Properties

Label 5488.2.a.p.1.5
Level $5488$
Weight $2$
Character 5488.1
Self dual yes
Analytic conductor $43.822$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5488,2,Mod(1,5488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5488.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5488, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5488 = 2^{4} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5488.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,5,0,-11,0,0,0,9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.8219006293\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1279733.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 10x^{3} + 10x^{2} - 11x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 343)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.54570\) of defining polynomial
Character \(\chi\) \(=\) 5488.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37250 q^{3} -0.315405 q^{5} +2.62874 q^{9} +1.80936 q^{11} -5.89929 q^{13} -0.748296 q^{15} -4.31210 q^{17} -6.30043 q^{19} +6.44087 q^{23} -4.90052 q^{25} -0.880823 q^{27} +7.97508 q^{29} -5.19058 q^{31} +4.29271 q^{33} -1.41486 q^{37} -13.9960 q^{39} +2.17315 q^{41} -1.04843 q^{43} -0.829115 q^{45} +1.17861 q^{47} -10.2304 q^{51} -4.10342 q^{53} -0.570682 q^{55} -14.9477 q^{57} +8.37022 q^{59} -5.54922 q^{61} +1.86066 q^{65} -9.80360 q^{67} +15.2809 q^{69} -1.21499 q^{71} -8.12513 q^{73} -11.6265 q^{75} +1.13986 q^{79} -9.97596 q^{81} -3.71459 q^{83} +1.36006 q^{85} +18.9209 q^{87} -16.7464 q^{89} -12.3146 q^{93} +1.98719 q^{95} -9.25759 q^{97} +4.75634 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - 11 q^{5} + 9 q^{9} + q^{11} - 7 q^{13} + 5 q^{15} - 26 q^{17} - 3 q^{19} + 9 q^{23} + 15 q^{25} + 8 q^{27} - 2 q^{29} - 2 q^{31} - 18 q^{33} - 2 q^{37} - 7 q^{39} - 28 q^{41} - 5 q^{43}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.37250 1.36976 0.684880 0.728655i \(-0.259854\pi\)
0.684880 + 0.728655i \(0.259854\pi\)
\(4\) 0 0
\(5\) −0.315405 −0.141053 −0.0705266 0.997510i \(-0.522468\pi\)
−0.0705266 + 0.997510i \(0.522468\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.62874 0.876245
\(10\) 0 0
\(11\) 1.80936 0.545544 0.272772 0.962079i \(-0.412060\pi\)
0.272772 + 0.962079i \(0.412060\pi\)
\(12\) 0 0
\(13\) −5.89929 −1.63617 −0.818084 0.575099i \(-0.804964\pi\)
−0.818084 + 0.575099i \(0.804964\pi\)
\(14\) 0 0
\(15\) −0.748296 −0.193209
\(16\) 0 0
\(17\) −4.31210 −1.04584 −0.522919 0.852382i \(-0.675157\pi\)
−0.522919 + 0.852382i \(0.675157\pi\)
\(18\) 0 0
\(19\) −6.30043 −1.44542 −0.722709 0.691152i \(-0.757103\pi\)
−0.722709 + 0.691152i \(0.757103\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.44087 1.34301 0.671507 0.740999i \(-0.265647\pi\)
0.671507 + 0.740999i \(0.265647\pi\)
\(24\) 0 0
\(25\) −4.90052 −0.980104
\(26\) 0 0
\(27\) −0.880823 −0.169515
\(28\) 0 0
\(29\) 7.97508 1.48094 0.740468 0.672092i \(-0.234604\pi\)
0.740468 + 0.672092i \(0.234604\pi\)
\(30\) 0 0
\(31\) −5.19058 −0.932256 −0.466128 0.884717i \(-0.654351\pi\)
−0.466128 + 0.884717i \(0.654351\pi\)
\(32\) 0 0
\(33\) 4.29271 0.747265
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.41486 −0.232601 −0.116301 0.993214i \(-0.537104\pi\)
−0.116301 + 0.993214i \(0.537104\pi\)
\(38\) 0 0
\(39\) −13.9960 −2.24116
\(40\) 0 0
\(41\) 2.17315 0.339389 0.169694 0.985497i \(-0.445722\pi\)
0.169694 + 0.985497i \(0.445722\pi\)
\(42\) 0 0
\(43\) −1.04843 −0.159885 −0.0799423 0.996799i \(-0.525474\pi\)
−0.0799423 + 0.996799i \(0.525474\pi\)
\(44\) 0 0
\(45\) −0.829115 −0.123597
\(46\) 0 0
\(47\) 1.17861 0.171918 0.0859589 0.996299i \(-0.472605\pi\)
0.0859589 + 0.996299i \(0.472605\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −10.2304 −1.43255
\(52\) 0 0
\(53\) −4.10342 −0.563648 −0.281824 0.959466i \(-0.590939\pi\)
−0.281824 + 0.959466i \(0.590939\pi\)
\(54\) 0 0
\(55\) −0.570682 −0.0769507
\(56\) 0 0
\(57\) −14.9477 −1.97988
\(58\) 0 0
\(59\) 8.37022 1.08971 0.544855 0.838530i \(-0.316585\pi\)
0.544855 + 0.838530i \(0.316585\pi\)
\(60\) 0 0
\(61\) −5.54922 −0.710504 −0.355252 0.934771i \(-0.615605\pi\)
−0.355252 + 0.934771i \(0.615605\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.86066 0.230787
\(66\) 0 0
\(67\) −9.80360 −1.19770 −0.598850 0.800861i \(-0.704375\pi\)
−0.598850 + 0.800861i \(0.704375\pi\)
\(68\) 0 0
\(69\) 15.2809 1.83961
\(70\) 0 0
\(71\) −1.21499 −0.144193 −0.0720965 0.997398i \(-0.522969\pi\)
−0.0720965 + 0.997398i \(0.522969\pi\)
\(72\) 0 0
\(73\) −8.12513 −0.950974 −0.475487 0.879723i \(-0.657728\pi\)
−0.475487 + 0.879723i \(0.657728\pi\)
\(74\) 0 0
\(75\) −11.6265 −1.34251
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.13986 0.128244 0.0641221 0.997942i \(-0.479575\pi\)
0.0641221 + 0.997942i \(0.479575\pi\)
\(80\) 0 0
\(81\) −9.97596 −1.10844
\(82\) 0 0
\(83\) −3.71459 −0.407729 −0.203865 0.978999i \(-0.565350\pi\)
−0.203865 + 0.978999i \(0.565350\pi\)
\(84\) 0 0
\(85\) 1.36006 0.147519
\(86\) 0 0
\(87\) 18.9209 2.02853
\(88\) 0 0
\(89\) −16.7464 −1.77512 −0.887558 0.460696i \(-0.847600\pi\)
−0.887558 + 0.460696i \(0.847600\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −12.3146 −1.27697
\(94\) 0 0
\(95\) 1.98719 0.203881
\(96\) 0 0
\(97\) −9.25759 −0.939966 −0.469983 0.882676i \(-0.655740\pi\)
−0.469983 + 0.882676i \(0.655740\pi\)
\(98\) 0 0
\(99\) 4.75634 0.478030
\(100\) 0 0
\(101\) 0.909356 0.0904843 0.0452422 0.998976i \(-0.485594\pi\)
0.0452422 + 0.998976i \(0.485594\pi\)
\(102\) 0 0
\(103\) −12.1316 −1.19536 −0.597681 0.801734i \(-0.703911\pi\)
−0.597681 + 0.801734i \(0.703911\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.78691 −0.269421 −0.134710 0.990885i \(-0.543010\pi\)
−0.134710 + 0.990885i \(0.543010\pi\)
\(108\) 0 0
\(109\) −12.8621 −1.23196 −0.615982 0.787760i \(-0.711241\pi\)
−0.615982 + 0.787760i \(0.711241\pi\)
\(110\) 0 0
\(111\) −3.35674 −0.318608
\(112\) 0 0
\(113\) −4.57651 −0.430522 −0.215261 0.976557i \(-0.569060\pi\)
−0.215261 + 0.976557i \(0.569060\pi\)
\(114\) 0 0
\(115\) −2.03148 −0.189436
\(116\) 0 0
\(117\) −15.5077 −1.43368
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.72620 −0.702382
\(122\) 0 0
\(123\) 5.15578 0.464881
\(124\) 0 0
\(125\) 3.12267 0.279300
\(126\) 0 0
\(127\) 13.1388 1.16588 0.582941 0.812515i \(-0.301902\pi\)
0.582941 + 0.812515i \(0.301902\pi\)
\(128\) 0 0
\(129\) −2.48740 −0.219004
\(130\) 0 0
\(131\) 14.1942 1.24015 0.620076 0.784542i \(-0.287102\pi\)
0.620076 + 0.784542i \(0.287102\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.277816 0.0239106
\(136\) 0 0
\(137\) 4.66108 0.398223 0.199112 0.979977i \(-0.436194\pi\)
0.199112 + 0.979977i \(0.436194\pi\)
\(138\) 0 0
\(139\) 5.69800 0.483298 0.241649 0.970364i \(-0.422312\pi\)
0.241649 + 0.970364i \(0.422312\pi\)
\(140\) 0 0
\(141\) 2.79625 0.235486
\(142\) 0 0
\(143\) −10.6740 −0.892601
\(144\) 0 0
\(145\) −2.51538 −0.208891
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.6438 1.03582 0.517910 0.855435i \(-0.326710\pi\)
0.517910 + 0.855435i \(0.326710\pi\)
\(150\) 0 0
\(151\) −9.97216 −0.811523 −0.405762 0.913979i \(-0.632994\pi\)
−0.405762 + 0.913979i \(0.632994\pi\)
\(152\) 0 0
\(153\) −11.3354 −0.916410
\(154\) 0 0
\(155\) 1.63713 0.131498
\(156\) 0 0
\(157\) 18.2931 1.45995 0.729974 0.683475i \(-0.239532\pi\)
0.729974 + 0.683475i \(0.239532\pi\)
\(158\) 0 0
\(159\) −9.73535 −0.772064
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.58009 −0.593719 −0.296859 0.954921i \(-0.595939\pi\)
−0.296859 + 0.954921i \(0.595939\pi\)
\(164\) 0 0
\(165\) −1.35394 −0.105404
\(166\) 0 0
\(167\) 23.0772 1.78576 0.892882 0.450291i \(-0.148680\pi\)
0.892882 + 0.450291i \(0.148680\pi\)
\(168\) 0 0
\(169\) 21.8016 1.67705
\(170\) 0 0
\(171\) −16.5622 −1.26654
\(172\) 0 0
\(173\) 2.25467 0.171419 0.0857095 0.996320i \(-0.472684\pi\)
0.0857095 + 0.996320i \(0.472684\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 19.8583 1.49264
\(178\) 0 0
\(179\) −8.50300 −0.635544 −0.317772 0.948167i \(-0.602935\pi\)
−0.317772 + 0.948167i \(0.602935\pi\)
\(180\) 0 0
\(181\) 12.9734 0.964306 0.482153 0.876087i \(-0.339855\pi\)
0.482153 + 0.876087i \(0.339855\pi\)
\(182\) 0 0
\(183\) −13.1655 −0.973221
\(184\) 0 0
\(185\) 0.446253 0.0328092
\(186\) 0 0
\(187\) −7.80216 −0.570550
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.0771 1.74216 0.871080 0.491141i \(-0.163420\pi\)
0.871080 + 0.491141i \(0.163420\pi\)
\(192\) 0 0
\(193\) 5.04598 0.363217 0.181609 0.983371i \(-0.441870\pi\)
0.181609 + 0.983371i \(0.441870\pi\)
\(194\) 0 0
\(195\) 4.41442 0.316123
\(196\) 0 0
\(197\) −8.75849 −0.624017 −0.312008 0.950079i \(-0.601002\pi\)
−0.312008 + 0.950079i \(0.601002\pi\)
\(198\) 0 0
\(199\) 0.839045 0.0594784 0.0297392 0.999558i \(-0.490532\pi\)
0.0297392 + 0.999558i \(0.490532\pi\)
\(200\) 0 0
\(201\) −23.2590 −1.64056
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.685421 −0.0478719
\(206\) 0 0
\(207\) 16.9313 1.17681
\(208\) 0 0
\(209\) −11.3998 −0.788539
\(210\) 0 0
\(211\) 0.0296358 0.00204021 0.00102011 0.999999i \(-0.499675\pi\)
0.00102011 + 0.999999i \(0.499675\pi\)
\(212\) 0 0
\(213\) −2.88256 −0.197510
\(214\) 0 0
\(215\) 0.330681 0.0225522
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −19.2768 −1.30261
\(220\) 0 0
\(221\) 25.4383 1.71117
\(222\) 0 0
\(223\) −16.0030 −1.07164 −0.535821 0.844332i \(-0.679998\pi\)
−0.535821 + 0.844332i \(0.679998\pi\)
\(224\) 0 0
\(225\) −12.8822 −0.858811
\(226\) 0 0
\(227\) 3.69275 0.245097 0.122548 0.992463i \(-0.460893\pi\)
0.122548 + 0.992463i \(0.460893\pi\)
\(228\) 0 0
\(229\) −8.96573 −0.592472 −0.296236 0.955115i \(-0.595731\pi\)
−0.296236 + 0.955115i \(0.595731\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −25.6148 −1.67808 −0.839041 0.544068i \(-0.816883\pi\)
−0.839041 + 0.544068i \(0.816883\pi\)
\(234\) 0 0
\(235\) −0.371739 −0.0242496
\(236\) 0 0
\(237\) 2.70431 0.175664
\(238\) 0 0
\(239\) −4.53752 −0.293508 −0.146754 0.989173i \(-0.546883\pi\)
−0.146754 + 0.989173i \(0.546883\pi\)
\(240\) 0 0
\(241\) 8.99811 0.579619 0.289810 0.957084i \(-0.406408\pi\)
0.289810 + 0.957084i \(0.406408\pi\)
\(242\) 0 0
\(243\) −21.0254 −1.34878
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 37.1681 2.36495
\(248\) 0 0
\(249\) −8.81285 −0.558492
\(250\) 0 0
\(251\) 11.8326 0.746867 0.373434 0.927657i \(-0.378180\pi\)
0.373434 + 0.927657i \(0.378180\pi\)
\(252\) 0 0
\(253\) 11.6539 0.732672
\(254\) 0 0
\(255\) 3.22673 0.202066
\(256\) 0 0
\(257\) −18.9916 −1.18467 −0.592333 0.805693i \(-0.701793\pi\)
−0.592333 + 0.805693i \(0.701793\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 20.9644 1.29766
\(262\) 0 0
\(263\) 19.0783 1.17642 0.588211 0.808708i \(-0.299833\pi\)
0.588211 + 0.808708i \(0.299833\pi\)
\(264\) 0 0
\(265\) 1.29424 0.0795044
\(266\) 0 0
\(267\) −39.7308 −2.43148
\(268\) 0 0
\(269\) −23.5539 −1.43610 −0.718052 0.695989i \(-0.754966\pi\)
−0.718052 + 0.695989i \(0.754966\pi\)
\(270\) 0 0
\(271\) 7.17878 0.436080 0.218040 0.975940i \(-0.430034\pi\)
0.218040 + 0.975940i \(0.430034\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.86682 −0.534690
\(276\) 0 0
\(277\) 5.28743 0.317691 0.158845 0.987303i \(-0.449223\pi\)
0.158845 + 0.987303i \(0.449223\pi\)
\(278\) 0 0
\(279\) −13.6447 −0.816885
\(280\) 0 0
\(281\) 15.0127 0.895581 0.447791 0.894138i \(-0.352211\pi\)
0.447791 + 0.894138i \(0.352211\pi\)
\(282\) 0 0
\(283\) −11.9400 −0.709759 −0.354879 0.934912i \(-0.615478\pi\)
−0.354879 + 0.934912i \(0.615478\pi\)
\(284\) 0 0
\(285\) 4.71459 0.279268
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.59420 0.0937767
\(290\) 0 0
\(291\) −21.9636 −1.28753
\(292\) 0 0
\(293\) 1.37897 0.0805606 0.0402803 0.999188i \(-0.487175\pi\)
0.0402803 + 0.999188i \(0.487175\pi\)
\(294\) 0 0
\(295\) −2.64001 −0.153707
\(296\) 0 0
\(297\) −1.59373 −0.0924776
\(298\) 0 0
\(299\) −37.9965 −2.19740
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.15744 0.123942
\(304\) 0 0
\(305\) 1.75025 0.100219
\(306\) 0 0
\(307\) −25.5584 −1.45870 −0.729348 0.684143i \(-0.760177\pi\)
−0.729348 + 0.684143i \(0.760177\pi\)
\(308\) 0 0
\(309\) −28.7822 −1.63736
\(310\) 0 0
\(311\) −19.8362 −1.12481 −0.562403 0.826863i \(-0.690123\pi\)
−0.562403 + 0.826863i \(0.690123\pi\)
\(312\) 0 0
\(313\) 11.5809 0.654590 0.327295 0.944922i \(-0.393863\pi\)
0.327295 + 0.944922i \(0.393863\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.25523 0.463660 0.231830 0.972756i \(-0.425529\pi\)
0.231830 + 0.972756i \(0.425529\pi\)
\(318\) 0 0
\(319\) 14.4298 0.807915
\(320\) 0 0
\(321\) −6.61193 −0.369042
\(322\) 0 0
\(323\) 27.1681 1.51167
\(324\) 0 0
\(325\) 28.9096 1.60362
\(326\) 0 0
\(327\) −30.5153 −1.68750
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −22.5510 −1.23951 −0.619757 0.784794i \(-0.712769\pi\)
−0.619757 + 0.784794i \(0.712769\pi\)
\(332\) 0 0
\(333\) −3.71929 −0.203816
\(334\) 0 0
\(335\) 3.09210 0.168939
\(336\) 0 0
\(337\) −7.84006 −0.427075 −0.213538 0.976935i \(-0.568499\pi\)
−0.213538 + 0.976935i \(0.568499\pi\)
\(338\) 0 0
\(339\) −10.8578 −0.589712
\(340\) 0 0
\(341\) −9.39165 −0.508586
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −4.81968 −0.259483
\(346\) 0 0
\(347\) 25.7782 1.38384 0.691922 0.721972i \(-0.256764\pi\)
0.691922 + 0.721972i \(0.256764\pi\)
\(348\) 0 0
\(349\) 31.4253 1.68216 0.841080 0.540910i \(-0.181920\pi\)
0.841080 + 0.540910i \(0.181920\pi\)
\(350\) 0 0
\(351\) 5.19623 0.277354
\(352\) 0 0
\(353\) 7.76310 0.413188 0.206594 0.978427i \(-0.433762\pi\)
0.206594 + 0.978427i \(0.433762\pi\)
\(354\) 0 0
\(355\) 0.383214 0.0203389
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.5711 −0.716253 −0.358126 0.933673i \(-0.616584\pi\)
−0.358126 + 0.933673i \(0.616584\pi\)
\(360\) 0 0
\(361\) 20.6955 1.08923
\(362\) 0 0
\(363\) −18.3304 −0.962096
\(364\) 0 0
\(365\) 2.56270 0.134138
\(366\) 0 0
\(367\) −0.510059 −0.0266249 −0.0133124 0.999911i \(-0.504238\pi\)
−0.0133124 + 0.999911i \(0.504238\pi\)
\(368\) 0 0
\(369\) 5.71263 0.297388
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −14.1579 −0.733066 −0.366533 0.930405i \(-0.619455\pi\)
−0.366533 + 0.930405i \(0.619455\pi\)
\(374\) 0 0
\(375\) 7.40852 0.382574
\(376\) 0 0
\(377\) −47.0473 −2.42306
\(378\) 0 0
\(379\) 22.3862 1.14990 0.574951 0.818188i \(-0.305021\pi\)
0.574951 + 0.818188i \(0.305021\pi\)
\(380\) 0 0
\(381\) 31.1718 1.59698
\(382\) 0 0
\(383\) −3.98108 −0.203423 −0.101712 0.994814i \(-0.532432\pi\)
−0.101712 + 0.994814i \(0.532432\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.75605 −0.140098
\(388\) 0 0
\(389\) 1.28096 0.0649473 0.0324736 0.999473i \(-0.489661\pi\)
0.0324736 + 0.999473i \(0.489661\pi\)
\(390\) 0 0
\(391\) −27.7737 −1.40457
\(392\) 0 0
\(393\) 33.6757 1.69871
\(394\) 0 0
\(395\) −0.359517 −0.0180893
\(396\) 0 0
\(397\) −13.0394 −0.654429 −0.327214 0.944950i \(-0.606110\pi\)
−0.327214 + 0.944950i \(0.606110\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.5407 −1.17557 −0.587784 0.809018i \(-0.699999\pi\)
−0.587784 + 0.809018i \(0.699999\pi\)
\(402\) 0 0
\(403\) 30.6207 1.52533
\(404\) 0 0
\(405\) 3.14646 0.156349
\(406\) 0 0
\(407\) −2.55999 −0.126894
\(408\) 0 0
\(409\) 31.1044 1.53802 0.769008 0.639239i \(-0.220751\pi\)
0.769008 + 0.639239i \(0.220751\pi\)
\(410\) 0 0
\(411\) 11.0584 0.545471
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.17160 0.0575115
\(416\) 0 0
\(417\) 13.5185 0.662003
\(418\) 0 0
\(419\) 9.06838 0.443020 0.221510 0.975158i \(-0.428902\pi\)
0.221510 + 0.975158i \(0.428902\pi\)
\(420\) 0 0
\(421\) −25.6040 −1.24786 −0.623932 0.781478i \(-0.714466\pi\)
−0.623932 + 0.781478i \(0.714466\pi\)
\(422\) 0 0
\(423\) 3.09825 0.150642
\(424\) 0 0
\(425\) 21.1315 1.02503
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −25.3239 −1.22265
\(430\) 0 0
\(431\) 1.87741 0.0904317 0.0452158 0.998977i \(-0.485602\pi\)
0.0452158 + 0.998977i \(0.485602\pi\)
\(432\) 0 0
\(433\) 20.0260 0.962389 0.481195 0.876614i \(-0.340203\pi\)
0.481195 + 0.876614i \(0.340203\pi\)
\(434\) 0 0
\(435\) −5.96773 −0.286131
\(436\) 0 0
\(437\) −40.5802 −1.94122
\(438\) 0 0
\(439\) −14.7909 −0.705933 −0.352966 0.935636i \(-0.614827\pi\)
−0.352966 + 0.935636i \(0.614827\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −29.9458 −1.42277 −0.711385 0.702802i \(-0.751932\pi\)
−0.711385 + 0.702802i \(0.751932\pi\)
\(444\) 0 0
\(445\) 5.28189 0.250386
\(446\) 0 0
\(447\) 29.9974 1.41883
\(448\) 0 0
\(449\) 8.34110 0.393641 0.196820 0.980440i \(-0.436938\pi\)
0.196820 + 0.980440i \(0.436938\pi\)
\(450\) 0 0
\(451\) 3.93201 0.185151
\(452\) 0 0
\(453\) −23.6589 −1.11159
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.5910 1.19710 0.598548 0.801087i \(-0.295745\pi\)
0.598548 + 0.801087i \(0.295745\pi\)
\(458\) 0 0
\(459\) 3.79820 0.177285
\(460\) 0 0
\(461\) −7.02658 −0.327260 −0.163630 0.986522i \(-0.552320\pi\)
−0.163630 + 0.986522i \(0.552320\pi\)
\(462\) 0 0
\(463\) 26.6142 1.23687 0.618434 0.785837i \(-0.287767\pi\)
0.618434 + 0.785837i \(0.287767\pi\)
\(464\) 0 0
\(465\) 3.88409 0.180120
\(466\) 0 0
\(467\) 19.6657 0.910020 0.455010 0.890486i \(-0.349636\pi\)
0.455010 + 0.890486i \(0.349636\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 43.4003 1.99978
\(472\) 0 0
\(473\) −1.89700 −0.0872241
\(474\) 0 0
\(475\) 30.8754 1.41666
\(476\) 0 0
\(477\) −10.7868 −0.493894
\(478\) 0 0
\(479\) 2.33577 0.106724 0.0533620 0.998575i \(-0.483006\pi\)
0.0533620 + 0.998575i \(0.483006\pi\)
\(480\) 0 0
\(481\) 8.34666 0.380575
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.91989 0.132585
\(486\) 0 0
\(487\) −29.0051 −1.31435 −0.657173 0.753739i \(-0.728248\pi\)
−0.657173 + 0.753739i \(0.728248\pi\)
\(488\) 0 0
\(489\) −17.9837 −0.813253
\(490\) 0 0
\(491\) 24.3816 1.10032 0.550162 0.835058i \(-0.314566\pi\)
0.550162 + 0.835058i \(0.314566\pi\)
\(492\) 0 0
\(493\) −34.3894 −1.54882
\(494\) 0 0
\(495\) −1.50017 −0.0674277
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −18.0540 −0.808209 −0.404105 0.914713i \(-0.632417\pi\)
−0.404105 + 0.914713i \(0.632417\pi\)
\(500\) 0 0
\(501\) 54.7505 2.44607
\(502\) 0 0
\(503\) 20.8224 0.928426 0.464213 0.885724i \(-0.346337\pi\)
0.464213 + 0.885724i \(0.346337\pi\)
\(504\) 0 0
\(505\) −0.286815 −0.0127631
\(506\) 0 0
\(507\) 51.7242 2.29715
\(508\) 0 0
\(509\) 10.3112 0.457038 0.228519 0.973539i \(-0.426612\pi\)
0.228519 + 0.973539i \(0.426612\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 5.54957 0.245019
\(514\) 0 0
\(515\) 3.82636 0.168610
\(516\) 0 0
\(517\) 2.13253 0.0937887
\(518\) 0 0
\(519\) 5.34919 0.234803
\(520\) 0 0
\(521\) −14.6474 −0.641716 −0.320858 0.947127i \(-0.603971\pi\)
−0.320858 + 0.947127i \(0.603971\pi\)
\(522\) 0 0
\(523\) 23.4188 1.02403 0.512016 0.858976i \(-0.328899\pi\)
0.512016 + 0.858976i \(0.328899\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.3823 0.974988
\(528\) 0 0
\(529\) 18.4847 0.803685
\(530\) 0 0
\(531\) 22.0031 0.954853
\(532\) 0 0
\(533\) −12.8200 −0.555297
\(534\) 0 0
\(535\) 0.879005 0.0380027
\(536\) 0 0
\(537\) −20.1733 −0.870544
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 8.92261 0.383613 0.191807 0.981433i \(-0.438565\pi\)
0.191807 + 0.981433i \(0.438565\pi\)
\(542\) 0 0
\(543\) 30.7794 1.32087
\(544\) 0 0
\(545\) 4.05676 0.173773
\(546\) 0 0
\(547\) −31.6625 −1.35379 −0.676896 0.736079i \(-0.736675\pi\)
−0.676896 + 0.736079i \(0.736675\pi\)
\(548\) 0 0
\(549\) −14.5874 −0.622576
\(550\) 0 0
\(551\) −50.2465 −2.14057
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.05873 0.0449407
\(556\) 0 0
\(557\) 14.9280 0.632520 0.316260 0.948673i \(-0.397573\pi\)
0.316260 + 0.948673i \(0.397573\pi\)
\(558\) 0 0
\(559\) 6.18501 0.261598
\(560\) 0 0
\(561\) −18.5106 −0.781517
\(562\) 0 0
\(563\) −29.8296 −1.25717 −0.628584 0.777742i \(-0.716365\pi\)
−0.628584 + 0.777742i \(0.716365\pi\)
\(564\) 0 0
\(565\) 1.44345 0.0607265
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.43144 0.185776 0.0928878 0.995677i \(-0.470390\pi\)
0.0928878 + 0.995677i \(0.470390\pi\)
\(570\) 0 0
\(571\) 42.5487 1.78061 0.890305 0.455366i \(-0.150491\pi\)
0.890305 + 0.455366i \(0.150491\pi\)
\(572\) 0 0
\(573\) 57.1229 2.38634
\(574\) 0 0
\(575\) −31.5636 −1.31629
\(576\) 0 0
\(577\) −1.07428 −0.0447231 −0.0223615 0.999750i \(-0.507118\pi\)
−0.0223615 + 0.999750i \(0.507118\pi\)
\(578\) 0 0
\(579\) 11.9716 0.497521
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −7.42458 −0.307495
\(584\) 0 0
\(585\) 4.89119 0.202226
\(586\) 0 0
\(587\) −18.3363 −0.756821 −0.378411 0.925638i \(-0.623529\pi\)
−0.378411 + 0.925638i \(0.623529\pi\)
\(588\) 0 0
\(589\) 32.7029 1.34750
\(590\) 0 0
\(591\) −20.7795 −0.854754
\(592\) 0 0
\(593\) −41.6503 −1.71037 −0.855187 0.518320i \(-0.826558\pi\)
−0.855187 + 0.518320i \(0.826558\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.99063 0.0814711
\(598\) 0 0
\(599\) −27.6544 −1.12993 −0.564964 0.825116i \(-0.691110\pi\)
−0.564964 + 0.825116i \(0.691110\pi\)
\(600\) 0 0
\(601\) −25.5296 −1.04137 −0.520687 0.853747i \(-0.674324\pi\)
−0.520687 + 0.853747i \(0.674324\pi\)
\(602\) 0 0
\(603\) −25.7711 −1.04948
\(604\) 0 0
\(605\) 2.43688 0.0990733
\(606\) 0 0
\(607\) 6.41487 0.260371 0.130186 0.991490i \(-0.458443\pi\)
0.130186 + 0.991490i \(0.458443\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.95296 −0.281287
\(612\) 0 0
\(613\) −45.2341 −1.82699 −0.913495 0.406851i \(-0.866627\pi\)
−0.913495 + 0.406851i \(0.866627\pi\)
\(614\) 0 0
\(615\) −1.62616 −0.0655730
\(616\) 0 0
\(617\) 31.7057 1.27642 0.638211 0.769862i \(-0.279675\pi\)
0.638211 + 0.769862i \(0.279675\pi\)
\(618\) 0 0
\(619\) 43.6533 1.75458 0.877288 0.479965i \(-0.159351\pi\)
0.877288 + 0.479965i \(0.159351\pi\)
\(620\) 0 0
\(621\) −5.67327 −0.227660
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 23.5177 0.940708
\(626\) 0 0
\(627\) −27.0459 −1.08011
\(628\) 0 0
\(629\) 6.10101 0.243263
\(630\) 0 0
\(631\) 2.88594 0.114887 0.0574437 0.998349i \(-0.481705\pi\)
0.0574437 + 0.998349i \(0.481705\pi\)
\(632\) 0 0
\(633\) 0.0703107 0.00279460
\(634\) 0 0
\(635\) −4.14404 −0.164451
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3.19389 −0.126348
\(640\) 0 0
\(641\) −37.5438 −1.48289 −0.741446 0.671013i \(-0.765859\pi\)
−0.741446 + 0.671013i \(0.765859\pi\)
\(642\) 0 0
\(643\) 13.3115 0.524953 0.262477 0.964938i \(-0.415461\pi\)
0.262477 + 0.964938i \(0.415461\pi\)
\(644\) 0 0
\(645\) 0.784539 0.0308912
\(646\) 0 0
\(647\) 0.323814 0.0127305 0.00636523 0.999980i \(-0.497974\pi\)
0.00636523 + 0.999980i \(0.497974\pi\)
\(648\) 0 0
\(649\) 15.1448 0.594485
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.7854 0.813397 0.406699 0.913562i \(-0.366680\pi\)
0.406699 + 0.913562i \(0.366680\pi\)
\(654\) 0 0
\(655\) −4.47691 −0.174927
\(656\) 0 0
\(657\) −21.3588 −0.833287
\(658\) 0 0
\(659\) 26.9283 1.04898 0.524488 0.851418i \(-0.324257\pi\)
0.524488 + 0.851418i \(0.324257\pi\)
\(660\) 0 0
\(661\) 19.3434 0.752370 0.376185 0.926545i \(-0.377236\pi\)
0.376185 + 0.926545i \(0.377236\pi\)
\(662\) 0 0
\(663\) 60.3523 2.34389
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 51.3664 1.98892
\(668\) 0 0
\(669\) −37.9671 −1.46789
\(670\) 0 0
\(671\) −10.0406 −0.387611
\(672\) 0 0
\(673\) −43.9015 −1.69228 −0.846138 0.532963i \(-0.821078\pi\)
−0.846138 + 0.532963i \(0.821078\pi\)
\(674\) 0 0
\(675\) 4.31649 0.166142
\(676\) 0 0
\(677\) 47.3308 1.81907 0.909536 0.415626i \(-0.136438\pi\)
0.909536 + 0.415626i \(0.136438\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 8.76104 0.335724
\(682\) 0 0
\(683\) −13.0729 −0.500220 −0.250110 0.968217i \(-0.580467\pi\)
−0.250110 + 0.968217i \(0.580467\pi\)
\(684\) 0 0
\(685\) −1.47013 −0.0561707
\(686\) 0 0
\(687\) −21.2711 −0.811545
\(688\) 0 0
\(689\) 24.2073 0.922224
\(690\) 0 0
\(691\) 19.7171 0.750075 0.375038 0.927010i \(-0.377630\pi\)
0.375038 + 0.927010i \(0.377630\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.79718 −0.0681708
\(696\) 0 0
\(697\) −9.37083 −0.354945
\(698\) 0 0
\(699\) −60.7710 −2.29857
\(700\) 0 0
\(701\) 32.4637 1.22614 0.613068 0.790030i \(-0.289935\pi\)
0.613068 + 0.790030i \(0.289935\pi\)
\(702\) 0 0
\(703\) 8.91422 0.336206
\(704\) 0 0
\(705\) −0.881949 −0.0332161
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −45.2338 −1.69879 −0.849396 0.527757i \(-0.823033\pi\)
−0.849396 + 0.527757i \(0.823033\pi\)
\(710\) 0 0
\(711\) 2.99639 0.112373
\(712\) 0 0
\(713\) −33.4318 −1.25203
\(714\) 0 0
\(715\) 3.36662 0.125904
\(716\) 0 0
\(717\) −10.7652 −0.402036
\(718\) 0 0
\(719\) 32.4165 1.20893 0.604466 0.796631i \(-0.293387\pi\)
0.604466 + 0.796631i \(0.293387\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 21.3480 0.793940
\(724\) 0 0
\(725\) −39.0821 −1.45147
\(726\) 0 0
\(727\) −8.62227 −0.319782 −0.159891 0.987135i \(-0.551114\pi\)
−0.159891 + 0.987135i \(0.551114\pi\)
\(728\) 0 0
\(729\) −19.9549 −0.739070
\(730\) 0 0
\(731\) 4.52095 0.167213
\(732\) 0 0
\(733\) −46.0771 −1.70190 −0.850949 0.525249i \(-0.823972\pi\)
−0.850949 + 0.525249i \(0.823972\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −17.7383 −0.653398
\(738\) 0 0
\(739\) −6.48634 −0.238604 −0.119302 0.992858i \(-0.538066\pi\)
−0.119302 + 0.992858i \(0.538066\pi\)
\(740\) 0 0
\(741\) 88.1811 3.23941
\(742\) 0 0
\(743\) 18.3701 0.673935 0.336968 0.941516i \(-0.390599\pi\)
0.336968 + 0.941516i \(0.390599\pi\)
\(744\) 0 0
\(745\) −3.98791 −0.146106
\(746\) 0 0
\(747\) −9.76468 −0.357271
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 15.7006 0.572922 0.286461 0.958092i \(-0.407521\pi\)
0.286461 + 0.958092i \(0.407521\pi\)
\(752\) 0 0
\(753\) 28.0728 1.02303
\(754\) 0 0
\(755\) 3.14527 0.114468
\(756\) 0 0
\(757\) 31.2394 1.13541 0.567707 0.823231i \(-0.307831\pi\)
0.567707 + 0.823231i \(0.307831\pi\)
\(758\) 0 0
\(759\) 27.6488 1.00359
\(760\) 0 0
\(761\) 35.1655 1.27475 0.637374 0.770555i \(-0.280021\pi\)
0.637374 + 0.770555i \(0.280021\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.57523 0.129263
\(766\) 0 0
\(767\) −49.3784 −1.78295
\(768\) 0 0
\(769\) −29.6687 −1.06988 −0.534941 0.844889i \(-0.679666\pi\)
−0.534941 + 0.844889i \(0.679666\pi\)
\(770\) 0 0
\(771\) −45.0576 −1.62271
\(772\) 0 0
\(773\) −22.2831 −0.801469 −0.400734 0.916194i \(-0.631245\pi\)
−0.400734 + 0.916194i \(0.631245\pi\)
\(774\) 0 0
\(775\) 25.4365 0.913708
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −13.6918 −0.490558
\(780\) 0 0
\(781\) −2.19836 −0.0786636
\(782\) 0 0
\(783\) −7.02464 −0.251040
\(784\) 0 0
\(785\) −5.76973 −0.205930
\(786\) 0 0
\(787\) −52.4214 −1.86862 −0.934311 0.356460i \(-0.883984\pi\)
−0.934311 + 0.356460i \(0.883984\pi\)
\(788\) 0 0
\(789\) 45.2633 1.61142
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 32.7364 1.16250
\(794\) 0 0
\(795\) 3.07058 0.108902
\(796\) 0 0
\(797\) 21.2475 0.752624 0.376312 0.926493i \(-0.377192\pi\)
0.376312 + 0.926493i \(0.377192\pi\)
\(798\) 0 0
\(799\) −5.08228 −0.179798
\(800\) 0 0
\(801\) −44.0219 −1.55544
\(802\) 0 0
\(803\) −14.7013 −0.518798
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −55.8814 −1.96712
\(808\) 0 0
\(809\) 10.7340 0.377389 0.188694 0.982036i \(-0.439574\pi\)
0.188694 + 0.982036i \(0.439574\pi\)
\(810\) 0 0
\(811\) 19.8681 0.697664 0.348832 0.937185i \(-0.386578\pi\)
0.348832 + 0.937185i \(0.386578\pi\)
\(812\) 0 0
\(813\) 17.0316 0.597325
\(814\) 0 0
\(815\) 2.39080 0.0837459
\(816\) 0 0
\(817\) 6.60559 0.231100
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.97852 −0.173751 −0.0868757 0.996219i \(-0.527688\pi\)
−0.0868757 + 0.996219i \(0.527688\pi\)
\(822\) 0 0
\(823\) −12.2946 −0.428563 −0.214282 0.976772i \(-0.568741\pi\)
−0.214282 + 0.976772i \(0.568741\pi\)
\(824\) 0 0
\(825\) −21.0365 −0.732397
\(826\) 0 0
\(827\) 18.4646 0.642076 0.321038 0.947066i \(-0.395968\pi\)
0.321038 + 0.947066i \(0.395968\pi\)
\(828\) 0 0
\(829\) −36.3043 −1.26090 −0.630450 0.776230i \(-0.717129\pi\)
−0.630450 + 0.776230i \(0.717129\pi\)
\(830\) 0 0
\(831\) 12.5444 0.435161
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −7.27864 −0.251888
\(836\) 0 0
\(837\) 4.57199 0.158031
\(838\) 0 0
\(839\) −23.0411 −0.795469 −0.397734 0.917501i \(-0.630203\pi\)
−0.397734 + 0.917501i \(0.630203\pi\)
\(840\) 0 0
\(841\) 34.6020 1.19317
\(842\) 0 0
\(843\) 35.6175 1.22673
\(844\) 0 0
\(845\) −6.87633 −0.236553
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −28.3276 −0.972200
\(850\) 0 0
\(851\) −9.11291 −0.312387
\(852\) 0 0
\(853\) 17.4721 0.598235 0.299117 0.954216i \(-0.403308\pi\)
0.299117 + 0.954216i \(0.403308\pi\)
\(854\) 0 0
\(855\) 5.22379 0.178650
\(856\) 0 0
\(857\) −44.6739 −1.52603 −0.763016 0.646380i \(-0.776282\pi\)
−0.763016 + 0.646380i \(0.776282\pi\)
\(858\) 0 0
\(859\) −23.0071 −0.784991 −0.392496 0.919754i \(-0.628388\pi\)
−0.392496 + 0.919754i \(0.628388\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46.7312 −1.59075 −0.795373 0.606120i \(-0.792725\pi\)
−0.795373 + 0.606120i \(0.792725\pi\)
\(864\) 0 0
\(865\) −0.711132 −0.0241792
\(866\) 0 0
\(867\) 3.78224 0.128452
\(868\) 0 0
\(869\) 2.06242 0.0699629
\(870\) 0 0
\(871\) 57.8343 1.95964
\(872\) 0 0
\(873\) −24.3357 −0.823640
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 26.4926 0.894591 0.447296 0.894386i \(-0.352387\pi\)
0.447296 + 0.894386i \(0.352387\pi\)
\(878\) 0 0
\(879\) 3.27161 0.110349
\(880\) 0 0
\(881\) −27.8994 −0.939955 −0.469978 0.882678i \(-0.655738\pi\)
−0.469978 + 0.882678i \(0.655738\pi\)
\(882\) 0 0
\(883\) 21.1240 0.710879 0.355439 0.934699i \(-0.384331\pi\)
0.355439 + 0.934699i \(0.384331\pi\)
\(884\) 0 0
\(885\) −6.26341 −0.210542
\(886\) 0 0
\(887\) 3.45507 0.116010 0.0580049 0.998316i \(-0.481526\pi\)
0.0580049 + 0.998316i \(0.481526\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −18.0501 −0.604702
\(892\) 0 0
\(893\) −7.42575 −0.248493
\(894\) 0 0
\(895\) 2.68189 0.0896456
\(896\) 0 0
\(897\) −90.1466 −3.00991
\(898\) 0 0
\(899\) −41.3953 −1.38061
\(900\) 0 0
\(901\) 17.6944 0.589485
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.09188 −0.136019
\(906\) 0 0
\(907\) −30.0979 −0.999385 −0.499692 0.866203i \(-0.666554\pi\)
−0.499692 + 0.866203i \(0.666554\pi\)
\(908\) 0 0
\(909\) 2.39046 0.0792864
\(910\) 0 0
\(911\) 26.6733 0.883725 0.441863 0.897083i \(-0.354318\pi\)
0.441863 + 0.897083i \(0.354318\pi\)
\(912\) 0 0
\(913\) −6.72105 −0.222434
\(914\) 0 0
\(915\) 4.15246 0.137276
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −8.72809 −0.287913 −0.143957 0.989584i \(-0.545983\pi\)
−0.143957 + 0.989584i \(0.545983\pi\)
\(920\) 0 0
\(921\) −60.6373 −1.99807
\(922\) 0 0
\(923\) 7.16759 0.235924
\(924\) 0 0
\(925\) 6.93354 0.227973
\(926\) 0 0
\(927\) −31.8908 −1.04743
\(928\) 0 0
\(929\) 34.2412 1.12342 0.561708 0.827335i \(-0.310144\pi\)
0.561708 + 0.827335i \(0.310144\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −47.0613 −1.54072
\(934\) 0 0
\(935\) 2.46084 0.0804780
\(936\) 0 0
\(937\) −27.2835 −0.891312 −0.445656 0.895204i \(-0.647030\pi\)
−0.445656 + 0.895204i \(0.647030\pi\)
\(938\) 0 0
\(939\) 27.4756 0.896632
\(940\) 0 0
\(941\) 21.0498 0.686204 0.343102 0.939298i \(-0.388522\pi\)
0.343102 + 0.939298i \(0.388522\pi\)
\(942\) 0 0
\(943\) 13.9969 0.455803
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.9602 1.16855 0.584275 0.811556i \(-0.301379\pi\)
0.584275 + 0.811556i \(0.301379\pi\)
\(948\) 0 0
\(949\) 47.9325 1.55595
\(950\) 0 0
\(951\) 19.5855 0.635104
\(952\) 0 0
\(953\) 13.1741 0.426750 0.213375 0.976970i \(-0.431554\pi\)
0.213375 + 0.976970i \(0.431554\pi\)
\(954\) 0 0
\(955\) −7.59404 −0.245737
\(956\) 0 0
\(957\) 34.2347 1.10665
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −4.05787 −0.130899
\(962\) 0 0
\(963\) −7.32605 −0.236079
\(964\) 0 0
\(965\) −1.59152 −0.0512330
\(966\) 0 0
\(967\) 3.60884 0.116052 0.0580262 0.998315i \(-0.481519\pi\)
0.0580262 + 0.998315i \(0.481519\pi\)
\(968\) 0 0
\(969\) 64.4562 2.07063
\(970\) 0 0
\(971\) 0.367539 0.0117949 0.00589744 0.999983i \(-0.498123\pi\)
0.00589744 + 0.999983i \(0.498123\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 68.5879 2.19657
\(976\) 0 0
\(977\) −45.5163 −1.45619 −0.728097 0.685474i \(-0.759595\pi\)
−0.728097 + 0.685474i \(0.759595\pi\)
\(978\) 0 0
\(979\) −30.3003 −0.968403
\(980\) 0 0
\(981\) −33.8110 −1.07950
\(982\) 0 0
\(983\) 13.4129 0.427806 0.213903 0.976855i \(-0.431382\pi\)
0.213903 + 0.976855i \(0.431382\pi\)
\(984\) 0 0
\(985\) 2.76247 0.0880196
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.75282 −0.214727
\(990\) 0 0
\(991\) −21.8369 −0.693671 −0.346835 0.937926i \(-0.612744\pi\)
−0.346835 + 0.937926i \(0.612744\pi\)
\(992\) 0 0
\(993\) −53.5021 −1.69784
\(994\) 0 0
\(995\) −0.264639 −0.00838962
\(996\) 0 0
\(997\) 24.0708 0.762329 0.381164 0.924507i \(-0.375523\pi\)
0.381164 + 0.924507i \(0.375523\pi\)
\(998\) 0 0
\(999\) 1.24624 0.0394293
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5488.2.a.p.1.5 6
4.3 odd 2 343.2.a.c.1.5 6
7.6 odd 2 5488.2.a.h.1.2 6
12.11 even 2 3087.2.a.k.1.2 6
20.19 odd 2 8575.2.a.o.1.2 6
28.3 even 6 343.2.c.d.324.2 12
28.11 odd 6 343.2.c.e.324.2 12
28.19 even 6 343.2.c.d.18.2 12
28.23 odd 6 343.2.c.e.18.2 12
28.27 even 2 343.2.a.d.1.5 yes 6
84.83 odd 2 3087.2.a.j.1.2 6
140.139 even 2 8575.2.a.n.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
343.2.a.c.1.5 6 4.3 odd 2
343.2.a.d.1.5 yes 6 28.27 even 2
343.2.c.d.18.2 12 28.19 even 6
343.2.c.d.324.2 12 28.3 even 6
343.2.c.e.18.2 12 28.23 odd 6
343.2.c.e.324.2 12 28.11 odd 6
3087.2.a.j.1.2 6 84.83 odd 2
3087.2.a.k.1.2 6 12.11 even 2
5488.2.a.h.1.2 6 7.6 odd 2
5488.2.a.p.1.5 6 1.1 even 1 trivial
8575.2.a.n.1.2 6 140.139 even 2
8575.2.a.o.1.2 6 20.19 odd 2