Properties

Label 55.3.f.a.23.6
Level $55$
Weight $3$
Character 55.23
Analytic conductor $1.499$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [55,3,Mod(12,55)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("55.12"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(55, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 8 x^{18} + 4 x^{17} + 212 x^{16} - 792 x^{15} + 1480 x^{14} + 148 x^{13} + \cdots + 38416 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 23.6
Root \(-0.188102 - 0.188102i\) of defining polynomial
Character \(\chi\) \(=\) 55.23
Dual form 55.3.f.a.12.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.188102 - 0.188102i) q^{2} +(0.812414 + 0.812414i) q^{3} +3.92923i q^{4} +(-1.21594 + 4.84990i) q^{5} +0.305634 q^{6} +(5.94455 - 5.94455i) q^{7} +(1.49151 + 1.49151i) q^{8} -7.67997i q^{9} +(0.683556 + 1.14100i) q^{10} -3.31662 q^{11} +(-3.19216 + 3.19216i) q^{12} +(3.02318 + 3.02318i) q^{13} -2.23637i q^{14} +(-4.92797 + 2.95227i) q^{15} -15.1558 q^{16} +(0.878385 - 0.878385i) q^{17} +(-1.44462 - 1.44462i) q^{18} -29.2386i q^{19} +(-19.0564 - 4.77772i) q^{20} +9.65887 q^{21} +(-0.623865 + 0.623865i) q^{22} +(11.8993 + 11.8993i) q^{23} +2.42344i q^{24} +(-22.0430 - 11.7944i) q^{25} +1.13733 q^{26} +(13.5510 - 13.5510i) q^{27} +(23.3575 + 23.3575i) q^{28} +15.7896i q^{29} +(-0.371633 + 1.48229i) q^{30} -14.3621 q^{31} +(-8.81688 + 8.81688i) q^{32} +(-2.69447 - 2.69447i) q^{33} -0.330453i q^{34} +(21.6022 + 36.0587i) q^{35} +30.1764 q^{36} +(36.1210 - 36.1210i) q^{37} +(-5.49985 - 5.49985i) q^{38} +4.91214i q^{39} +(-9.04725 + 5.42007i) q^{40} -57.6501 q^{41} +(1.81686 - 1.81686i) q^{42} +(58.0890 + 58.0890i) q^{43} -13.0318i q^{44} +(37.2470 + 9.33839i) q^{45} +4.47659 q^{46} +(-29.8948 + 29.8948i) q^{47} +(-12.3128 - 12.3128i) q^{48} -21.6754i q^{49} +(-6.36489 + 1.92779i) q^{50} +1.42722 q^{51} +(-11.8788 + 11.8788i) q^{52} +(-59.0764 - 59.0764i) q^{53} -5.09797i q^{54} +(4.03282 - 16.0853i) q^{55} +17.7327 q^{56} +(23.7538 - 23.7538i) q^{57} +(2.97007 + 2.97007i) q^{58} +61.7604i q^{59} +(-11.6002 - 19.3631i) q^{60} +1.59704 q^{61} +(-2.70154 + 2.70154i) q^{62} +(-45.6540 - 45.6540i) q^{63} -57.3064i q^{64} +(-18.3381 + 10.9861i) q^{65} -1.01367 q^{66} +(-32.7908 + 32.7908i) q^{67} +(3.45138 + 3.45138i) q^{68} +19.3344i q^{69} +(10.8462 + 2.71929i) q^{70} -12.4615 q^{71} +(11.4547 - 11.4547i) q^{72} +(-74.3641 - 74.3641i) q^{73} -13.5889i q^{74} +(-8.32610 - 27.4899i) q^{75} +114.885 q^{76} +(-19.7158 + 19.7158i) q^{77} +(0.923986 + 0.923986i) q^{78} +21.8223i q^{79} +(18.4286 - 73.5042i) q^{80} -47.1016 q^{81} +(-10.8441 + 10.8441i) q^{82} +(45.9955 + 45.9955i) q^{83} +37.9520i q^{84} +(3.19201 + 5.32814i) q^{85} +21.8534 q^{86} +(-12.8277 + 12.8277i) q^{87} +(-4.94677 - 4.94677i) q^{88} +89.4219i q^{89} +(8.76283 - 5.24969i) q^{90} +35.9429 q^{91} +(-46.7553 + 46.7553i) q^{92} +(-11.6679 - 11.6679i) q^{93} +11.2466i q^{94} +(141.804 + 35.5524i) q^{95} -14.3259 q^{96} +(-62.6170 + 62.6170i) q^{97} +(-4.07719 - 4.07719i) q^{98} +25.4716i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{2} - 2 q^{3} - 8 q^{5} - 8 q^{6} + 12 q^{8} + 12 q^{10} - 16 q^{12} + 4 q^{13} - 20 q^{15} - 16 q^{16} + 24 q^{17} - 24 q^{18} - 8 q^{20} - 64 q^{21} - 86 q^{23} + 90 q^{25} + 96 q^{26} - 50 q^{27}+ \cdots + 620 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.188102 0.188102i 0.0940512 0.0940512i −0.658516 0.752567i \(-0.728815\pi\)
0.752567 + 0.658516i \(0.228815\pi\)
\(3\) 0.812414 + 0.812414i 0.270805 + 0.270805i 0.829424 0.558619i \(-0.188669\pi\)
−0.558619 + 0.829424i \(0.688669\pi\)
\(4\) 3.92923i 0.982309i
\(5\) −1.21594 + 4.84990i −0.243188 + 0.969979i
\(6\) 0.305634 0.0509390
\(7\) 5.94455 5.94455i 0.849222 0.849222i −0.140814 0.990036i \(-0.544972\pi\)
0.990036 + 0.140814i \(0.0449721\pi\)
\(8\) 1.49151 + 1.49151i 0.186439 + 0.186439i
\(9\) 7.67997i 0.853330i
\(10\) 0.683556 + 1.14100i 0.0683556 + 0.114100i
\(11\) −3.31662 −0.301511
\(12\) −3.19216 + 3.19216i −0.266014 + 0.266014i
\(13\) 3.02318 + 3.02318i 0.232552 + 0.232552i 0.813757 0.581205i \(-0.197419\pi\)
−0.581205 + 0.813757i \(0.697419\pi\)
\(14\) 2.23637i 0.159741i
\(15\) −4.92797 + 2.95227i −0.328531 + 0.196818i
\(16\) −15.1558 −0.947239
\(17\) 0.878385 0.878385i 0.0516697 0.0516697i −0.680800 0.732470i \(-0.738368\pi\)
0.732470 + 0.680800i \(0.238368\pi\)
\(18\) −1.44462 1.44462i −0.0802567 0.0802567i
\(19\) 29.2386i 1.53887i −0.638723 0.769437i \(-0.720537\pi\)
0.638723 0.769437i \(-0.279463\pi\)
\(20\) −19.0564 4.77772i −0.952819 0.238886i
\(21\) 9.65887 0.459946
\(22\) −0.623865 + 0.623865i −0.0283575 + 0.0283575i
\(23\) 11.8993 + 11.8993i 0.517362 + 0.517362i 0.916772 0.399410i \(-0.130785\pi\)
−0.399410 + 0.916772i \(0.630785\pi\)
\(24\) 2.42344i 0.100977i
\(25\) −22.0430 11.7944i −0.881719 0.471775i
\(26\) 1.13733 0.0437436
\(27\) 13.5510 13.5510i 0.501890 0.501890i
\(28\) 23.3575 + 23.3575i 0.834198 + 0.834198i
\(29\) 15.7896i 0.544470i 0.962231 + 0.272235i \(0.0877629\pi\)
−0.962231 + 0.272235i \(0.912237\pi\)
\(30\) −0.371633 + 1.48229i −0.0123878 + 0.0494098i
\(31\) −14.3621 −0.463293 −0.231646 0.972800i \(-0.574411\pi\)
−0.231646 + 0.972800i \(0.574411\pi\)
\(32\) −8.81688 + 8.81688i −0.275528 + 0.275528i
\(33\) −2.69447 2.69447i −0.0816506 0.0816506i
\(34\) 0.330453i 0.00971919i
\(35\) 21.6022 + 36.0587i 0.617207 + 1.03025i
\(36\) 30.1764 0.838233
\(37\) 36.1210 36.1210i 0.976244 0.976244i −0.0234804 0.999724i \(-0.507475\pi\)
0.999724 + 0.0234804i \(0.00747473\pi\)
\(38\) −5.49985 5.49985i −0.144733 0.144733i
\(39\) 4.91214i 0.125952i
\(40\) −9.04725 + 5.42007i −0.226181 + 0.135502i
\(41\) −57.6501 −1.40610 −0.703050 0.711141i \(-0.748179\pi\)
−0.703050 + 0.711141i \(0.748179\pi\)
\(42\) 1.81686 1.81686i 0.0432585 0.0432585i
\(43\) 58.0890 + 58.0890i 1.35091 + 1.35091i 0.884648 + 0.466259i \(0.154399\pi\)
0.466259 + 0.884648i \(0.345601\pi\)
\(44\) 13.0318i 0.296177i
\(45\) 37.2470 + 9.33839i 0.827712 + 0.207520i
\(46\) 4.47659 0.0973171
\(47\) −29.8948 + 29.8948i −0.636060 + 0.636060i −0.949581 0.313522i \(-0.898491\pi\)
0.313522 + 0.949581i \(0.398491\pi\)
\(48\) −12.3128 12.3128i −0.256517 0.256517i
\(49\) 21.6754i 0.442355i
\(50\) −6.36489 + 1.92779i −0.127298 + 0.0385557i
\(51\) 1.42722 0.0279848
\(52\) −11.8788 + 11.8788i −0.228438 + 0.228438i
\(53\) −59.0764 59.0764i −1.11465 1.11465i −0.992514 0.122135i \(-0.961026\pi\)
−0.122135 0.992514i \(-0.538974\pi\)
\(54\) 5.09797i 0.0944068i
\(55\) 4.03282 16.0853i 0.0733240 0.292460i
\(56\) 17.7327 0.316655
\(57\) 23.7538 23.7538i 0.416734 0.416734i
\(58\) 2.97007 + 2.97007i 0.0512081 + 0.0512081i
\(59\) 61.7604i 1.04679i 0.852091 + 0.523393i \(0.175334\pi\)
−0.852091 + 0.523393i \(0.824666\pi\)
\(60\) −11.6002 19.3631i −0.193336 0.322719i
\(61\) 1.59704 0.0261810 0.0130905 0.999914i \(-0.495833\pi\)
0.0130905 + 0.999914i \(0.495833\pi\)
\(62\) −2.70154 + 2.70154i −0.0435733 + 0.0435733i
\(63\) −45.6540 45.6540i −0.724666 0.724666i
\(64\) 57.3064i 0.895412i
\(65\) −18.3381 + 10.9861i −0.282125 + 0.169017i
\(66\) −1.01367 −0.0153587
\(67\) −32.7908 + 32.7908i −0.489415 + 0.489415i −0.908122 0.418706i \(-0.862484\pi\)
0.418706 + 0.908122i \(0.362484\pi\)
\(68\) 3.45138 + 3.45138i 0.0507556 + 0.0507556i
\(69\) 19.3344i 0.280208i
\(70\) 10.8462 + 2.71929i 0.154945 + 0.0388470i
\(71\) −12.4615 −0.175514 −0.0877571 0.996142i \(-0.527970\pi\)
−0.0877571 + 0.996142i \(0.527970\pi\)
\(72\) 11.4547 11.4547i 0.159094 0.159094i
\(73\) −74.3641 74.3641i −1.01869 1.01869i −0.999822 0.0188637i \(-0.993995\pi\)
−0.0188637 0.999822i \(-0.506005\pi\)
\(74\) 13.5889i 0.183634i
\(75\) −8.32610 27.4899i −0.111015 0.366532i
\(76\) 114.885 1.51165
\(77\) −19.7158 + 19.7158i −0.256050 + 0.256050i
\(78\) 0.923986 + 0.923986i 0.0118460 + 0.0118460i
\(79\) 21.8223i 0.276232i 0.990416 + 0.138116i \(0.0441046\pi\)
−0.990416 + 0.138116i \(0.955895\pi\)
\(80\) 18.4286 73.5042i 0.230357 0.918802i
\(81\) −47.1016 −0.581502
\(82\) −10.8441 + 10.8441i −0.132245 + 0.132245i
\(83\) 45.9955 + 45.9955i 0.554163 + 0.554163i 0.927640 0.373477i \(-0.121834\pi\)
−0.373477 + 0.927640i \(0.621834\pi\)
\(84\) 37.9520i 0.451809i
\(85\) 3.19201 + 5.32814i 0.0375531 + 0.0626840i
\(86\) 21.8534 0.254109
\(87\) −12.8277 + 12.8277i −0.147445 + 0.147445i
\(88\) −4.94677 4.94677i −0.0562133 0.0562133i
\(89\) 89.4219i 1.00474i 0.864652 + 0.502370i \(0.167539\pi\)
−0.864652 + 0.502370i \(0.832461\pi\)
\(90\) 8.76283 5.24969i 0.0973648 0.0583299i
\(91\) 35.9429 0.394977
\(92\) −46.7553 + 46.7553i −0.508209 + 0.508209i
\(93\) −11.6679 11.6679i −0.125462 0.125462i
\(94\) 11.2466i 0.119644i
\(95\) 141.804 + 35.5524i 1.49268 + 0.374236i
\(96\) −14.3259 −0.149228
\(97\) −62.6170 + 62.6170i −0.645536 + 0.645536i −0.951911 0.306375i \(-0.900884\pi\)
0.306375 + 0.951911i \(0.400884\pi\)
\(98\) −4.07719 4.07719i −0.0416040 0.0416040i
\(99\) 25.4716i 0.257289i
\(100\) 46.3429 86.6120i 0.463429 0.866120i
\(101\) 61.9216 0.613085 0.306543 0.951857i \(-0.400828\pi\)
0.306543 + 0.951857i \(0.400828\pi\)
\(102\) 0.268464 0.268464i 0.00263200 0.00263200i
\(103\) 22.9870 + 22.9870i 0.223174 + 0.223174i 0.809834 0.586659i \(-0.199557\pi\)
−0.586659 + 0.809834i \(0.699557\pi\)
\(104\) 9.01819i 0.0867134i
\(105\) −11.7446 + 46.8445i −0.111853 + 0.446138i
\(106\) −22.2248 −0.209668
\(107\) 129.770 129.770i 1.21281 1.21281i 0.242705 0.970100i \(-0.421965\pi\)
0.970100 0.242705i \(-0.0780347\pi\)
\(108\) 53.2452 + 53.2452i 0.493011 + 0.493011i
\(109\) 23.0533i 0.211498i 0.994393 + 0.105749i \(0.0337240\pi\)
−0.994393 + 0.105749i \(0.966276\pi\)
\(110\) −2.26710 3.78426i −0.0206100 0.0344024i
\(111\) 58.6904 0.528743
\(112\) −90.0946 + 90.0946i −0.804416 + 0.804416i
\(113\) −49.9313 49.9313i −0.441870 0.441870i 0.450770 0.892640i \(-0.351149\pi\)
−0.892640 + 0.450770i \(0.851149\pi\)
\(114\) 8.93631i 0.0783887i
\(115\) −72.1794 + 43.2416i −0.627647 + 0.376014i
\(116\) −62.0412 −0.534838
\(117\) 23.2179 23.2179i 0.198444 0.198444i
\(118\) 11.6173 + 11.6173i 0.0984515 + 0.0984515i
\(119\) 10.4432i 0.0877580i
\(120\) −11.7534 2.94676i −0.0979454 0.0245564i
\(121\) 11.0000 0.0909091
\(122\) 0.300408 0.300408i 0.00246236 0.00246236i
\(123\) −46.8357 46.8357i −0.380778 0.380778i
\(124\) 56.4320i 0.455097i
\(125\) 84.0044 92.5649i 0.672035 0.740519i
\(126\) −17.1752 −0.136311
\(127\) 71.1676 71.1676i 0.560374 0.560374i −0.369039 0.929414i \(-0.620313\pi\)
0.929414 + 0.369039i \(0.120313\pi\)
\(128\) −46.0470 46.0470i −0.359742 0.359742i
\(129\) 94.3846i 0.731664i
\(130\) −1.38293 + 5.51595i −0.0106379 + 0.0424304i
\(131\) −176.911 −1.35047 −0.675234 0.737603i \(-0.735957\pi\)
−0.675234 + 0.737603i \(0.735957\pi\)
\(132\) 10.5872 10.5872i 0.0802061 0.0802061i
\(133\) −173.810 173.810i −1.30685 1.30685i
\(134\) 12.3361i 0.0920602i
\(135\) 49.2438 + 82.1984i 0.364769 + 0.608877i
\(136\) 2.62024 0.0192664
\(137\) 40.2015 40.2015i 0.293442 0.293442i −0.544997 0.838438i \(-0.683469\pi\)
0.838438 + 0.544997i \(0.183469\pi\)
\(138\) 3.63684 + 3.63684i 0.0263539 + 0.0263539i
\(139\) 4.34004i 0.0312233i 0.999878 + 0.0156117i \(0.00496955\pi\)
−0.999878 + 0.0156117i \(0.995030\pi\)
\(140\) −141.683 + 84.8802i −1.01202 + 0.606287i
\(141\) −48.5739 −0.344496
\(142\) −2.34404 + 2.34404i −0.0165073 + 0.0165073i
\(143\) −10.0267 10.0267i −0.0701171 0.0701171i
\(144\) 116.396i 0.808307i
\(145\) −76.5781 19.1993i −0.528125 0.132409i
\(146\) −27.9761 −0.191617
\(147\) 17.6094 17.6094i 0.119792 0.119792i
\(148\) 141.928 + 141.928i 0.958973 + 0.958973i
\(149\) 237.366i 1.59306i −0.604597 0.796531i \(-0.706666\pi\)
0.604597 0.796531i \(-0.293334\pi\)
\(150\) −6.73708 3.60476i −0.0449139 0.0240317i
\(151\) 110.122 0.729288 0.364644 0.931147i \(-0.381191\pi\)
0.364644 + 0.931147i \(0.381191\pi\)
\(152\) 43.6096 43.6096i 0.286906 0.286906i
\(153\) −6.74597 6.74597i −0.0440913 0.0440913i
\(154\) 7.41720i 0.0481636i
\(155\) 17.4634 69.6546i 0.112667 0.449384i
\(156\) −19.3010 −0.123724
\(157\) −112.345 + 112.345i −0.715572 + 0.715572i −0.967695 0.252123i \(-0.918871\pi\)
0.252123 + 0.967695i \(0.418871\pi\)
\(158\) 4.10483 + 4.10483i 0.0259799 + 0.0259799i
\(159\) 95.9889i 0.603704i
\(160\) −32.0402 53.4818i −0.200251 0.334261i
\(161\) 141.472 0.878710
\(162\) −8.85993 + 8.85993i −0.0546909 + 0.0546909i
\(163\) 150.557 + 150.557i 0.923661 + 0.923661i 0.997286 0.0736248i \(-0.0234567\pi\)
−0.0736248 + 0.997286i \(0.523457\pi\)
\(164\) 226.521i 1.38122i
\(165\) 16.3442 9.79159i 0.0990559 0.0593429i
\(166\) 17.3037 0.104239
\(167\) 127.791 127.791i 0.765219 0.765219i −0.212042 0.977261i \(-0.568011\pi\)
0.977261 + 0.212042i \(0.0680114\pi\)
\(168\) 14.4063 + 14.4063i 0.0857517 + 0.0857517i
\(169\) 150.721i 0.891839i
\(170\) 1.60266 + 0.401811i 0.00942742 + 0.00236359i
\(171\) −224.552 −1.31317
\(172\) −228.245 + 228.245i −1.32701 + 1.32701i
\(173\) 228.084 + 228.084i 1.31840 + 1.31840i 0.915041 + 0.403361i \(0.132158\pi\)
0.403361 + 0.915041i \(0.367842\pi\)
\(174\) 4.82585i 0.0277348i
\(175\) −201.148 + 60.9233i −1.14942 + 0.348133i
\(176\) 50.2662 0.285603
\(177\) −50.1750 + 50.1750i −0.283474 + 0.283474i
\(178\) 16.8205 + 16.8205i 0.0944971 + 0.0944971i
\(179\) 188.436i 1.05272i 0.850263 + 0.526358i \(0.176443\pi\)
−0.850263 + 0.526358i \(0.823557\pi\)
\(180\) −36.6927 + 146.352i −0.203848 + 0.813069i
\(181\) 136.162 0.752277 0.376139 0.926563i \(-0.377252\pi\)
0.376139 + 0.926563i \(0.377252\pi\)
\(182\) 6.76094 6.76094i 0.0371480 0.0371480i
\(183\) 1.29746 + 1.29746i 0.00708994 + 0.00708994i
\(184\) 35.4959i 0.192912i
\(185\) 131.262 + 219.104i 0.709525 + 1.18435i
\(186\) −4.38954 −0.0235997
\(187\) −2.91327 + 2.91327i −0.0155790 + 0.0155790i
\(188\) −117.464 117.464i −0.624807 0.624807i
\(189\) 161.110i 0.852432i
\(190\) 33.3612 19.9862i 0.175585 0.105191i
\(191\) −25.7594 −0.134866 −0.0674330 0.997724i \(-0.521481\pi\)
−0.0674330 + 0.997724i \(0.521481\pi\)
\(192\) 46.5565 46.5565i 0.242482 0.242482i
\(193\) 203.382 + 203.382i 1.05379 + 1.05379i 0.998469 + 0.0553218i \(0.0176185\pi\)
0.0553218 + 0.998469i \(0.482382\pi\)
\(194\) 23.5568i 0.121427i
\(195\) −23.8234 5.97287i −0.122171 0.0306301i
\(196\) 85.1677 0.434529
\(197\) 170.916 170.916i 0.867592 0.867592i −0.124613 0.992205i \(-0.539769\pi\)
0.992205 + 0.124613i \(0.0397689\pi\)
\(198\) 4.79127 + 4.79127i 0.0241983 + 0.0241983i
\(199\) 56.5696i 0.284269i 0.989847 + 0.142135i \(0.0453966\pi\)
−0.989847 + 0.142135i \(0.954603\pi\)
\(200\) −15.2859 50.4687i −0.0764294 0.252343i
\(201\) −53.2794 −0.265072
\(202\) 11.6476 11.6476i 0.0576614 0.0576614i
\(203\) 93.8623 + 93.8623i 0.462376 + 0.462376i
\(204\) 5.60790i 0.0274897i
\(205\) 70.0991 279.597i 0.341947 1.36389i
\(206\) 8.64781 0.0419797
\(207\) 91.3865 91.3865i 0.441480 0.441480i
\(208\) −45.8188 45.8188i −0.220282 0.220282i
\(209\) 96.9735i 0.463988i
\(210\) 6.60238 + 11.0208i 0.0314399 + 0.0524798i
\(211\) −144.139 −0.683125 −0.341563 0.939859i \(-0.610956\pi\)
−0.341563 + 0.939859i \(0.610956\pi\)
\(212\) 232.125 232.125i 1.09493 1.09493i
\(213\) −10.1239 10.1239i −0.0475300 0.0475300i
\(214\) 48.8202i 0.228132i
\(215\) −352.359 + 211.093i −1.63888 + 0.981827i
\(216\) 40.4230 0.187143
\(217\) −85.3761 + 85.3761i −0.393438 + 0.393438i
\(218\) 4.33638 + 4.33638i 0.0198916 + 0.0198916i
\(219\) 120.829i 0.551729i
\(220\) 63.2029 + 15.8459i 0.287286 + 0.0720268i
\(221\) 5.31102 0.0240318
\(222\) 11.0398 11.0398i 0.0497289 0.0497289i
\(223\) −127.020 127.020i −0.569597 0.569597i 0.362419 0.932015i \(-0.381951\pi\)
−0.932015 + 0.362419i \(0.881951\pi\)
\(224\) 104.825i 0.467968i
\(225\) −90.5804 + 169.289i −0.402580 + 0.752397i
\(226\) −18.7844 −0.0831169
\(227\) −33.3387 + 33.3387i −0.146866 + 0.146866i −0.776717 0.629850i \(-0.783116\pi\)
0.629850 + 0.776717i \(0.283116\pi\)
\(228\) 93.3344 + 93.3344i 0.409362 + 0.409362i
\(229\) 257.494i 1.12443i 0.826992 + 0.562214i \(0.190050\pi\)
−0.826992 + 0.562214i \(0.809950\pi\)
\(230\) −5.44326 + 21.7110i −0.0236664 + 0.0943955i
\(231\) −32.0348 −0.138679
\(232\) −23.5504 + 23.5504i −0.101510 + 0.101510i
\(233\) −92.1414 92.1414i −0.395457 0.395457i 0.481170 0.876627i \(-0.340212\pi\)
−0.876627 + 0.481170i \(0.840212\pi\)
\(234\) 8.73469i 0.0373277i
\(235\) −108.636 181.337i −0.462282 0.771647i
\(236\) −242.671 −1.02827
\(237\) −17.7287 + 17.7287i −0.0748048 + 0.0748048i
\(238\) −1.96439 1.96439i −0.00825375 0.00825375i
\(239\) 276.668i 1.15761i −0.815467 0.578804i \(-0.803520\pi\)
0.815467 0.578804i \(-0.196480\pi\)
\(240\) 74.6874 44.7442i 0.311198 0.186434i
\(241\) −443.392 −1.83980 −0.919900 0.392153i \(-0.871731\pi\)
−0.919900 + 0.392153i \(0.871731\pi\)
\(242\) 2.06913 2.06913i 0.00855011 0.00855011i
\(243\) −160.225 160.225i −0.659363 0.659363i
\(244\) 6.27515i 0.0257178i
\(245\) 105.123 + 26.3560i 0.429075 + 0.107575i
\(246\) −17.6198 −0.0716253
\(247\) 88.3935 88.3935i 0.357868 0.357868i
\(248\) −21.4212 21.4212i −0.0863757 0.0863757i
\(249\) 74.7348i 0.300140i
\(250\) −1.61024 33.2131i −0.00644096 0.132852i
\(251\) 102.835 0.409702 0.204851 0.978793i \(-0.434329\pi\)
0.204851 + 0.978793i \(0.434329\pi\)
\(252\) 179.385 179.385i 0.711846 0.711846i
\(253\) −39.4656 39.4656i −0.155991 0.155991i
\(254\) 26.7736i 0.105408i
\(255\) −1.73542 + 6.92188i −0.00680556 + 0.0271446i
\(256\) 211.902 0.827743
\(257\) −156.554 + 156.554i −0.609161 + 0.609161i −0.942727 0.333566i \(-0.891748\pi\)
0.333566 + 0.942727i \(0.391748\pi\)
\(258\) 17.7540 + 17.7540i 0.0688139 + 0.0688139i
\(259\) 429.447i 1.65809i
\(260\) −43.1669 72.0547i −0.166027 0.277133i
\(261\) 121.264 0.464613
\(262\) −33.2775 + 33.2775i −0.127013 + 0.127013i
\(263\) 96.0051 + 96.0051i 0.365039 + 0.365039i 0.865664 0.500625i \(-0.166897\pi\)
−0.500625 + 0.865664i \(0.666897\pi\)
\(264\) 8.03765i 0.0304457i
\(265\) 358.348 214.681i 1.35225 0.810116i
\(266\) −65.3883 −0.245821
\(267\) −72.6476 + 72.6476i −0.272088 + 0.272088i
\(268\) −128.843 128.843i −0.480757 0.480757i
\(269\) 231.025i 0.858831i 0.903107 + 0.429415i \(0.141280\pi\)
−0.903107 + 0.429415i \(0.858720\pi\)
\(270\) 24.7246 + 6.19882i 0.0915726 + 0.0229586i
\(271\) 147.528 0.544384 0.272192 0.962243i \(-0.412251\pi\)
0.272192 + 0.962243i \(0.412251\pi\)
\(272\) −13.3126 + 13.3126i −0.0489435 + 0.0489435i
\(273\) 29.2005 + 29.2005i 0.106961 + 0.106961i
\(274\) 15.1240i 0.0551971i
\(275\) 73.1083 + 39.1175i 0.265848 + 0.142245i
\(276\) −75.9692 −0.275251
\(277\) −218.892 + 218.892i −0.790223 + 0.790223i −0.981530 0.191307i \(-0.938727\pi\)
0.191307 + 0.981530i \(0.438727\pi\)
\(278\) 0.816372 + 0.816372i 0.00293659 + 0.00293659i
\(279\) 110.300i 0.395342i
\(280\) −21.5619 + 86.0017i −0.0770068 + 0.307149i
\(281\) 219.613 0.781541 0.390771 0.920488i \(-0.372209\pi\)
0.390771 + 0.920488i \(0.372209\pi\)
\(282\) −9.13687 + 9.13687i −0.0324002 + 0.0324002i
\(283\) 147.560 + 147.560i 0.521414 + 0.521414i 0.917998 0.396584i \(-0.129805\pi\)
−0.396584 + 0.917998i \(0.629805\pi\)
\(284\) 48.9642i 0.172409i
\(285\) 86.3204 + 144.087i 0.302879 + 0.505568i
\(286\) −3.77211 −0.0131892
\(287\) −342.704 + 342.704i −1.19409 + 1.19409i
\(288\) 67.7134 + 67.7134i 0.235116 + 0.235116i
\(289\) 287.457i 0.994660i
\(290\) −18.0160 + 10.7931i −0.0621240 + 0.0372176i
\(291\) −101.742 −0.349628
\(292\) 292.194 292.194i 1.00066 1.00066i
\(293\) −272.170 272.170i −0.928907 0.928907i 0.0687286 0.997635i \(-0.478106\pi\)
−0.997635 + 0.0687286i \(0.978106\pi\)
\(294\) 6.62474i 0.0225331i
\(295\) −299.531 75.0969i −1.01536 0.254566i
\(296\) 107.750 0.364019
\(297\) −44.9437 + 44.9437i −0.151326 + 0.151326i
\(298\) −44.6492 44.6492i −0.149830 0.149830i
\(299\) 71.9476i 0.240627i
\(300\) 108.014 32.7152i 0.360048 0.109051i
\(301\) 690.626 2.29444
\(302\) 20.7143 20.7143i 0.0685904 0.0685904i
\(303\) 50.3060 + 50.3060i 0.166026 + 0.166026i
\(304\) 443.135i 1.45768i
\(305\) −1.94191 + 7.74549i −0.00636691 + 0.0253950i
\(306\) −2.53787 −0.00829368
\(307\) −89.4740 + 89.4740i −0.291446 + 0.291446i −0.837651 0.546205i \(-0.816072\pi\)
0.546205 + 0.837651i \(0.316072\pi\)
\(308\) −77.4682 77.4682i −0.251520 0.251520i
\(309\) 37.3499i 0.120873i
\(310\) −9.81728 16.3871i −0.0316687 0.0528617i
\(311\) −198.596 −0.638571 −0.319286 0.947659i \(-0.603443\pi\)
−0.319286 + 0.947659i \(0.603443\pi\)
\(312\) −7.32650 + 7.32650i −0.0234824 + 0.0234824i
\(313\) 128.282 + 128.282i 0.409846 + 0.409846i 0.881685 0.471839i \(-0.156410\pi\)
−0.471839 + 0.881685i \(0.656410\pi\)
\(314\) 42.2647i 0.134601i
\(315\) 276.930 165.904i 0.879141 0.526681i
\(316\) −85.7449 −0.271345
\(317\) 79.3104 79.3104i 0.250191 0.250191i −0.570858 0.821049i \(-0.693389\pi\)
0.821049 + 0.570858i \(0.193389\pi\)
\(318\) −18.0557 18.0557i −0.0567791 0.0567791i
\(319\) 52.3683i 0.164164i
\(320\) 277.930 + 69.6811i 0.868531 + 0.217754i
\(321\) 210.854 0.656866
\(322\) 26.6113 26.6113i 0.0826438 0.0826438i
\(323\) −25.6827 25.6827i −0.0795131 0.0795131i
\(324\) 185.073i 0.571214i
\(325\) −30.9833 102.296i −0.0953334 0.314758i
\(326\) 56.6402 0.173743
\(327\) −18.7288 + 18.7288i −0.0572746 + 0.0572746i
\(328\) −85.9856 85.9856i −0.262151 0.262151i
\(329\) 355.422i 1.08031i
\(330\) 1.23257 4.91621i 0.00373505 0.0148976i
\(331\) 478.725 1.44630 0.723149 0.690692i \(-0.242694\pi\)
0.723149 + 0.690692i \(0.242694\pi\)
\(332\) −180.727 + 180.727i −0.544359 + 0.544359i
\(333\) −277.408 277.408i −0.833058 0.833058i
\(334\) 48.0758i 0.143939i
\(335\) −119.160 198.904i −0.355703 0.593742i
\(336\) −146.388 −0.435679
\(337\) −189.268 + 189.268i −0.561626 + 0.561626i −0.929769 0.368143i \(-0.879994\pi\)
0.368143 + 0.929769i \(0.379994\pi\)
\(338\) −28.3510 28.3510i −0.0838786 0.0838786i
\(339\) 81.1298i 0.239321i
\(340\) −20.9355 + 12.5422i −0.0615750 + 0.0368887i
\(341\) 47.6336 0.139688
\(342\) −42.2387 + 42.2387i −0.123505 + 0.123505i
\(343\) 162.433 + 162.433i 0.473564 + 0.473564i
\(344\) 173.281i 0.503723i
\(345\) −93.7696 23.5094i −0.271796 0.0681433i
\(346\) 85.8061 0.247995
\(347\) −116.951 + 116.951i −0.337034 + 0.337034i −0.855250 0.518216i \(-0.826596\pi\)
0.518216 + 0.855250i \(0.326596\pi\)
\(348\) −50.4031 50.4031i −0.144837 0.144837i
\(349\) 517.882i 1.48390i −0.670454 0.741951i \(-0.733901\pi\)
0.670454 0.741951i \(-0.266099\pi\)
\(350\) −26.3766 + 49.2962i −0.0753616 + 0.140846i
\(351\) 81.9344 0.233431
\(352\) 29.2423 29.2423i 0.0830747 0.0830747i
\(353\) −290.305 290.305i −0.822395 0.822395i 0.164056 0.986451i \(-0.447542\pi\)
−0.986451 + 0.164056i \(0.947542\pi\)
\(354\) 18.8761i 0.0533222i
\(355\) 15.1525 60.4370i 0.0426830 0.170245i
\(356\) −351.360 −0.986966
\(357\) 8.48420 8.48420i 0.0237653 0.0237653i
\(358\) 35.4453 + 35.4453i 0.0990093 + 0.0990093i
\(359\) 25.7739i 0.0717937i −0.999355 0.0358969i \(-0.988571\pi\)
0.999355 0.0358969i \(-0.0114288\pi\)
\(360\) 41.6260 + 69.4826i 0.115628 + 0.193007i
\(361\) −493.896 −1.36813
\(362\) 25.6124 25.6124i 0.0707526 0.0707526i
\(363\) 8.93655 + 8.93655i 0.0246186 + 0.0246186i
\(364\) 141.228i 0.387989i
\(365\) 451.080 270.236i 1.23584 0.740372i
\(366\) 0.488110 0.00133363
\(367\) 139.007 139.007i 0.378766 0.378766i −0.491891 0.870657i \(-0.663694\pi\)
0.870657 + 0.491891i \(0.163694\pi\)
\(368\) −180.344 180.344i −0.490066 0.490066i
\(369\) 442.751i 1.19987i
\(370\) 65.9048 + 16.5233i 0.178121 + 0.0446576i
\(371\) −702.365 −1.89317
\(372\) 45.8461 45.8461i 0.123242 0.123242i
\(373\) 238.874 + 238.874i 0.640413 + 0.640413i 0.950657 0.310244i \(-0.100411\pi\)
−0.310244 + 0.950657i \(0.600411\pi\)
\(374\) 1.09599i 0.00293045i
\(375\) 143.447 6.95462i 0.382526 0.0185456i
\(376\) −89.1767 −0.237172
\(377\) −47.7349 + 47.7349i −0.126618 + 0.126618i
\(378\) −30.3051 30.3051i −0.0801723 0.0801723i
\(379\) 698.963i 1.84423i −0.386917 0.922115i \(-0.626460\pi\)
0.386917 0.922115i \(-0.373540\pi\)
\(380\) −139.694 + 557.182i −0.367615 + 1.46627i
\(381\) 115.635 0.303504
\(382\) −4.84541 + 4.84541i −0.0126843 + 0.0126843i
\(383\) −256.886 256.886i −0.670721 0.670721i 0.287161 0.957882i \(-0.407288\pi\)
−0.957882 + 0.287161i \(0.907288\pi\)
\(384\) 74.8184i 0.194840i
\(385\) −71.6465 119.593i −0.186095 0.310631i
\(386\) 76.5131 0.198221
\(387\) 446.122 446.122i 1.15277 1.15277i
\(388\) −246.037 246.037i −0.634116 0.634116i
\(389\) 40.8358i 0.104976i 0.998622 + 0.0524881i \(0.0167152\pi\)
−0.998622 + 0.0524881i \(0.983285\pi\)
\(390\) −5.60475 + 3.35772i −0.0143711 + 0.00860954i
\(391\) 20.9044 0.0534639
\(392\) 32.3290 32.3290i 0.0824720 0.0824720i
\(393\) −143.725 143.725i −0.365713 0.365713i
\(394\) 64.2993i 0.163196i
\(395\) −105.836 26.5346i −0.267939 0.0671763i
\(396\) −100.084 −0.252737
\(397\) −41.8862 + 41.8862i −0.105507 + 0.105507i −0.757890 0.652383i \(-0.773769\pi\)
0.652383 + 0.757890i \(0.273769\pi\)
\(398\) 10.6409 + 10.6409i 0.0267359 + 0.0267359i
\(399\) 282.412i 0.707799i
\(400\) 334.080 + 178.753i 0.835199 + 0.446884i
\(401\) 142.121 0.354417 0.177208 0.984173i \(-0.443293\pi\)
0.177208 + 0.984173i \(0.443293\pi\)
\(402\) −10.0220 + 10.0220i −0.0249303 + 0.0249303i
\(403\) −43.4191 43.4191i −0.107740 0.107740i
\(404\) 243.305i 0.602239i
\(405\) 57.2728 228.438i 0.141414 0.564044i
\(406\) 35.3115 0.0869741
\(407\) −119.800 + 119.800i −0.294349 + 0.294349i
\(408\) 2.12872 + 2.12872i 0.00521744 + 0.00521744i
\(409\) 342.570i 0.837579i 0.908083 + 0.418789i \(0.137545\pi\)
−0.908083 + 0.418789i \(0.862455\pi\)
\(410\) −39.4071 65.7787i −0.0961148 0.160436i
\(411\) 65.3205 0.158931
\(412\) −90.3212 + 90.3212i −0.219226 + 0.219226i
\(413\) 367.138 + 367.138i 0.888953 + 0.888953i
\(414\) 34.3800i 0.0830436i
\(415\) −279.001 + 167.146i −0.672292 + 0.402761i
\(416\) −53.3100 −0.128149
\(417\) −3.52591 + 3.52591i −0.00845541 + 0.00845541i
\(418\) 18.2410 + 18.2410i 0.0436386 + 0.0436386i
\(419\) 710.505i 1.69572i 0.530224 + 0.847858i \(0.322108\pi\)
−0.530224 + 0.847858i \(0.677892\pi\)
\(420\) −184.063 46.1474i −0.438245 0.109875i
\(421\) 32.6639 0.0775865 0.0387933 0.999247i \(-0.487649\pi\)
0.0387933 + 0.999247i \(0.487649\pi\)
\(422\) −27.1130 + 27.1130i −0.0642488 + 0.0642488i
\(423\) 229.591 + 229.591i 0.542769 + 0.542769i
\(424\) 176.226i 0.415627i
\(425\) −29.7222 + 9.00221i −0.0699346 + 0.0211817i
\(426\) −3.80866 −0.00894051
\(427\) 9.49370 9.49370i 0.0222335 0.0222335i
\(428\) 509.897 + 509.897i 1.19135 + 1.19135i
\(429\) 16.2917i 0.0379761i
\(430\) −26.5724 + 105.987i −0.0617963 + 0.246480i
\(431\) 363.111 0.842485 0.421242 0.906948i \(-0.361594\pi\)
0.421242 + 0.906948i \(0.361594\pi\)
\(432\) −205.377 + 205.377i −0.475410 + 0.475410i
\(433\) 91.1972 + 91.1972i 0.210617 + 0.210617i 0.804530 0.593913i \(-0.202417\pi\)
−0.593913 + 0.804530i \(0.702417\pi\)
\(434\) 32.1189i 0.0740067i
\(435\) −46.6154 77.8109i −0.107162 0.178876i
\(436\) −90.5817 −0.207756
\(437\) 347.920 347.920i 0.796155 0.796155i
\(438\) −22.7282 22.7282i −0.0518908 0.0518908i
\(439\) 236.126i 0.537871i −0.963158 0.268936i \(-0.913328\pi\)
0.963158 0.268936i \(-0.0866719\pi\)
\(440\) 30.0063 17.9764i 0.0681962 0.0408554i
\(441\) −166.466 −0.377475
\(442\) 0.999017 0.999017i 0.00226022 0.00226022i
\(443\) 521.493 + 521.493i 1.17719 + 1.17719i 0.980458 + 0.196728i \(0.0630315\pi\)
0.196728 + 0.980458i \(0.436969\pi\)
\(444\) 230.608i 0.519388i
\(445\) −433.687 108.732i −0.974578 0.244341i
\(446\) −47.7856 −0.107143
\(447\) 192.840 192.840i 0.431409 0.431409i
\(448\) −340.661 340.661i −0.760403 0.760403i
\(449\) 485.876i 1.08213i −0.840981 0.541065i \(-0.818021\pi\)
0.840981 0.541065i \(-0.181979\pi\)
\(450\) 14.8053 + 48.8821i 0.0329008 + 0.108627i
\(451\) 191.204 0.423955
\(452\) 196.192 196.192i 0.434053 0.434053i
\(453\) 89.4650 + 89.4650i 0.197495 + 0.197495i
\(454\) 12.5422i 0.0276259i
\(455\) −43.7044 + 174.319i −0.0960536 + 0.383119i
\(456\) 70.8581 0.155391
\(457\) 198.466 198.466i 0.434280 0.434280i −0.455802 0.890081i \(-0.650647\pi\)
0.890081 + 0.455802i \(0.150647\pi\)
\(458\) 48.4352 + 48.4352i 0.105754 + 0.105754i
\(459\) 23.8060i 0.0518650i
\(460\) −169.906 283.610i −0.369362 0.616543i
\(461\) 629.839 1.36625 0.683123 0.730304i \(-0.260621\pi\)
0.683123 + 0.730304i \(0.260621\pi\)
\(462\) −6.02583 + 6.02583i −0.0130429 + 0.0130429i
\(463\) 416.661 + 416.661i 0.899915 + 0.899915i 0.995428 0.0955133i \(-0.0304493\pi\)
−0.0955133 + 0.995428i \(0.530449\pi\)
\(464\) 239.305i 0.515744i
\(465\) 70.7759 42.4008i 0.152206 0.0911845i
\(466\) −34.6641 −0.0743864
\(467\) −55.8562 + 55.8562i −0.119606 + 0.119606i −0.764377 0.644770i \(-0.776953\pi\)
0.644770 + 0.764377i \(0.276953\pi\)
\(468\) 91.2286 + 91.2286i 0.194933 + 0.194933i
\(469\) 389.853i 0.831244i
\(470\) −54.5447 13.6752i −0.116053 0.0290961i
\(471\) −182.541 −0.387560
\(472\) −92.1161 + 92.1161i −0.195161 + 0.195161i
\(473\) −192.659 192.659i −0.407314 0.407314i
\(474\) 6.66964i 0.0140710i
\(475\) −344.851 + 644.506i −0.726002 + 1.35685i
\(476\) 41.0338 0.0862055
\(477\) −453.705 + 453.705i −0.951163 + 0.951163i
\(478\) −52.0420 52.0420i −0.108874 0.108874i
\(479\) 509.457i 1.06358i −0.846875 0.531792i \(-0.821519\pi\)
0.846875 0.531792i \(-0.178481\pi\)
\(480\) 17.4195 69.4792i 0.0362905 0.144748i
\(481\) 218.401 0.454055
\(482\) −83.4031 + 83.4031i −0.173035 + 0.173035i
\(483\) 114.934 + 114.934i 0.237959 + 0.237959i
\(484\) 43.2216i 0.0893008i
\(485\) −227.547 379.825i −0.469170 0.783143i
\(486\) −60.2775 −0.124028
\(487\) −203.040 + 203.040i −0.416919 + 0.416919i −0.884140 0.467221i \(-0.845255\pi\)
0.467221 + 0.884140i \(0.345255\pi\)
\(488\) 2.38200 + 2.38200i 0.00488115 + 0.00488115i
\(489\) 244.629i 0.500263i
\(490\) 24.7316 14.8163i 0.0504726 0.0302374i
\(491\) −421.861 −0.859188 −0.429594 0.903022i \(-0.641343\pi\)
−0.429594 + 0.903022i \(0.641343\pi\)
\(492\) 184.029 184.029i 0.374042 0.374042i
\(493\) 13.8694 + 13.8694i 0.0281326 + 0.0281326i
\(494\) 33.2541i 0.0673159i
\(495\) −123.534 30.9719i −0.249565 0.0625695i
\(496\) 217.669 0.438849
\(497\) −74.0780 + 74.0780i −0.149050 + 0.149050i
\(498\) 14.0578 + 14.0578i 0.0282285 + 0.0282285i
\(499\) 757.843i 1.51872i −0.650669 0.759362i \(-0.725511\pi\)
0.650669 0.759362i \(-0.274489\pi\)
\(500\) 363.709 + 330.073i 0.727418 + 0.660146i
\(501\) 207.639 0.414449
\(502\) 19.3436 19.3436i 0.0385330 0.0385330i
\(503\) −43.4433 43.4433i −0.0863684 0.0863684i 0.662603 0.748971i \(-0.269452\pi\)
−0.748971 + 0.662603i \(0.769452\pi\)
\(504\) 136.187i 0.270211i
\(505\) −75.2930 + 300.313i −0.149095 + 0.594680i
\(506\) −14.8472 −0.0293422
\(507\) 122.448 122.448i 0.241514 0.241514i
\(508\) 279.634 + 279.634i 0.550461 + 0.550461i
\(509\) 581.790i 1.14301i −0.820600 0.571503i \(-0.806361\pi\)
0.820600 0.571503i \(-0.193639\pi\)
\(510\) 0.975587 + 1.62846i 0.00191292 + 0.00319306i
\(511\) −884.122 −1.73018
\(512\) 224.047 224.047i 0.437592 0.437592i
\(513\) −396.213 396.213i −0.772346 0.772346i
\(514\) 58.8965i 0.114585i
\(515\) −139.435 + 83.5336i −0.270748 + 0.162201i
\(516\) −370.859 −0.718720
\(517\) 99.1498 99.1498i 0.191779 0.191779i
\(518\) −80.7800 80.7800i −0.155946 0.155946i
\(519\) 370.596i 0.714058i
\(520\) −43.7373 10.9656i −0.0841102 0.0210877i
\(521\) −481.328 −0.923855 −0.461927 0.886918i \(-0.652842\pi\)
−0.461927 + 0.886918i \(0.652842\pi\)
\(522\) 22.8100 22.8100i 0.0436974 0.0436974i
\(523\) −35.2579 35.2579i −0.0674148 0.0674148i 0.672596 0.740010i \(-0.265179\pi\)
−0.740010 + 0.672596i \(0.765179\pi\)
\(524\) 695.126i 1.32658i
\(525\) −212.910 113.920i −0.405543 0.216991i
\(526\) 36.1176 0.0686646
\(527\) −12.6154 + 12.6154i −0.0239382 + 0.0239382i
\(528\) 40.8369 + 40.8369i 0.0773427 + 0.0773427i
\(529\) 245.812i 0.464673i
\(530\) 27.0241 107.788i 0.0509888 0.203374i
\(531\) 474.318 0.893253
\(532\) 682.942 682.942i 1.28373 1.28373i
\(533\) −174.286 174.286i −0.326991 0.326991i
\(534\) 27.3304i 0.0511805i
\(535\) 471.579 + 787.164i 0.881456 + 1.47134i
\(536\) −97.8156 −0.182492
\(537\) −153.088 + 153.088i −0.285080 + 0.285080i
\(538\) 43.4564 + 43.4564i 0.0807741 + 0.0807741i
\(539\) 71.8891i 0.133375i
\(540\) −322.977 + 193.491i −0.598105 + 0.358316i
\(541\) −1005.22 −1.85808 −0.929039 0.369983i \(-0.879363\pi\)
−0.929039 + 0.369983i \(0.879363\pi\)
\(542\) 27.7504 27.7504i 0.0511999 0.0511999i
\(543\) 110.620 + 110.620i 0.203720 + 0.203720i
\(544\) 15.4892i 0.0284728i
\(545\) −111.806 28.0314i −0.205149 0.0514338i
\(546\) 10.9854 0.0201197
\(547\) −21.0865 + 21.0865i −0.0385494 + 0.0385494i −0.726119 0.687569i \(-0.758678\pi\)
0.687569 + 0.726119i \(0.258678\pi\)
\(548\) 157.961 + 157.961i 0.288250 + 0.288250i
\(549\) 12.2652i 0.0223410i
\(550\) 21.1099 6.39375i 0.0383817 0.0116250i
\(551\) 461.667 0.837872
\(552\) −28.8374 + 28.8374i −0.0522416 + 0.0522416i
\(553\) 129.724 + 129.724i 0.234582 + 0.234582i
\(554\) 82.3482i 0.148643i
\(555\) −71.3641 + 284.642i −0.128584 + 0.512869i
\(556\) −17.0530 −0.0306709
\(557\) 180.472 180.472i 0.324008 0.324008i −0.526295 0.850302i \(-0.676419\pi\)
0.850302 + 0.526295i \(0.176419\pi\)
\(558\) 20.7478 + 20.7478i 0.0371824 + 0.0371824i
\(559\) 351.227i 0.628313i
\(560\) −327.400 546.499i −0.584642 0.975891i
\(561\) −4.73356 −0.00843773
\(562\) 41.3098 41.3098i 0.0735049 0.0735049i
\(563\) −547.914 547.914i −0.973204 0.973204i 0.0264467 0.999650i \(-0.491581\pi\)
−0.999650 + 0.0264467i \(0.991581\pi\)
\(564\) 190.858i 0.338401i
\(565\) 302.875 181.448i 0.536062 0.321147i
\(566\) 55.5128 0.0980792
\(567\) −279.998 + 279.998i −0.493824 + 0.493824i
\(568\) −18.5864 18.5864i −0.0327226 0.0327226i
\(569\) 209.473i 0.368142i 0.982913 + 0.184071i \(0.0589277\pi\)
−0.982913 + 0.184071i \(0.941072\pi\)
\(570\) 43.3402 + 10.8660i 0.0760354 + 0.0190632i
\(571\) 155.583 0.272474 0.136237 0.990676i \(-0.456499\pi\)
0.136237 + 0.990676i \(0.456499\pi\)
\(572\) 39.3974 39.3974i 0.0688766 0.0688766i
\(573\) −20.9273 20.9273i −0.0365223 0.0365223i
\(574\) 128.927i 0.224611i
\(575\) −121.951 402.642i −0.212090 0.700246i
\(576\) −440.111 −0.764082
\(577\) 436.706 436.706i 0.756856 0.756856i −0.218893 0.975749i \(-0.570245\pi\)
0.975749 + 0.218893i \(0.0702446\pi\)
\(578\) 54.0713 + 54.0713i 0.0935490 + 0.0935490i
\(579\) 330.460i 0.570742i
\(580\) 75.4384 300.893i 0.130066 0.518782i
\(581\) 546.846 0.941214
\(582\) −19.1379 + 19.1379i −0.0328830 + 0.0328830i
\(583\) 195.934 + 195.934i 0.336079 + 0.336079i
\(584\) 221.829i 0.379845i
\(585\) 84.3728 + 140.836i 0.144227 + 0.240745i
\(586\) −102.392 −0.174730
\(587\) −160.160 + 160.160i −0.272844 + 0.272844i −0.830244 0.557400i \(-0.811799\pi\)
0.557400 + 0.830244i \(0.311799\pi\)
\(588\) 69.1914 + 69.1914i 0.117672 + 0.117672i
\(589\) 419.927i 0.712949i
\(590\) −70.4685 + 42.2167i −0.119438 + 0.0715536i
\(591\) 277.709 0.469896
\(592\) −547.444 + 547.444i −0.924736 + 0.924736i
\(593\) −501.168 501.168i −0.845140 0.845140i 0.144382 0.989522i \(-0.453881\pi\)
−0.989522 + 0.144382i \(0.953881\pi\)
\(594\) 16.9080i 0.0284647i
\(595\) 50.6485 + 12.6983i 0.0851235 + 0.0213417i
\(596\) 932.668 1.56488
\(597\) −45.9579 + 45.9579i −0.0769815 + 0.0769815i
\(598\) 13.5335 + 13.5335i 0.0226313 + 0.0226313i
\(599\) 233.877i 0.390445i 0.980759 + 0.195223i \(0.0625429\pi\)
−0.980759 + 0.195223i \(0.937457\pi\)
\(600\) 28.5830 53.4199i 0.0476383 0.0890332i
\(601\) −523.655 −0.871306 −0.435653 0.900115i \(-0.643483\pi\)
−0.435653 + 0.900115i \(0.643483\pi\)
\(602\) 129.909 129.909i 0.215795 0.215795i
\(603\) 251.832 + 251.832i 0.417633 + 0.417633i
\(604\) 432.697i 0.716386i
\(605\) −13.3753 + 53.3489i −0.0221080 + 0.0881799i
\(606\) 18.9254 0.0312300
\(607\) 303.496 303.496i 0.499993 0.499993i −0.411442 0.911436i \(-0.634975\pi\)
0.911436 + 0.411442i \(0.134975\pi\)
\(608\) 257.793 + 257.793i 0.424002 + 0.424002i
\(609\) 152.510i 0.250427i
\(610\) 1.09167 + 1.82222i 0.00178962 + 0.00298725i
\(611\) −180.755 −0.295834
\(612\) 26.5065 26.5065i 0.0433112 0.0433112i
\(613\) 290.162 + 290.162i 0.473348 + 0.473348i 0.902996 0.429648i \(-0.141362\pi\)
−0.429648 + 0.902996i \(0.641362\pi\)
\(614\) 33.6605i 0.0548217i
\(615\) 284.098 170.199i 0.461948 0.276746i
\(616\) −58.8127 −0.0954752
\(617\) −410.213 + 410.213i −0.664850 + 0.664850i −0.956519 0.291669i \(-0.905789\pi\)
0.291669 + 0.956519i \(0.405789\pi\)
\(618\) 7.02560 + 7.02560i 0.0113683 + 0.0113683i
\(619\) 224.045i 0.361946i 0.983488 + 0.180973i \(0.0579247\pi\)
−0.983488 + 0.180973i \(0.942075\pi\)
\(620\) 273.689 + 68.6179i 0.441434 + 0.110674i
\(621\) 322.496 0.519318
\(622\) −37.3563 + 37.3563i −0.0600584 + 0.0600584i
\(623\) 531.573 + 531.573i 0.853248 + 0.853248i
\(624\) 74.4476i 0.119307i
\(625\) 346.786 + 519.966i 0.554857 + 0.831946i
\(626\) 48.2602 0.0770930
\(627\) −78.7826 + 78.7826i −0.125650 + 0.125650i
\(628\) −441.429 441.429i −0.702913 0.702913i
\(629\) 63.4563i 0.100884i
\(630\) 20.8841 83.2982i 0.0331493 0.132219i
\(631\) 228.193 0.361636 0.180818 0.983517i \(-0.442125\pi\)
0.180818 + 0.983517i \(0.442125\pi\)
\(632\) −32.5481 + 32.5481i −0.0515002 + 0.0515002i
\(633\) −117.101 117.101i −0.184993 0.184993i
\(634\) 29.8370i 0.0470615i
\(635\) 258.620 + 431.691i 0.407275 + 0.679828i
\(636\) 377.163 0.593023
\(637\) 65.5285 65.5285i 0.102871 0.102871i
\(638\) −9.85061 9.85061i −0.0154398 0.0154398i
\(639\) 95.7039i 0.149771i
\(640\) 279.314 167.333i 0.436427 0.261457i
\(641\) −376.921 −0.588020 −0.294010 0.955802i \(-0.594990\pi\)
−0.294010 + 0.955802i \(0.594990\pi\)
\(642\) 39.6622 39.6622i 0.0617791 0.0617791i
\(643\) −2.85853 2.85853i −0.00444562 0.00444562i 0.704880 0.709326i \(-0.251001\pi\)
−0.709326 + 0.704880i \(0.751001\pi\)
\(644\) 555.878i 0.863165i
\(645\) −457.756 114.766i −0.709699 0.177932i
\(646\) −9.66198 −0.0149566
\(647\) 761.351 761.351i 1.17674 1.17674i 0.196171 0.980570i \(-0.437149\pi\)
0.980570 0.196171i \(-0.0628507\pi\)
\(648\) −70.2525 70.2525i −0.108414 0.108414i
\(649\) 204.836i 0.315618i
\(650\) −25.0702 13.4141i −0.0385696 0.0206371i
\(651\) −138.721 −0.213090
\(652\) −591.573 + 591.573i −0.907321 + 0.907321i
\(653\) −154.965 154.965i −0.237312 0.237312i 0.578424 0.815736i \(-0.303668\pi\)
−0.815736 + 0.578424i \(0.803668\pi\)
\(654\) 7.04586i 0.0107735i
\(655\) 215.114 858.002i 0.328418 1.30993i
\(656\) 873.735 1.33191
\(657\) −571.114 + 571.114i −0.869275 + 0.869275i
\(658\) 66.8558 + 66.8558i 0.101605 + 0.101605i
\(659\) 1011.53i 1.53494i −0.641084 0.767471i \(-0.721515\pi\)
0.641084 0.767471i \(-0.278485\pi\)
\(660\) 38.4734 + 64.2203i 0.0582931 + 0.0973035i
\(661\) −1052.50 −1.59229 −0.796144 0.605107i \(-0.793130\pi\)
−0.796144 + 0.605107i \(0.793130\pi\)
\(662\) 90.0493 90.0493i 0.136026 0.136026i
\(663\) 4.31475 + 4.31475i 0.00650792 + 0.00650792i
\(664\) 137.205i 0.206635i
\(665\) 1054.31 631.619i 1.58542 0.949803i
\(666\) −104.362 −0.156700
\(667\) −187.886 + 187.886i −0.281688 + 0.281688i
\(668\) 502.123 + 502.123i 0.751681 + 0.751681i
\(669\) 206.386i 0.308499i
\(670\) −59.8286 14.9999i −0.0892965 0.0223880i
\(671\) −5.29679 −0.00789387
\(672\) −85.1611 + 85.1611i −0.126728 + 0.126728i
\(673\) −766.388 766.388i −1.13876 1.13876i −0.988672 0.150091i \(-0.952043\pi\)
−0.150091 0.988672i \(-0.547957\pi\)
\(674\) 71.2036i 0.105643i
\(675\) −458.531 + 138.879i −0.679305 + 0.205747i
\(676\) 592.217 0.876061
\(677\) −533.292 + 533.292i −0.787728 + 0.787728i −0.981121 0.193393i \(-0.938051\pi\)
0.193393 + 0.981121i \(0.438051\pi\)
\(678\) −15.2607 15.2607i −0.0225084 0.0225084i
\(679\) 744.460i 1.09641i
\(680\) −3.18605 + 12.7079i −0.00468537 + 0.0186880i
\(681\) −54.1696 −0.0795441
\(682\) 8.96000 8.96000i 0.0131378 0.0131378i
\(683\) 457.630 + 457.630i 0.670030 + 0.670030i 0.957723 0.287693i \(-0.0928882\pi\)
−0.287693 + 0.957723i \(0.592888\pi\)
\(684\) 882.316i 1.28994i
\(685\) 146.091 + 243.856i 0.213271 + 0.355994i
\(686\) 61.1079 0.0890786
\(687\) −209.191 + 209.191i −0.304500 + 0.304500i
\(688\) −880.387 880.387i −1.27963 1.27963i
\(689\) 357.197i 0.518428i
\(690\) −22.0605 + 13.2161i −0.0319717 + 0.0191538i
\(691\) 190.118 0.275135 0.137567 0.990492i \(-0.456072\pi\)
0.137567 + 0.990492i \(0.456072\pi\)
\(692\) −896.194 + 896.194i −1.29508 + 1.29508i
\(693\) 151.417 + 151.417i 0.218495 + 0.218495i
\(694\) 43.9974i 0.0633968i
\(695\) −21.0487 5.27723i −0.0302860 0.00759314i
\(696\) −38.2653 −0.0549789
\(697\) −50.6389 + 50.6389i −0.0726527 + 0.0726527i
\(698\) −97.4148 97.4148i −0.139563 0.139563i
\(699\) 149.714i 0.214183i
\(700\) −239.382 790.357i −0.341975 1.12908i
\(701\) 268.036 0.382363 0.191181 0.981555i \(-0.438768\pi\)
0.191181 + 0.981555i \(0.438768\pi\)
\(702\) 15.4121 15.4121i 0.0219545 0.0219545i
\(703\) −1056.13 1056.13i −1.50232 1.50232i
\(704\) 190.064i 0.269977i
\(705\) 59.0630 235.578i 0.0837773 0.334154i
\(706\) −109.214 −0.154694
\(707\) 368.096 368.096i 0.520645 0.520645i
\(708\) −197.149 197.149i −0.278459 0.278459i
\(709\) 818.058i 1.15382i 0.816808 + 0.576910i \(0.195742\pi\)
−0.816808 + 0.576910i \(0.804258\pi\)
\(710\) −8.51813 14.2186i −0.0119974 0.0200261i
\(711\) 167.595 0.235717
\(712\) −133.374 + 133.374i −0.187322 + 0.187322i
\(713\) −170.899 170.899i −0.239690 0.239690i
\(714\) 3.19180i 0.00447031i
\(715\) 60.8206 36.4367i 0.0850638 0.0509605i
\(716\) −740.410 −1.03409
\(717\) 224.769 224.769i 0.313485 0.313485i
\(718\) −4.84814 4.84814i −0.00675229 0.00675229i
\(719\) 977.894i 1.36007i 0.733177 + 0.680037i \(0.238037\pi\)
−0.733177 + 0.680037i \(0.761963\pi\)
\(720\) −564.510 141.531i −0.784041 0.196571i
\(721\) 273.294 0.379049
\(722\) −92.9031 + 92.9031i −0.128675 + 0.128675i
\(723\) −360.218 360.218i −0.498226 0.498226i
\(724\) 535.013i 0.738968i
\(725\) 186.229 348.051i 0.256867 0.480070i
\(726\) 3.36197 0.00463082
\(727\) 814.957 814.957i 1.12099 1.12099i 0.129392 0.991593i \(-0.458697\pi\)
0.991593 0.129392i \(-0.0413027\pi\)
\(728\) 53.6091 + 53.6091i 0.0736389 + 0.0736389i
\(729\) 163.576i 0.224384i
\(730\) 34.0173 135.681i 0.0465991 0.185865i
\(731\) 102.049 0.139602
\(732\) −5.09802 + 5.09802i −0.00696451 + 0.00696451i
\(733\) −94.7594 94.7594i −0.129276 0.129276i 0.639508 0.768784i \(-0.279138\pi\)
−0.768784 + 0.639508i \(0.779138\pi\)
\(734\) 52.2951i 0.0712467i
\(735\) 63.9917 + 106.816i 0.0870635 + 0.145327i
\(736\) −209.830 −0.285095
\(737\) 108.755 108.755i 0.147564 0.147564i
\(738\) 83.2825 + 83.2825i 0.112849 + 0.112849i
\(739\) 344.985i 0.466827i −0.972378 0.233413i \(-0.925010\pi\)
0.972378 0.233413i \(-0.0749895\pi\)
\(740\) −860.912 + 515.760i −1.16339 + 0.696973i
\(741\) 143.624 0.193825
\(742\) −132.117 + 132.117i −0.178055 + 0.178055i
\(743\) −409.342 409.342i −0.550931 0.550931i 0.375778 0.926710i \(-0.377375\pi\)
−0.926710 + 0.375778i \(0.877375\pi\)
\(744\) 34.8057i 0.0467818i
\(745\) 1151.20 + 288.623i 1.54524 + 0.387414i
\(746\) 89.8656 0.120463
\(747\) 353.244 353.244i 0.472884 0.472884i
\(748\) −11.4469 11.4469i −0.0153034 0.0153034i
\(749\) 1542.85i 2.05988i
\(750\) 25.6746 28.2910i 0.0342328 0.0377213i
\(751\) 553.227 0.736654 0.368327 0.929696i \(-0.379931\pi\)
0.368327 + 0.929696i \(0.379931\pi\)
\(752\) 453.080 453.080i 0.602501 0.602501i
\(753\) 83.5448 + 83.5448i 0.110949 + 0.110949i
\(754\) 17.9581i 0.0238171i
\(755\) −133.902 + 534.083i −0.177354 + 0.707394i
\(756\) 633.038 0.837351
\(757\) 61.6367 61.6367i 0.0814224 0.0814224i −0.665223 0.746645i \(-0.731663\pi\)
0.746645 + 0.665223i \(0.231663\pi\)
\(758\) −131.477 131.477i −0.173452 0.173452i
\(759\) 64.1248i 0.0844859i
\(760\) 158.475 + 264.529i 0.208520 + 0.348064i
\(761\) 23.5586 0.0309574 0.0154787 0.999880i \(-0.495073\pi\)
0.0154787 + 0.999880i \(0.495073\pi\)
\(762\) 21.7512 21.7512i 0.0285449 0.0285449i
\(763\) 137.041 + 137.041i 0.179609 + 0.179609i
\(764\) 101.215i 0.132480i
\(765\) 40.9199 24.5145i 0.0534901 0.0320451i
\(766\) −96.6418 −0.126164
\(767\) −186.713 + 186.713i −0.243432 + 0.243432i
\(768\) 172.152 + 172.152i 0.224157 + 0.224157i
\(769\) 879.915i 1.14423i 0.820172 + 0.572117i \(0.193878\pi\)
−0.820172 + 0.572117i \(0.806122\pi\)
\(770\) −35.9726 9.01888i −0.0467177 0.0117128i
\(771\) −254.374 −0.329927
\(772\) −799.134 + 799.134i −1.03515 + 1.03515i
\(773\) −756.338 756.338i −0.978445 0.978445i 0.0213279 0.999773i \(-0.493211\pi\)
−0.999773 + 0.0213279i \(0.993211\pi\)
\(774\) 167.833i 0.216839i
\(775\) 316.583 + 169.392i 0.408494 + 0.218570i
\(776\) −186.788 −0.240706
\(777\) 348.888 348.888i 0.449020 0.449020i
\(778\) 7.68131 + 7.68131i 0.00987314 + 0.00987314i
\(779\) 1685.61i 2.16381i
\(780\) 23.4688 93.6076i 0.0300882 0.120010i
\(781\) 41.3301 0.0529195
\(782\) 3.93216 3.93216i 0.00502834 0.00502834i
\(783\) 213.966 + 213.966i 0.273264 + 0.273264i
\(784\) 328.508i 0.419016i
\(785\) −408.256 681.465i −0.520071 0.868108i
\(786\) −54.0701 −0.0687915
\(787\) 413.849 413.849i 0.525857 0.525857i −0.393477 0.919334i \(-0.628728\pi\)
0.919334 + 0.393477i \(0.128728\pi\)
\(788\) 671.568 + 671.568i 0.852244 + 0.852244i
\(789\) 155.992i 0.197708i
\(790\) −24.8992 + 14.9168i −0.0315180 + 0.0188820i
\(791\) −593.639 −0.750492
\(792\) −37.9911 + 37.9911i −0.0479685 + 0.0479685i
\(793\) 4.82814 + 4.82814i 0.00608845 + 0.00608845i
\(794\) 15.7578i 0.0198461i
\(795\) 465.536 + 116.717i 0.585580 + 0.146814i
\(796\) −222.275 −0.279240
\(797\) −626.179 + 626.179i −0.785670 + 0.785670i −0.980781 0.195111i \(-0.937493\pi\)
0.195111 + 0.980781i \(0.437493\pi\)
\(798\) −53.1224 53.1224i −0.0665694 0.0665694i
\(799\) 52.5183i 0.0657300i
\(800\) 298.340 90.3607i 0.372925 0.112951i
\(801\) 686.758 0.857375
\(802\) 26.7333 26.7333i 0.0333333 0.0333333i
\(803\) 246.638 + 246.638i 0.307145 + 0.307145i
\(804\) 209.347i 0.260382i
\(805\) −172.022 + 686.126i −0.213692 + 0.852331i
\(806\) −16.3345 −0.0202661
\(807\) −187.688 + 187.688i −0.232575 + 0.232575i
\(808\) 92.3566 + 92.3566i 0.114303 + 0.114303i
\(809\) 17.3326i 0.0214247i −0.999943 0.0107123i \(-0.996590\pi\)
0.999943 0.0107123i \(-0.00340991\pi\)
\(810\) −32.1966 53.7429i −0.0397489 0.0663493i
\(811\) −183.396 −0.226135 −0.113068 0.993587i \(-0.536068\pi\)
−0.113068 + 0.993587i \(0.536068\pi\)
\(812\) −368.807 + 368.807i −0.454196 + 0.454196i
\(813\) 119.854 + 119.854i 0.147422 + 0.147422i
\(814\) 45.0693i 0.0553677i
\(815\) −913.253 + 547.117i −1.12056 + 0.671309i
\(816\) −21.6307 −0.0265083
\(817\) 1698.44 1698.44i 2.07888 2.07888i
\(818\) 64.4382 + 64.4382i 0.0787753 + 0.0787753i
\(819\) 276.040i 0.337045i
\(820\) 1098.60 + 275.436i 1.33976 + 0.335897i
\(821\) −477.313 −0.581380 −0.290690 0.956817i \(-0.593885\pi\)
−0.290690 + 0.956817i \(0.593885\pi\)
\(822\) 12.2870 12.2870i 0.0149476 0.0149476i
\(823\) 2.56546 + 2.56546i 0.00311720 + 0.00311720i 0.708664 0.705546i \(-0.249298\pi\)
−0.705546 + 0.708664i \(0.749298\pi\)
\(824\) 68.5705i 0.0832167i
\(825\) 27.6146 + 91.1738i 0.0334722 + 0.110514i
\(826\) 138.119 0.167214
\(827\) −909.533 + 909.533i −1.09980 + 1.09980i −0.105365 + 0.994434i \(0.533601\pi\)
−0.994434 + 0.105365i \(0.966399\pi\)
\(828\) 359.079 + 359.079i 0.433670 + 0.433670i
\(829\) 790.117i 0.953096i −0.879148 0.476548i \(-0.841888\pi\)
0.879148 0.476548i \(-0.158112\pi\)
\(830\) −21.0403 + 83.9213i −0.0253498 + 0.101110i
\(831\) −355.662 −0.427992
\(832\) 173.247 173.247i 0.208230 0.208230i
\(833\) −19.0393 19.0393i −0.0228563 0.0228563i
\(834\) 1.32646i 0.00159048i
\(835\) 464.389 + 775.162i 0.556154 + 0.928338i
\(836\) −381.032 −0.455780
\(837\) −194.621 + 194.621i −0.232522 + 0.232522i
\(838\) 133.648 + 133.648i 0.159484 + 0.159484i
\(839\) 60.7879i 0.0724528i −0.999344 0.0362264i \(-0.988466\pi\)
0.999344 0.0362264i \(-0.0115338\pi\)
\(840\) −87.3862 + 52.3518i −0.104031 + 0.0623236i
\(841\) 591.687 0.703552
\(842\) 6.14416 6.14416i 0.00729711 0.00729711i
\(843\) 178.417 + 178.417i 0.211645 + 0.211645i
\(844\) 566.358i 0.671040i
\(845\) 730.980 + 183.268i 0.865065 + 0.216885i
\(846\) 86.3733 0.102096
\(847\) 65.3901 65.3901i 0.0772020 0.0772020i
\(848\) 895.351 + 895.351i 1.05584 + 1.05584i
\(849\) 239.760i 0.282403i
\(850\) −3.89748 + 7.28416i −0.00458527 + 0.00856960i
\(851\) 859.632 1.01014
\(852\) 39.7792 39.7792i 0.0466892 0.0466892i
\(853\) 359.951 + 359.951i 0.421982 + 0.421982i 0.885886 0.463904i \(-0.153552\pi\)
−0.463904 + 0.885886i \(0.653552\pi\)
\(854\) 3.57158i 0.00418217i
\(855\) 273.041 1089.05i 0.319347 1.27374i
\(856\) 387.107 0.452227
\(857\) 527.644 527.644i 0.615687 0.615687i −0.328735 0.944422i \(-0.606622\pi\)
0.944422 + 0.328735i \(0.106622\pi\)
\(858\) −3.06451 3.06451i −0.00357169 0.00357169i
\(859\) 670.563i 0.780633i −0.920681 0.390316i \(-0.872366\pi\)
0.920681 0.390316i \(-0.127634\pi\)
\(860\) −829.434 1384.50i −0.964458 1.60988i
\(861\) −556.835 −0.646730
\(862\) 68.3021 68.3021i 0.0792367 0.0792367i
\(863\) −579.728 579.728i −0.671759 0.671759i 0.286363 0.958121i \(-0.407554\pi\)
−0.958121 + 0.286363i \(0.907554\pi\)
\(864\) 238.956i 0.276569i
\(865\) −1383.52 + 828.845i −1.59944 + 0.958203i
\(866\) 34.3088 0.0396176
\(867\) −233.534 + 233.534i −0.269359 + 0.269359i
\(868\) −335.463 335.463i −0.386478 0.386478i
\(869\) 72.3764i 0.0832870i
\(870\) −23.4049 5.86795i −0.0269022 0.00674477i
\(871\) −198.265 −0.227629
\(872\) −34.3842 + 34.3842i −0.0394314 + 0.0394314i
\(873\) 480.897 + 480.897i 0.550855 + 0.550855i
\(874\) 130.889i 0.149759i
\(875\) −50.8880 1049.63i −0.0581577 1.19957i
\(876\) 474.765 0.541969
\(877\) −528.672 + 528.672i −0.602819 + 0.602819i −0.941060 0.338241i \(-0.890168\pi\)
0.338241 + 0.941060i \(0.390168\pi\)
\(878\) −44.4158 44.4158i −0.0505875 0.0505875i
\(879\) 442.229i 0.503104i
\(880\) −61.1207 + 243.786i −0.0694554 + 0.277029i
\(881\) −275.976 −0.313253 −0.156627 0.987658i \(-0.550062\pi\)
−0.156627 + 0.987658i \(0.550062\pi\)
\(882\) −31.3127 + 31.3127i −0.0355020 + 0.0355020i
\(883\) 266.103 + 266.103i 0.301362 + 0.301362i 0.841547 0.540185i \(-0.181646\pi\)
−0.540185 + 0.841547i \(0.681646\pi\)
\(884\) 20.8683i 0.0236066i
\(885\) −182.334 304.353i −0.206027 0.343902i
\(886\) 196.188 0.221432
\(887\) 289.867 289.867i 0.326795 0.326795i −0.524572 0.851366i \(-0.675775\pi\)
0.851366 + 0.524572i \(0.175775\pi\)
\(888\) 87.5373 + 87.5373i 0.0985780 + 0.0985780i
\(889\) 846.118i 0.951764i
\(890\) −102.030 + 61.1249i −0.114641 + 0.0686797i
\(891\) 156.218 0.175329
\(892\) 499.092 499.092i 0.559520 0.559520i
\(893\) 874.082 + 874.082i 0.978816 + 0.978816i
\(894\) 72.5472i 0.0811490i
\(895\) −913.896 229.127i −1.02111 0.256008i
\(896\) −547.458 −0.611002
\(897\) −58.4512 + 58.4512i −0.0651630 + 0.0651630i
\(898\) −91.3946 91.3946i −0.101776 0.101776i
\(899\) 226.772i 0.252249i
\(900\) −665.178 355.912i −0.739086 0.395457i
\(901\) −103.784 −0.115187
\(902\) 35.9659 35.9659i 0.0398735 0.0398735i
\(903\) 561.074 + 561.074i 0.621345 + 0.621345i
\(904\) 148.946i 0.164763i
\(905\) −165.565 + 660.372i −0.182945 + 0.729693i
\(906\) 33.6572 0.0371492
\(907\) −133.317 + 133.317i −0.146987 + 0.146987i −0.776771 0.629784i \(-0.783144\pi\)
0.629784 + 0.776771i \(0.283144\pi\)
\(908\) −130.995 130.995i −0.144268 0.144268i
\(909\) 475.556i 0.523164i
\(910\) 24.5690 + 41.0108i 0.0269989 + 0.0450668i
\(911\) −1504.93 −1.65195 −0.825976 0.563706i \(-0.809375\pi\)
−0.825976 + 0.563706i \(0.809375\pi\)
\(912\) −360.009 + 360.009i −0.394747 + 0.394747i
\(913\) −152.550 152.550i −0.167086 0.167086i
\(914\) 74.6638i 0.0816891i
\(915\) −7.87017 + 4.71491i −0.00860128 + 0.00515290i
\(916\) −1011.75 −1.10453
\(917\) −1051.66 + 1051.66i −1.14685 + 1.14685i
\(918\) −4.47797 4.47797i −0.00487797 0.00487797i
\(919\) 749.075i 0.815098i 0.913183 + 0.407549i \(0.133616\pi\)
−0.913183 + 0.407549i \(0.866384\pi\)
\(920\) −172.151 43.1609i −0.187121 0.0469140i
\(921\) −145.380 −0.157850
\(922\) 118.474 118.474i 0.128497 0.128497i
\(923\) −37.6733 37.6733i −0.0408162 0.0408162i
\(924\) 125.872i 0.136226i
\(925\) −1222.24 + 370.190i −1.32134 + 0.400205i
\(926\) 156.750 0.169276
\(927\) 176.539 176.539i 0.190441 0.190441i
\(928\) −139.215 139.215i −0.150017 0.150017i
\(929\) 1130.03i 1.21640i 0.793785 + 0.608199i \(0.208108\pi\)
−0.793785 + 0.608199i \(0.791892\pi\)
\(930\) 5.33742 21.2888i 0.00573916 0.0228912i
\(931\) −633.758 −0.680729
\(932\) 362.045 362.045i 0.388461 0.388461i
\(933\) −161.342 161.342i −0.172928 0.172928i
\(934\) 21.0134i 0.0224983i
\(935\) −10.5867 17.6714i −0.0113227 0.0188999i
\(936\) 69.2594 0.0739951
\(937\) 824.469 824.469i 0.879903 0.879903i −0.113621 0.993524i \(-0.536245\pi\)
0.993524 + 0.113621i \(0.0362450\pi\)
\(938\) 73.3324 + 73.3324i 0.0781795 + 0.0781795i
\(939\) 208.436i 0.221976i
\(940\) 712.516 426.858i 0.757995 0.454104i
\(941\) 417.653 0.443840 0.221920 0.975065i \(-0.428768\pi\)
0.221920 + 0.975065i \(0.428768\pi\)
\(942\) −34.3364 + 34.3364i −0.0364505 + 0.0364505i
\(943\) −685.997 685.997i −0.727463 0.727463i
\(944\) 936.029i 0.991556i
\(945\) 781.365 + 195.900i 0.826841 + 0.207301i
\(946\) −72.4794 −0.0766168
\(947\) 496.138 496.138i 0.523905 0.523905i −0.394843 0.918748i \(-0.629201\pi\)
0.918748 + 0.394843i \(0.129201\pi\)
\(948\) −69.6604 69.6604i −0.0734814 0.0734814i
\(949\) 449.631i 0.473795i
\(950\) 56.3658 + 186.101i 0.0593324 + 0.195895i
\(951\) 128.866 0.135506
\(952\) 15.5761 15.5761i 0.0163615 0.0163615i
\(953\) 354.080 + 354.080i 0.371543 + 0.371543i 0.868039 0.496496i \(-0.165380\pi\)
−0.496496 + 0.868039i \(0.665380\pi\)
\(954\) 170.686i 0.178916i
\(955\) 31.3219 124.930i 0.0327978 0.130817i
\(956\) 1087.09 1.13713
\(957\) 42.5447 42.5447i 0.0444564 0.0444564i
\(958\) −95.8301 95.8301i −0.100031 0.100031i
\(959\) 477.960i 0.498394i
\(960\) 169.184 + 282.404i 0.176233 + 0.294171i
\(961\) −754.731 −0.785360
\(962\) 41.0817 41.0817i 0.0427044 0.0427044i
\(963\) −996.631 996.631i −1.03492 1.03492i
\(964\) 1742.19i 1.80725i
\(965\) −1233.68 + 739.079i −1.27842 + 0.765885i
\(966\) 43.2388 0.0447606
\(967\) 530.697 530.697i 0.548808 0.548808i −0.377288 0.926096i \(-0.623143\pi\)
0.926096 + 0.377288i \(0.123143\pi\)
\(968\) 16.4066 + 16.4066i 0.0169490 + 0.0169490i
\(969\) 41.7300i 0.0430650i
\(970\) −114.248 28.6437i −0.117782 0.0295296i
\(971\) 178.795 0.184135 0.0920676 0.995753i \(-0.470652\pi\)
0.0920676 + 0.995753i \(0.470652\pi\)
\(972\) 629.563 629.563i 0.647698 0.647698i
\(973\) 25.7996 + 25.7996i 0.0265155 + 0.0265155i
\(974\) 76.3845i 0.0784235i
\(975\) 57.9356 108.278i 0.0594211 0.111055i
\(976\) −24.2045 −0.0247997
\(977\) 911.070 911.070i 0.932518 0.932518i −0.0653447 0.997863i \(-0.520815\pi\)
0.997863 + 0.0653447i \(0.0208147\pi\)
\(978\) 46.0153 + 46.0153i 0.0470504 + 0.0470504i
\(979\) 296.579i 0.302941i
\(980\) −103.559 + 413.054i −0.105672 + 0.421484i
\(981\) 177.048 0.180477
\(982\) −79.3531 + 79.3531i −0.0808077 + 0.0808077i
\(983\) 735.682 + 735.682i 0.748405 + 0.748405i 0.974180 0.225775i \(-0.0724913\pi\)
−0.225775 + 0.974180i \(0.572491\pi\)
\(984\) 139.712i 0.141983i
\(985\) 621.100 + 1036.75i 0.630558 + 1.05253i
\(986\) 5.21773 0.00529181
\(987\) −288.750 + 288.750i −0.292553 + 0.292553i
\(988\) 347.319 + 347.319i 0.351537 + 0.351537i
\(989\) 1382.44i 1.39782i
\(990\) −29.0630 + 17.4112i −0.0293566 + 0.0175871i
\(991\) −92.7479 −0.0935903 −0.0467951 0.998905i \(-0.514901\pi\)
−0.0467951 + 0.998905i \(0.514901\pi\)
\(992\) 126.629 126.629i 0.127650 0.127650i
\(993\) 388.923 + 388.923i 0.391664 + 0.391664i
\(994\) 27.8685i 0.0280367i
\(995\) −274.357 68.7853i −0.275735 0.0691310i
\(996\) −293.651 −0.294830
\(997\) 91.8082 91.8082i 0.0920844 0.0920844i −0.659564 0.751648i \(-0.729259\pi\)
0.751648 + 0.659564i \(0.229259\pi\)
\(998\) −142.552 142.552i −0.142838 0.142838i
\(999\) 978.954i 0.979934i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.f.a.23.6 yes 20
3.2 odd 2 495.3.j.a.298.5 20
5.2 odd 4 inner 55.3.f.a.12.6 20
5.3 odd 4 275.3.f.b.232.5 20
5.4 even 2 275.3.f.b.243.5 20
15.2 even 4 495.3.j.a.397.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.f.a.12.6 20 5.2 odd 4 inner
55.3.f.a.23.6 yes 20 1.1 even 1 trivial
275.3.f.b.232.5 20 5.3 odd 4
275.3.f.b.243.5 20 5.4 even 2
495.3.j.a.298.5 20 3.2 odd 2
495.3.j.a.397.5 20 15.2 even 4