi\)
\(920\) 0 0
\(921\) 30.4766 1.00424
\(922\) 0 0
\(923\) 0.972472 + 1.12229i 0.0320093 + 0.0369407i
\(924\) 0 0
\(925\) 2.16994 + 15.0923i 0.0713472 + 0.496231i
\(926\) 0 0
\(927\) −5.64384 + 12.3583i −0.185368 + 0.405899i
\(928\) 0 0
\(929\) −7.06730 + 49.1541i −0.231870 + 1.61269i 0.458130 + 0.888885i \(0.348520\pi\)
−0.690000 + 0.723809i \(0.742390\pi\)
\(930\) 0 0
\(931\) −0.468702 0.137623i −0.0153611 0.00451042i
\(932\) 0 0
\(933\) −6.19604 13.5674i −0.202849 0.444178i
\(934\) 0 0
\(935\) −54.4385 + 62.8254i −1.78033 + 2.05461i
\(936\) 0 0
\(937\) 33.2769 + 21.3858i 1.08711 + 0.698642i 0.956189 0.292751i \(-0.0945706\pi\)
0.130920 + 0.991393i \(0.458207\pi\)
\(938\) 0 0
\(939\) −18.3863 + 11.8162i −0.600016 + 0.385607i
\(940\) 0 0
\(941\) −28.4028 + 8.33980i −0.925903 + 0.271870i −0.709721 0.704483i \(-0.751179\pi\)
−0.216183 + 0.976353i \(0.569361\pi\)
\(942\) 0 0
\(943\) −7.56381 3.01736i −0.246312 0.0982588i
\(944\) 0 0
\(945\) −7.30666 + 2.14543i −0.237686 + 0.0697908i
\(946\) 0 0
\(947\) 39.7694 25.5582i 1.29233 0.830531i 0.299976 0.953947i \(-0.403021\pi\)
0.992355 + 0.123416i \(0.0393848\pi\)
\(948\) 0 0
\(949\) 0.848277 + 0.545154i 0.0275362 + 0.0176965i
\(950\) 0 0
\(951\) −3.71916 + 4.29214i −0.120602 + 0.139182i
\(952\) 0 0
\(953\) −13.8320 30.2878i −0.448062 0.981119i −0.990048 0.140732i \(-0.955055\pi\)
0.541986 0.840388i \(-0.317673\pi\)
\(954\) 0 0
\(955\) 29.1521 + 8.55984i 0.943341 + 0.276990i
\(956\) 0 0
\(957\) −5.51101 + 38.3299i −0.178146 + 1.23903i
\(958\) 0 0
\(959\) −8.14123 + 17.8268i −0.262894 + 0.575658i
\(960\) 0 0
\(961\) 4.27116 + 29.7066i 0.137780 + 0.958277i
\(962\) 0 0
\(963\) −3.73449 4.30983i −0.120342 0.138882i
\(964\) 0 0
\(965\) −24.6525 −0.793591
\(966\) 0 0
\(967\) 31.6769 1.01866 0.509331 0.860571i \(-0.329893\pi\)
0.509331 + 0.860571i \(0.329893\pi\)
\(968\) 0 0
\(969\) −24.4189 28.1810i −0.784449 0.905303i
\(970\) 0 0
\(971\) 6.80759 + 47.3478i 0.218466 + 1.51946i 0.743705 + 0.668508i \(0.233067\pi\)
−0.525239 + 0.850955i \(0.676024\pi\)
\(972\) 0 0
\(973\) 5.76237 12.6178i 0.184733 0.404509i
\(974\) 0 0
\(975\) −0.150747 + 1.04847i −0.00482778 + 0.0335780i
\(976\) 0 0
\(977\) 45.0898 + 13.2395i 1.44255 + 0.423571i 0.907071 0.420978i \(-0.138313\pi\)
0.535478 + 0.844549i \(0.320131\pi\)
\(978\) 0 0
\(979\) 10.1485 + 22.2221i 0.324347 + 0.710221i
\(980\) 0 0
\(981\) −5.37801 + 6.20656i −0.171707 + 0.198160i
\(982\) 0 0
\(983\) −25.0929 16.1262i −0.800338 0.514346i 0.0753880 0.997154i \(-0.475980\pi\)
−0.875726 + 0.482808i \(0.839617\pi\)
\(984\) 0 0
\(985\) 36.4258 23.4094i 1.16062 0.745887i
\(986\) 0 0
\(987\) −29.6408 + 8.70334i −0.943478 + 0.277030i
\(988\) 0 0
\(989\) 43.5155 8.44217i 1.38371 0.268445i
\(990\) 0 0
\(991\) −24.8317 + 7.29125i −0.788806 + 0.231614i −0.651234 0.758877i \(-0.725748\pi\)
−0.137572 + 0.990492i \(0.543930\pi\)
\(992\) 0 0
\(993\) −8.37346 + 5.38130i −0.265724 + 0.170770i
\(994\) 0 0
\(995\) −37.9101 24.3634i −1.20183 0.772370i
\(996\) 0 0
\(997\) −12.1527 + 14.0249i −0.384879 + 0.444174i −0.914821 0.403860i \(-0.867668\pi\)
0.529942 + 0.848034i \(0.322214\pi\)
\(998\) 0 0
\(999\) −1.86924 4.09306i −0.0591400 0.129499i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.2.q.b.193.1 30
23.18 even 11 inner 552.2.q.b.409.1 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.q.b.193.1 30 1.1 even 1 trivial
552.2.q.b.409.1 yes 30 23.18 even 11 inner