Properties

Label 550.2.k
Level $550$
Weight $2$
Character orbit 550.k
Rep. character $\chi_{550}(111,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $96$
Newform subspaces $5$
Sturm bound $180$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.k (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 5 \)
Sturm bound: \(180\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(550, [\chi])\).

Total New Old
Modular forms 376 96 280
Cusp forms 344 96 248
Eisenstein series 32 0 32

Trace form

\( 96 q + 2 q^{2} + 4 q^{3} - 24 q^{4} - 6 q^{5} + 2 q^{8} - 16 q^{9} + 6 q^{10} + 2 q^{11} - 6 q^{12} + 12 q^{13} + 8 q^{14} - 16 q^{15} - 24 q^{16} + 28 q^{17} - 24 q^{18} - 6 q^{20} + 24 q^{21} - 4 q^{23}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(550, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
550.2.k.a 550.k 25.d $4$ $4.392$ \(\Q(\zeta_{10})\) None 550.2.k.a \(1\) \(-6\) \(5\) \(8\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+(-2+\cdots)q^{3}+\cdots\)
550.2.k.b 550.k 25.d $20$ $4.392$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 550.2.k.b \(-5\) \(4\) \(-6\) \(-16\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{3}q^{2}-\beta _{17}q^{3}+(-1-\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
550.2.k.c 550.k 25.d $20$ $4.392$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 550.2.k.c \(5\) \(6\) \(-14\) \(8\) $\mathrm{SU}(2)[C_{5}]$ \(q+(1+\beta _{6}-\beta _{7}+\beta _{9})q^{2}+(2-\beta _{1}-\beta _{2}+\cdots)q^{3}+\cdots\)
550.2.k.d 550.k 25.d $24$ $4.392$ None 550.2.k.d \(-6\) \(-2\) \(6\) \(0\) $\mathrm{SU}(2)[C_{5}]$
550.2.k.e 550.k 25.d $28$ $4.392$ None 550.2.k.e \(7\) \(2\) \(3\) \(0\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(550, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(550, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)