Properties

Label 5491.2.a.s
Level $5491$
Weight $2$
Character orbit 5491.a
Self dual yes
Analytic conductor $43.846$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5491,2,Mod(1,5491)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5491.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5491, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5491 = 17^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5491.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,1,-3,7,-7,2,-1,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.8458557499\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 10x^{5} + 9x^{4} + 26x^{3} - 19x^{2} - 12x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 323)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{5} q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{6} - 1) q^{5} + (\beta_{4} - \beta_1) q^{6} + \beta_{3} q^{7} + (\beta_{3} + \beta_1) q^{8} + ( - \beta_{6} - \beta_1 + 1) q^{9}+ \cdots + ( - \beta_{4} + 3 \beta_{2} - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} - 3 q^{3} + 7 q^{4} - 7 q^{5} + 2 q^{6} - q^{7} + 6 q^{9} + 3 q^{10} - 2 q^{11} - 14 q^{12} + 20 q^{13} - 4 q^{14} - 4 q^{15} + 3 q^{16} - 16 q^{18} - 7 q^{19} - 3 q^{20} + 4 q^{21} + 3 q^{23}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 10x^{5} + 9x^{4} + 26x^{3} - 19x^{2} - 12x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 6\nu^{2} + 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} - \nu^{5} - 10\nu^{4} + 7\nu^{3} + 26\nu^{2} - 7\nu - 10 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - 10\nu^{4} + 26\nu^{2} + \nu - 11 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 6\beta_{2} + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{6} - 2\beta_{5} + 7\beta_{3} + 27\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} + 10\beta_{4} + 34\beta_{2} - \beta _1 + 73 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.45698
−1.73498
−0.757869
0.590711
0.815735
2.12468
2.41870
−2.45698 −2.71826 4.03673 −0.0680537 6.67869 −2.54721 −5.00419 4.38892 0.167206
1.2 −1.73498 1.88181 1.01016 −3.19376 −3.26491 3.45233 1.71735 0.541222 5.54112
1.3 −0.757869 −2.16604 −1.42563 −1.06616 1.64157 3.35405 2.59618 1.69171 0.808008
1.4 0.590711 2.43336 −1.65106 1.51197 1.43741 −2.74743 −2.15672 2.92126 0.893139
1.5 0.815735 −0.448052 −1.33458 −3.98351 −0.365491 −3.53587 −2.72013 −2.79925 −3.24949
1.6 2.12468 −2.27405 2.51428 2.29600 −4.83164 −1.03200 1.09268 2.17132 4.87828
1.7 2.41870 0.291220 3.85010 −2.49649 0.704373 2.05614 4.47483 −2.91519 −6.03826
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(17\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5491.2.a.s 7
17.b even 2 1 323.2.a.f 7
51.c odd 2 1 2907.2.a.p 7
68.d odd 2 1 5168.2.a.ba 7
85.c even 2 1 8075.2.a.o 7
323.c odd 2 1 6137.2.a.g 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
323.2.a.f 7 17.b even 2 1
2907.2.a.p 7 51.c odd 2 1
5168.2.a.ba 7 68.d odd 2 1
5491.2.a.s 7 1.a even 1 1 trivial
6137.2.a.g 7 323.c odd 2 1
8075.2.a.o 7 85.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5491))\):

\( T_{2}^{7} - T_{2}^{6} - 10T_{2}^{5} + 9T_{2}^{4} + 26T_{2}^{3} - 19T_{2}^{2} - 12T_{2} + 8 \) Copy content Toggle raw display
\( T_{3}^{7} + 3T_{3}^{6} - 9T_{3}^{5} - 29T_{3}^{4} + 17T_{3}^{3} + 68T_{3}^{2} + 7T_{3} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - T^{6} - 10 T^{5} + \cdots + 8 \) Copy content Toggle raw display
$3$ \( T^{7} + 3 T^{6} + \cdots - 8 \) Copy content Toggle raw display
$5$ \( T^{7} + 7 T^{6} + \cdots + 8 \) Copy content Toggle raw display
$7$ \( T^{7} + T^{6} + \cdots - 608 \) Copy content Toggle raw display
$11$ \( T^{7} + 2 T^{6} + \cdots + 288 \) Copy content Toggle raw display
$13$ \( T^{7} - 20 T^{6} + \cdots - 2344 \) Copy content Toggle raw display
$17$ \( T^{7} \) Copy content Toggle raw display
$19$ \( (T + 1)^{7} \) Copy content Toggle raw display
$23$ \( T^{7} - 3 T^{6} + \cdots - 7232 \) Copy content Toggle raw display
$29$ \( T^{7} + 10 T^{6} + \cdots + 10 \) Copy content Toggle raw display
$31$ \( T^{7} + 21 T^{6} + \cdots - 11988 \) Copy content Toggle raw display
$37$ \( T^{7} + 21 T^{6} + \cdots + 54496 \) Copy content Toggle raw display
$41$ \( T^{7} + 11 T^{6} + \cdots - 855808 \) Copy content Toggle raw display
$43$ \( T^{7} - 3 T^{6} + \cdots + 6676 \) Copy content Toggle raw display
$47$ \( T^{7} + 13 T^{6} + \cdots - 29664 \) Copy content Toggle raw display
$53$ \( T^{7} + 15 T^{6} + \cdots - 10504 \) Copy content Toggle raw display
$59$ \( T^{7} + 6 T^{6} + \cdots - 15280 \) Copy content Toggle raw display
$61$ \( T^{7} + 15 T^{6} + \cdots - 457432 \) Copy content Toggle raw display
$67$ \( T^{7} - 21 T^{6} + \cdots - 978192 \) Copy content Toggle raw display
$71$ \( T^{7} - 9 T^{6} + \cdots - 2000 \) Copy content Toggle raw display
$73$ \( T^{7} + 23 T^{6} + \cdots - 1031192 \) Copy content Toggle raw display
$79$ \( T^{7} - 25 T^{6} + \cdots - 4469200 \) Copy content Toggle raw display
$83$ \( T^{7} + 14 T^{6} + \cdots + 90212 \) Copy content Toggle raw display
$89$ \( T^{7} + 17 T^{6} + \cdots - 132520 \) Copy content Toggle raw display
$97$ \( T^{7} + 27 T^{6} + \cdots + 3006 \) Copy content Toggle raw display
show more
show less