Properties

Label 5488.2.a.h.1.5
Level $5488$
Weight $2$
Character 5488.1
Self dual yes
Analytic conductor $43.822$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5488,2,Mod(1,5488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5488.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5488, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5488 = 2^{4} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5488.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-5,0,11,0,0,0,9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.8219006293\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.1279733.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 10x^{3} + 10x^{2} - 11x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 343)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.0849355\) of defining polynomial
Character \(\chi\) \(=\) 5488.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.40003 q^{3} +3.29412 q^{5} -1.03992 q^{9} -1.30976 q^{11} +2.58875 q^{13} +4.61185 q^{15} +5.10591 q^{17} -6.41058 q^{19} +5.61669 q^{23} +5.85120 q^{25} -5.65600 q^{27} +5.85067 q^{29} +5.23043 q^{31} -1.83370 q^{33} +8.05400 q^{37} +3.62433 q^{39} -1.40563 q^{41} -3.50061 q^{43} -3.42562 q^{45} +4.81866 q^{47} +7.14842 q^{51} -10.2983 q^{53} -4.31450 q^{55} -8.97499 q^{57} -4.83173 q^{59} -12.2149 q^{61} +8.52766 q^{65} +8.93174 q^{67} +7.86353 q^{69} +7.60661 q^{71} +3.59628 q^{73} +8.19184 q^{75} +7.58967 q^{79} -4.79880 q^{81} -5.15263 q^{83} +16.8195 q^{85} +8.19111 q^{87} +3.39197 q^{89} +7.32275 q^{93} -21.1172 q^{95} +9.10089 q^{97} +1.36205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 5 q^{3} + 11 q^{5} + 9 q^{9} + q^{11} + 7 q^{13} + 5 q^{15} + 26 q^{17} + 3 q^{19} + 9 q^{23} + 15 q^{25} - 8 q^{27} - 2 q^{29} + 2 q^{31} + 18 q^{33} - 2 q^{37} - 7 q^{39} + 28 q^{41} - 5 q^{43}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.40003 0.808307 0.404153 0.914691i \(-0.367566\pi\)
0.404153 + 0.914691i \(0.367566\pi\)
\(4\) 0 0
\(5\) 3.29412 1.47317 0.736587 0.676343i \(-0.236436\pi\)
0.736587 + 0.676343i \(0.236436\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.03992 −0.346641
\(10\) 0 0
\(11\) −1.30976 −0.394908 −0.197454 0.980312i \(-0.563267\pi\)
−0.197454 + 0.980312i \(0.563267\pi\)
\(12\) 0 0
\(13\) 2.58875 0.717991 0.358996 0.933339i \(-0.383119\pi\)
0.358996 + 0.933339i \(0.383119\pi\)
\(14\) 0 0
\(15\) 4.61185 1.19078
\(16\) 0 0
\(17\) 5.10591 1.23837 0.619183 0.785247i \(-0.287464\pi\)
0.619183 + 0.785247i \(0.287464\pi\)
\(18\) 0 0
\(19\) −6.41058 −1.47069 −0.735344 0.677694i \(-0.762979\pi\)
−0.735344 + 0.677694i \(0.762979\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.61669 1.17116 0.585581 0.810614i \(-0.300866\pi\)
0.585581 + 0.810614i \(0.300866\pi\)
\(24\) 0 0
\(25\) 5.85120 1.17024
\(26\) 0 0
\(27\) −5.65600 −1.08850
\(28\) 0 0
\(29\) 5.85067 1.08644 0.543222 0.839589i \(-0.317204\pi\)
0.543222 + 0.839589i \(0.317204\pi\)
\(30\) 0 0
\(31\) 5.23043 0.939413 0.469706 0.882823i \(-0.344360\pi\)
0.469706 + 0.882823i \(0.344360\pi\)
\(32\) 0 0
\(33\) −1.83370 −0.319206
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.05400 1.32407 0.662035 0.749473i \(-0.269693\pi\)
0.662035 + 0.749473i \(0.269693\pi\)
\(38\) 0 0
\(39\) 3.62433 0.580357
\(40\) 0 0
\(41\) −1.40563 −0.219523 −0.109761 0.993958i \(-0.535009\pi\)
−0.109761 + 0.993958i \(0.535009\pi\)
\(42\) 0 0
\(43\) −3.50061 −0.533838 −0.266919 0.963719i \(-0.586006\pi\)
−0.266919 + 0.963719i \(0.586006\pi\)
\(44\) 0 0
\(45\) −3.42562 −0.510662
\(46\) 0 0
\(47\) 4.81866 0.702874 0.351437 0.936212i \(-0.385693\pi\)
0.351437 + 0.936212i \(0.385693\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 7.14842 1.00098
\(52\) 0 0
\(53\) −10.2983 −1.41458 −0.707290 0.706924i \(-0.750082\pi\)
−0.707290 + 0.706924i \(0.750082\pi\)
\(54\) 0 0
\(55\) −4.31450 −0.581767
\(56\) 0 0
\(57\) −8.97499 −1.18877
\(58\) 0 0
\(59\) −4.83173 −0.629038 −0.314519 0.949251i \(-0.601843\pi\)
−0.314519 + 0.949251i \(0.601843\pi\)
\(60\) 0 0
\(61\) −12.2149 −1.56395 −0.781977 0.623308i \(-0.785788\pi\)
−0.781977 + 0.623308i \(0.785788\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.52766 1.05773
\(66\) 0 0
\(67\) 8.93174 1.09119 0.545593 0.838050i \(-0.316304\pi\)
0.545593 + 0.838050i \(0.316304\pi\)
\(68\) 0 0
\(69\) 7.86353 0.946658
\(70\) 0 0
\(71\) 7.60661 0.902739 0.451369 0.892337i \(-0.350936\pi\)
0.451369 + 0.892337i \(0.350936\pi\)
\(72\) 0 0
\(73\) 3.59628 0.420913 0.210456 0.977603i \(-0.432505\pi\)
0.210456 + 0.977603i \(0.432505\pi\)
\(74\) 0 0
\(75\) 8.19184 0.945912
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.58967 0.853905 0.426952 0.904274i \(-0.359587\pi\)
0.426952 + 0.904274i \(0.359587\pi\)
\(80\) 0 0
\(81\) −4.79880 −0.533200
\(82\) 0 0
\(83\) −5.15263 −0.565575 −0.282788 0.959183i \(-0.591259\pi\)
−0.282788 + 0.959183i \(0.591259\pi\)
\(84\) 0 0
\(85\) 16.8195 1.82433
\(86\) 0 0
\(87\) 8.19111 0.878179
\(88\) 0 0
\(89\) 3.39197 0.359548 0.179774 0.983708i \(-0.442463\pi\)
0.179774 + 0.983708i \(0.442463\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 7.32275 0.759334
\(94\) 0 0
\(95\) −21.1172 −2.16658
\(96\) 0 0
\(97\) 9.10089 0.924056 0.462028 0.886865i \(-0.347122\pi\)
0.462028 + 0.886865i \(0.347122\pi\)
\(98\) 0 0
\(99\) 1.36205 0.136891
\(100\) 0 0
\(101\) 18.4360 1.83446 0.917228 0.398363i \(-0.130422\pi\)
0.917228 + 0.398363i \(0.130422\pi\)
\(102\) 0 0
\(103\) 10.9284 1.07681 0.538403 0.842687i \(-0.319028\pi\)
0.538403 + 0.842687i \(0.319028\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.9747 −1.06096 −0.530482 0.847696i \(-0.677989\pi\)
−0.530482 + 0.847696i \(0.677989\pi\)
\(108\) 0 0
\(109\) 9.80577 0.939222 0.469611 0.882873i \(-0.344394\pi\)
0.469611 + 0.882873i \(0.344394\pi\)
\(110\) 0 0
\(111\) 11.2758 1.07025
\(112\) 0 0
\(113\) −3.12877 −0.294330 −0.147165 0.989112i \(-0.547015\pi\)
−0.147165 + 0.989112i \(0.547015\pi\)
\(114\) 0 0
\(115\) 18.5020 1.72532
\(116\) 0 0
\(117\) −2.69210 −0.248885
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.28453 −0.844048
\(122\) 0 0
\(123\) −1.96793 −0.177442
\(124\) 0 0
\(125\) 2.80393 0.250792
\(126\) 0 0
\(127\) 1.62243 0.143967 0.0719835 0.997406i \(-0.477067\pi\)
0.0719835 + 0.997406i \(0.477067\pi\)
\(128\) 0 0
\(129\) −4.90095 −0.431505
\(130\) 0 0
\(131\) −8.95123 −0.782072 −0.391036 0.920375i \(-0.627883\pi\)
−0.391036 + 0.920375i \(0.627883\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −18.6315 −1.60355
\(136\) 0 0
\(137\) 2.37668 0.203053 0.101527 0.994833i \(-0.467627\pi\)
0.101527 + 0.994833i \(0.467627\pi\)
\(138\) 0 0
\(139\) 3.18945 0.270525 0.135263 0.990810i \(-0.456812\pi\)
0.135263 + 0.990810i \(0.456812\pi\)
\(140\) 0 0
\(141\) 6.74626 0.568138
\(142\) 0 0
\(143\) −3.39065 −0.283540
\(144\) 0 0
\(145\) 19.2728 1.60052
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.0375 −1.06808 −0.534038 0.845460i \(-0.679326\pi\)
−0.534038 + 0.845460i \(0.679326\pi\)
\(150\) 0 0
\(151\) 2.56546 0.208774 0.104387 0.994537i \(-0.466712\pi\)
0.104387 + 0.994537i \(0.466712\pi\)
\(152\) 0 0
\(153\) −5.30975 −0.429268
\(154\) 0 0
\(155\) 17.2296 1.38392
\(156\) 0 0
\(157\) 8.67435 0.692289 0.346144 0.938181i \(-0.387491\pi\)
0.346144 + 0.938181i \(0.387491\pi\)
\(158\) 0 0
\(159\) −14.4179 −1.14341
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.06962 0.475409 0.237705 0.971337i \(-0.423605\pi\)
0.237705 + 0.971337i \(0.423605\pi\)
\(164\) 0 0
\(165\) −6.04042 −0.470246
\(166\) 0 0
\(167\) −15.3746 −1.18972 −0.594862 0.803828i \(-0.702793\pi\)
−0.594862 + 0.803828i \(0.702793\pi\)
\(168\) 0 0
\(169\) −6.29835 −0.484488
\(170\) 0 0
\(171\) 6.66650 0.509800
\(172\) 0 0
\(173\) 8.31524 0.632196 0.316098 0.948726i \(-0.397627\pi\)
0.316098 + 0.948726i \(0.397627\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.76456 −0.508455
\(178\) 0 0
\(179\) 15.0266 1.12314 0.561569 0.827430i \(-0.310198\pi\)
0.561569 + 0.827430i \(0.310198\pi\)
\(180\) 0 0
\(181\) −23.4392 −1.74222 −0.871112 0.491084i \(-0.836601\pi\)
−0.871112 + 0.491084i \(0.836601\pi\)
\(182\) 0 0
\(183\) −17.1012 −1.26415
\(184\) 0 0
\(185\) 26.5308 1.95058
\(186\) 0 0
\(187\) −6.68752 −0.489040
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.82469 −0.493817 −0.246909 0.969039i \(-0.579415\pi\)
−0.246909 + 0.969039i \(0.579415\pi\)
\(192\) 0 0
\(193\) 6.10039 0.439116 0.219558 0.975599i \(-0.429539\pi\)
0.219558 + 0.975599i \(0.429539\pi\)
\(194\) 0 0
\(195\) 11.9390 0.854966
\(196\) 0 0
\(197\) 14.0840 1.00344 0.501722 0.865029i \(-0.332700\pi\)
0.501722 + 0.865029i \(0.332700\pi\)
\(198\) 0 0
\(199\) 20.4947 1.45283 0.726416 0.687255i \(-0.241185\pi\)
0.726416 + 0.687255i \(0.241185\pi\)
\(200\) 0 0
\(201\) 12.5047 0.882013
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.63032 −0.323395
\(206\) 0 0
\(207\) −5.84092 −0.405972
\(208\) 0 0
\(209\) 8.39632 0.580786
\(210\) 0 0
\(211\) −1.47045 −0.101230 −0.0506149 0.998718i \(-0.516118\pi\)
−0.0506149 + 0.998718i \(0.516118\pi\)
\(212\) 0 0
\(213\) 10.6495 0.729689
\(214\) 0 0
\(215\) −11.5314 −0.786435
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.03490 0.340227
\(220\) 0 0
\(221\) 13.2180 0.889136
\(222\) 0 0
\(223\) −5.47586 −0.366691 −0.183345 0.983049i \(-0.558693\pi\)
−0.183345 + 0.983049i \(0.558693\pi\)
\(224\) 0 0
\(225\) −6.08478 −0.405652
\(226\) 0 0
\(227\) 5.03683 0.334306 0.167153 0.985931i \(-0.446543\pi\)
0.167153 + 0.985931i \(0.446543\pi\)
\(228\) 0 0
\(229\) −21.6621 −1.43147 −0.715736 0.698370i \(-0.753909\pi\)
−0.715736 + 0.698370i \(0.753909\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.3274 −1.06964 −0.534821 0.844966i \(-0.679621\pi\)
−0.534821 + 0.844966i \(0.679621\pi\)
\(234\) 0 0
\(235\) 15.8732 1.03545
\(236\) 0 0
\(237\) 10.6258 0.690217
\(238\) 0 0
\(239\) 6.61138 0.427655 0.213827 0.976871i \(-0.431407\pi\)
0.213827 + 0.976871i \(0.431407\pi\)
\(240\) 0 0
\(241\) −1.00382 −0.0646619 −0.0323310 0.999477i \(-0.510293\pi\)
−0.0323310 + 0.999477i \(0.510293\pi\)
\(242\) 0 0
\(243\) 10.2496 0.657509
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −16.5954 −1.05594
\(248\) 0 0
\(249\) −7.21383 −0.457158
\(250\) 0 0
\(251\) 27.6782 1.74703 0.873516 0.486796i \(-0.161835\pi\)
0.873516 + 0.486796i \(0.161835\pi\)
\(252\) 0 0
\(253\) −7.35652 −0.462501
\(254\) 0 0
\(255\) 23.5477 1.47462
\(256\) 0 0
\(257\) 7.67171 0.478548 0.239274 0.970952i \(-0.423091\pi\)
0.239274 + 0.970952i \(0.423091\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.08424 −0.376605
\(262\) 0 0
\(263\) −10.6366 −0.655878 −0.327939 0.944699i \(-0.606354\pi\)
−0.327939 + 0.944699i \(0.606354\pi\)
\(264\) 0 0
\(265\) −33.9238 −2.08392
\(266\) 0 0
\(267\) 4.74885 0.290625
\(268\) 0 0
\(269\) 2.92590 0.178395 0.0891975 0.996014i \(-0.471570\pi\)
0.0891975 + 0.996014i \(0.471570\pi\)
\(270\) 0 0
\(271\) 1.97491 0.119968 0.0599838 0.998199i \(-0.480895\pi\)
0.0599838 + 0.998199i \(0.480895\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.66366 −0.462136
\(276\) 0 0
\(277\) 6.82618 0.410145 0.205073 0.978747i \(-0.434257\pi\)
0.205073 + 0.978747i \(0.434257\pi\)
\(278\) 0 0
\(279\) −5.43924 −0.325639
\(280\) 0 0
\(281\) −27.8219 −1.65971 −0.829857 0.557977i \(-0.811578\pi\)
−0.829857 + 0.557977i \(0.811578\pi\)
\(282\) 0 0
\(283\) 8.27801 0.492076 0.246038 0.969260i \(-0.420871\pi\)
0.246038 + 0.969260i \(0.420871\pi\)
\(284\) 0 0
\(285\) −29.5647 −1.75126
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 9.07035 0.533550
\(290\) 0 0
\(291\) 12.7415 0.746920
\(292\) 0 0
\(293\) −6.28753 −0.367321 −0.183661 0.982990i \(-0.558795\pi\)
−0.183661 + 0.982990i \(0.558795\pi\)
\(294\) 0 0
\(295\) −15.9163 −0.926681
\(296\) 0 0
\(297\) 7.40801 0.429856
\(298\) 0 0
\(299\) 14.5402 0.840884
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 25.8110 1.48280
\(304\) 0 0
\(305\) −40.2372 −2.30397
\(306\) 0 0
\(307\) −13.8159 −0.788514 −0.394257 0.919000i \(-0.628998\pi\)
−0.394257 + 0.919000i \(0.628998\pi\)
\(308\) 0 0
\(309\) 15.3001 0.870390
\(310\) 0 0
\(311\) −10.1060 −0.573060 −0.286530 0.958071i \(-0.592502\pi\)
−0.286530 + 0.958071i \(0.592502\pi\)
\(312\) 0 0
\(313\) −11.9191 −0.673710 −0.336855 0.941557i \(-0.609363\pi\)
−0.336855 + 0.941557i \(0.609363\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −26.2134 −1.47229 −0.736145 0.676823i \(-0.763356\pi\)
−0.736145 + 0.676823i \(0.763356\pi\)
\(318\) 0 0
\(319\) −7.66298 −0.429045
\(320\) 0 0
\(321\) −15.3649 −0.857584
\(322\) 0 0
\(323\) −32.7319 −1.82125
\(324\) 0 0
\(325\) 15.1473 0.840221
\(326\) 0 0
\(327\) 13.7283 0.759179
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −16.2728 −0.894435 −0.447218 0.894425i \(-0.647585\pi\)
−0.447218 + 0.894425i \(0.647585\pi\)
\(332\) 0 0
\(333\) −8.37553 −0.458976
\(334\) 0 0
\(335\) 29.4222 1.60751
\(336\) 0 0
\(337\) −22.1009 −1.20391 −0.601955 0.798530i \(-0.705612\pi\)
−0.601955 + 0.798530i \(0.705612\pi\)
\(338\) 0 0
\(339\) −4.38037 −0.237909
\(340\) 0 0
\(341\) −6.85061 −0.370981
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 25.9034 1.39459
\(346\) 0 0
\(347\) −20.2320 −1.08611 −0.543054 0.839698i \(-0.682732\pi\)
−0.543054 + 0.839698i \(0.682732\pi\)
\(348\) 0 0
\(349\) 20.3826 1.09105 0.545527 0.838093i \(-0.316330\pi\)
0.545527 + 0.838093i \(0.316330\pi\)
\(350\) 0 0
\(351\) −14.6420 −0.781532
\(352\) 0 0
\(353\) 3.17871 0.169186 0.0845929 0.996416i \(-0.473041\pi\)
0.0845929 + 0.996416i \(0.473041\pi\)
\(354\) 0 0
\(355\) 25.0570 1.32989
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.33067 0.228564 0.114282 0.993448i \(-0.463543\pi\)
0.114282 + 0.993448i \(0.463543\pi\)
\(360\) 0 0
\(361\) 22.0955 1.16292
\(362\) 0 0
\(363\) −12.9986 −0.682250
\(364\) 0 0
\(365\) 11.8466 0.620078
\(366\) 0 0
\(367\) −10.7431 −0.560786 −0.280393 0.959885i \(-0.590465\pi\)
−0.280393 + 0.959885i \(0.590465\pi\)
\(368\) 0 0
\(369\) 1.46175 0.0760956
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 12.2207 0.632762 0.316381 0.948632i \(-0.397532\pi\)
0.316381 + 0.948632i \(0.397532\pi\)
\(374\) 0 0
\(375\) 3.92559 0.202716
\(376\) 0 0
\(377\) 15.1460 0.780057
\(378\) 0 0
\(379\) 11.3737 0.584227 0.292113 0.956384i \(-0.405642\pi\)
0.292113 + 0.956384i \(0.405642\pi\)
\(380\) 0 0
\(381\) 2.27144 0.116369
\(382\) 0 0
\(383\) −24.5408 −1.25398 −0.626988 0.779029i \(-0.715713\pi\)
−0.626988 + 0.779029i \(0.715713\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.64036 0.185050
\(388\) 0 0
\(389\) 14.3914 0.729674 0.364837 0.931071i \(-0.381125\pi\)
0.364837 + 0.931071i \(0.381125\pi\)
\(390\) 0 0
\(391\) 28.6784 1.45033
\(392\) 0 0
\(393\) −12.5320 −0.632154
\(394\) 0 0
\(395\) 25.0013 1.25795
\(396\) 0 0
\(397\) −2.74397 −0.137716 −0.0688579 0.997626i \(-0.521936\pi\)
−0.0688579 + 0.997626i \(0.521936\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.86195 0.392607 0.196304 0.980543i \(-0.437106\pi\)
0.196304 + 0.980543i \(0.437106\pi\)
\(402\) 0 0
\(403\) 13.5403 0.674490
\(404\) 0 0
\(405\) −15.8078 −0.785496
\(406\) 0 0
\(407\) −10.5488 −0.522885
\(408\) 0 0
\(409\) −13.2463 −0.654987 −0.327493 0.944853i \(-0.606204\pi\)
−0.327493 + 0.944853i \(0.606204\pi\)
\(410\) 0 0
\(411\) 3.32742 0.164129
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −16.9734 −0.833190
\(416\) 0 0
\(417\) 4.46531 0.218667
\(418\) 0 0
\(419\) 20.5917 1.00597 0.502985 0.864295i \(-0.332235\pi\)
0.502985 + 0.864295i \(0.332235\pi\)
\(420\) 0 0
\(421\) −36.0621 −1.75756 −0.878780 0.477227i \(-0.841642\pi\)
−0.878780 + 0.477227i \(0.841642\pi\)
\(422\) 0 0
\(423\) −5.01103 −0.243645
\(424\) 0 0
\(425\) 29.8757 1.44918
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.74700 −0.229187
\(430\) 0 0
\(431\) −21.2703 −1.02455 −0.512277 0.858821i \(-0.671198\pi\)
−0.512277 + 0.858821i \(0.671198\pi\)
\(432\) 0 0
\(433\) 8.27108 0.397483 0.198741 0.980052i \(-0.436315\pi\)
0.198741 + 0.980052i \(0.436315\pi\)
\(434\) 0 0
\(435\) 26.9825 1.29371
\(436\) 0 0
\(437\) −36.0063 −1.72241
\(438\) 0 0
\(439\) 1.94835 0.0929898 0.0464949 0.998919i \(-0.485195\pi\)
0.0464949 + 0.998919i \(0.485195\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −27.4707 −1.30517 −0.652586 0.757714i \(-0.726316\pi\)
−0.652586 + 0.757714i \(0.726316\pi\)
\(444\) 0 0
\(445\) 11.1735 0.529677
\(446\) 0 0
\(447\) −18.2529 −0.863333
\(448\) 0 0
\(449\) 0.960250 0.0453170 0.0226585 0.999743i \(-0.492787\pi\)
0.0226585 + 0.999743i \(0.492787\pi\)
\(450\) 0 0
\(451\) 1.84104 0.0866913
\(452\) 0 0
\(453\) 3.59172 0.168754
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −39.5614 −1.85060 −0.925302 0.379232i \(-0.876188\pi\)
−0.925302 + 0.379232i \(0.876188\pi\)
\(458\) 0 0
\(459\) −28.8791 −1.34796
\(460\) 0 0
\(461\) −24.5076 −1.14143 −0.570716 0.821148i \(-0.693334\pi\)
−0.570716 + 0.821148i \(0.693334\pi\)
\(462\) 0 0
\(463\) 4.23774 0.196944 0.0984722 0.995140i \(-0.468604\pi\)
0.0984722 + 0.995140i \(0.468604\pi\)
\(464\) 0 0
\(465\) 24.1220 1.11863
\(466\) 0 0
\(467\) −23.8784 −1.10496 −0.552479 0.833527i \(-0.686318\pi\)
−0.552479 + 0.833527i \(0.686318\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 12.1443 0.559581
\(472\) 0 0
\(473\) 4.58496 0.210817
\(474\) 0 0
\(475\) −37.5096 −1.72106
\(476\) 0 0
\(477\) 10.7094 0.490350
\(478\) 0 0
\(479\) 34.0296 1.55485 0.777425 0.628975i \(-0.216525\pi\)
0.777425 + 0.628975i \(0.216525\pi\)
\(480\) 0 0
\(481\) 20.8498 0.950670
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 29.9794 1.36129
\(486\) 0 0
\(487\) 11.2696 0.510676 0.255338 0.966852i \(-0.417813\pi\)
0.255338 + 0.966852i \(0.417813\pi\)
\(488\) 0 0
\(489\) 8.49764 0.384277
\(490\) 0 0
\(491\) −31.3811 −1.41621 −0.708104 0.706108i \(-0.750449\pi\)
−0.708104 + 0.706108i \(0.750449\pi\)
\(492\) 0 0
\(493\) 29.8730 1.34541
\(494\) 0 0
\(495\) 4.48674 0.201664
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 13.4626 0.602671 0.301335 0.953518i \(-0.402568\pi\)
0.301335 + 0.953518i \(0.402568\pi\)
\(500\) 0 0
\(501\) −21.5249 −0.961661
\(502\) 0 0
\(503\) 4.47867 0.199694 0.0998471 0.995003i \(-0.468165\pi\)
0.0998471 + 0.995003i \(0.468165\pi\)
\(504\) 0 0
\(505\) 60.7305 2.70247
\(506\) 0 0
\(507\) −8.81787 −0.391615
\(508\) 0 0
\(509\) −10.8851 −0.482475 −0.241238 0.970466i \(-0.577553\pi\)
−0.241238 + 0.970466i \(0.577553\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 36.2583 1.60084
\(514\) 0 0
\(515\) 35.9994 1.58632
\(516\) 0 0
\(517\) −6.31129 −0.277570
\(518\) 0 0
\(519\) 11.6416 0.511008
\(520\) 0 0
\(521\) 21.2127 0.929346 0.464673 0.885482i \(-0.346172\pi\)
0.464673 + 0.885482i \(0.346172\pi\)
\(522\) 0 0
\(523\) −35.3234 −1.54458 −0.772292 0.635268i \(-0.780890\pi\)
−0.772292 + 0.635268i \(0.780890\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 26.7061 1.16334
\(528\) 0 0
\(529\) 8.54726 0.371620
\(530\) 0 0
\(531\) 5.02462 0.218050
\(532\) 0 0
\(533\) −3.63884 −0.157616
\(534\) 0 0
\(535\) −36.1519 −1.56298
\(536\) 0 0
\(537\) 21.0376 0.907840
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.34396 −0.143768 −0.0718841 0.997413i \(-0.522901\pi\)
−0.0718841 + 0.997413i \(0.522901\pi\)
\(542\) 0 0
\(543\) −32.8156 −1.40825
\(544\) 0 0
\(545\) 32.3013 1.38364
\(546\) 0 0
\(547\) −12.9906 −0.555440 −0.277720 0.960662i \(-0.589579\pi\)
−0.277720 + 0.960662i \(0.589579\pi\)
\(548\) 0 0
\(549\) 12.7025 0.542130
\(550\) 0 0
\(551\) −37.5062 −1.59782
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 37.1439 1.57667
\(556\) 0 0
\(557\) −21.8103 −0.924130 −0.462065 0.886846i \(-0.652891\pi\)
−0.462065 + 0.886846i \(0.652891\pi\)
\(558\) 0 0
\(559\) −9.06222 −0.383291
\(560\) 0 0
\(561\) −9.36272 −0.395294
\(562\) 0 0
\(563\) 31.2308 1.31622 0.658111 0.752921i \(-0.271356\pi\)
0.658111 + 0.752921i \(0.271356\pi\)
\(564\) 0 0
\(565\) −10.3065 −0.433599
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 44.2729 1.85602 0.928009 0.372558i \(-0.121519\pi\)
0.928009 + 0.372558i \(0.121519\pi\)
\(570\) 0 0
\(571\) 33.2319 1.39071 0.695356 0.718665i \(-0.255247\pi\)
0.695356 + 0.718665i \(0.255247\pi\)
\(572\) 0 0
\(573\) −9.55476 −0.399156
\(574\) 0 0
\(575\) 32.8644 1.37054
\(576\) 0 0
\(577\) 13.3294 0.554911 0.277455 0.960739i \(-0.410509\pi\)
0.277455 + 0.960739i \(0.410509\pi\)
\(578\) 0 0
\(579\) 8.54072 0.354940
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 13.4883 0.558628
\(584\) 0 0
\(585\) −8.86809 −0.366651
\(586\) 0 0
\(587\) −29.4138 −1.21404 −0.607018 0.794688i \(-0.707634\pi\)
−0.607018 + 0.794688i \(0.707634\pi\)
\(588\) 0 0
\(589\) −33.5301 −1.38158
\(590\) 0 0
\(591\) 19.7180 0.811091
\(592\) 0 0
\(593\) 33.0462 1.35704 0.678522 0.734580i \(-0.262621\pi\)
0.678522 + 0.734580i \(0.262621\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 28.6932 1.17433
\(598\) 0 0
\(599\) 41.2922 1.68716 0.843578 0.537007i \(-0.180445\pi\)
0.843578 + 0.537007i \(0.180445\pi\)
\(600\) 0 0
\(601\) 9.01739 0.367827 0.183914 0.982942i \(-0.441123\pi\)
0.183914 + 0.982942i \(0.441123\pi\)
\(602\) 0 0
\(603\) −9.28831 −0.378249
\(604\) 0 0
\(605\) −30.5843 −1.24343
\(606\) 0 0
\(607\) 23.7157 0.962589 0.481294 0.876559i \(-0.340167\pi\)
0.481294 + 0.876559i \(0.340167\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.4743 0.504657
\(612\) 0 0
\(613\) −8.39552 −0.339092 −0.169546 0.985522i \(-0.554230\pi\)
−0.169546 + 0.985522i \(0.554230\pi\)
\(614\) 0 0
\(615\) −6.48257 −0.261403
\(616\) 0 0
\(617\) −13.2575 −0.533727 −0.266863 0.963734i \(-0.585987\pi\)
−0.266863 + 0.963734i \(0.585987\pi\)
\(618\) 0 0
\(619\) 10.0839 0.405305 0.202653 0.979251i \(-0.435044\pi\)
0.202653 + 0.979251i \(0.435044\pi\)
\(620\) 0 0
\(621\) −31.7680 −1.27481
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.0195 −0.800780
\(626\) 0 0
\(627\) 11.7551 0.469453
\(628\) 0 0
\(629\) 41.1230 1.63968
\(630\) 0 0
\(631\) 25.8656 1.02969 0.514847 0.857282i \(-0.327849\pi\)
0.514847 + 0.857282i \(0.327849\pi\)
\(632\) 0 0
\(633\) −2.05867 −0.0818246
\(634\) 0 0
\(635\) 5.34446 0.212088
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −7.91028 −0.312926
\(640\) 0 0
\(641\) 14.6633 0.579166 0.289583 0.957153i \(-0.406483\pi\)
0.289583 + 0.957153i \(0.406483\pi\)
\(642\) 0 0
\(643\) 41.7512 1.64651 0.823253 0.567675i \(-0.192157\pi\)
0.823253 + 0.567675i \(0.192157\pi\)
\(644\) 0 0
\(645\) −16.1443 −0.635681
\(646\) 0 0
\(647\) 6.36539 0.250249 0.125125 0.992141i \(-0.460067\pi\)
0.125125 + 0.992141i \(0.460067\pi\)
\(648\) 0 0
\(649\) 6.32841 0.248412
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.5686 −0.765778 −0.382889 0.923794i \(-0.625071\pi\)
−0.382889 + 0.923794i \(0.625071\pi\)
\(654\) 0 0
\(655\) −29.4864 −1.15213
\(656\) 0 0
\(657\) −3.73985 −0.145905
\(658\) 0 0
\(659\) −32.3906 −1.26176 −0.630878 0.775882i \(-0.717305\pi\)
−0.630878 + 0.775882i \(0.717305\pi\)
\(660\) 0 0
\(661\) −18.3198 −0.712558 −0.356279 0.934380i \(-0.615955\pi\)
−0.356279 + 0.934380i \(0.615955\pi\)
\(662\) 0 0
\(663\) 18.5055 0.718694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 32.8615 1.27240
\(668\) 0 0
\(669\) −7.66636 −0.296398
\(670\) 0 0
\(671\) 15.9985 0.617617
\(672\) 0 0
\(673\) 15.7991 0.609010 0.304505 0.952511i \(-0.401509\pi\)
0.304505 + 0.952511i \(0.401509\pi\)
\(674\) 0 0
\(675\) −33.0944 −1.27380
\(676\) 0 0
\(677\) −29.7924 −1.14502 −0.572508 0.819899i \(-0.694030\pi\)
−0.572508 + 0.819899i \(0.694030\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 7.05171 0.270222
\(682\) 0 0
\(683\) −31.9938 −1.22421 −0.612105 0.790776i \(-0.709677\pi\)
−0.612105 + 0.790776i \(0.709677\pi\)
\(684\) 0 0
\(685\) 7.82905 0.299133
\(686\) 0 0
\(687\) −30.3276 −1.15707
\(688\) 0 0
\(689\) −26.6597 −1.01566
\(690\) 0 0
\(691\) 16.9349 0.644233 0.322117 0.946700i \(-0.395606\pi\)
0.322117 + 0.946700i \(0.395606\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.5064 0.398531
\(696\) 0 0
\(697\) −7.17704 −0.271850
\(698\) 0 0
\(699\) −22.8588 −0.864598
\(700\) 0 0
\(701\) 0.686127 0.0259147 0.0129573 0.999916i \(-0.495875\pi\)
0.0129573 + 0.999916i \(0.495875\pi\)
\(702\) 0 0
\(703\) −51.6308 −1.94729
\(704\) 0 0
\(705\) 22.2230 0.836965
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 15.8562 0.595493 0.297746 0.954645i \(-0.403765\pi\)
0.297746 + 0.954645i \(0.403765\pi\)
\(710\) 0 0
\(711\) −7.89266 −0.295998
\(712\) 0 0
\(713\) 29.3777 1.10020
\(714\) 0 0
\(715\) −11.1692 −0.417704
\(716\) 0 0
\(717\) 9.25612 0.345676
\(718\) 0 0
\(719\) 45.9438 1.71341 0.856707 0.515804i \(-0.172507\pi\)
0.856707 + 0.515804i \(0.172507\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.40538 −0.0522667
\(724\) 0 0
\(725\) 34.2334 1.27140
\(726\) 0 0
\(727\) −39.4429 −1.46286 −0.731428 0.681918i \(-0.761146\pi\)
−0.731428 + 0.681918i \(0.761146\pi\)
\(728\) 0 0
\(729\) 28.7461 1.06467
\(730\) 0 0
\(731\) −17.8738 −0.661086
\(732\) 0 0
\(733\) −37.2055 −1.37422 −0.687108 0.726555i \(-0.741120\pi\)
−0.687108 + 0.726555i \(0.741120\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.6984 −0.430918
\(738\) 0 0
\(739\) 24.5703 0.903831 0.451916 0.892061i \(-0.350741\pi\)
0.451916 + 0.892061i \(0.350741\pi\)
\(740\) 0 0
\(741\) −23.2341 −0.853524
\(742\) 0 0
\(743\) −1.84492 −0.0676834 −0.0338417 0.999427i \(-0.510774\pi\)
−0.0338417 + 0.999427i \(0.510774\pi\)
\(744\) 0 0
\(745\) −42.9471 −1.57346
\(746\) 0 0
\(747\) 5.35834 0.196051
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −18.7325 −0.683558 −0.341779 0.939780i \(-0.611029\pi\)
−0.341779 + 0.939780i \(0.611029\pi\)
\(752\) 0 0
\(753\) 38.7502 1.41214
\(754\) 0 0
\(755\) 8.45093 0.307561
\(756\) 0 0
\(757\) −24.7836 −0.900774 −0.450387 0.892834i \(-0.648714\pi\)
−0.450387 + 0.892834i \(0.648714\pi\)
\(758\) 0 0
\(759\) −10.2993 −0.373842
\(760\) 0 0
\(761\) −0.595628 −0.0215915 −0.0107958 0.999942i \(-0.503436\pi\)
−0.0107958 + 0.999942i \(0.503436\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −17.4909 −0.632386
\(766\) 0 0
\(767\) −12.5082 −0.451644
\(768\) 0 0
\(769\) −38.4360 −1.38604 −0.693019 0.720920i \(-0.743720\pi\)
−0.693019 + 0.720920i \(0.743720\pi\)
\(770\) 0 0
\(771\) 10.7406 0.386814
\(772\) 0 0
\(773\) −2.33290 −0.0839086 −0.0419543 0.999120i \(-0.513358\pi\)
−0.0419543 + 0.999120i \(0.513358\pi\)
\(774\) 0 0
\(775\) 30.6043 1.09934
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.01092 0.322850
\(780\) 0 0
\(781\) −9.96284 −0.356498
\(782\) 0 0
\(783\) −33.0914 −1.18259
\(784\) 0 0
\(785\) 28.5743 1.01986
\(786\) 0 0
\(787\) −35.2852 −1.25778 −0.628890 0.777494i \(-0.716490\pi\)
−0.628890 + 0.777494i \(0.716490\pi\)
\(788\) 0 0
\(789\) −14.8915 −0.530150
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −31.6213 −1.12290
\(794\) 0 0
\(795\) −47.4942 −1.68445
\(796\) 0 0
\(797\) 26.1684 0.926933 0.463467 0.886114i \(-0.346605\pi\)
0.463467 + 0.886114i \(0.346605\pi\)
\(798\) 0 0
\(799\) 24.6037 0.870415
\(800\) 0 0
\(801\) −3.52738 −0.124634
\(802\) 0 0
\(803\) −4.71027 −0.166222
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.09633 0.144198
\(808\) 0 0
\(809\) 8.19891 0.288258 0.144129 0.989559i \(-0.453962\pi\)
0.144129 + 0.989559i \(0.453962\pi\)
\(810\) 0 0
\(811\) −31.6920 −1.11286 −0.556429 0.830895i \(-0.687829\pi\)
−0.556429 + 0.830895i \(0.687829\pi\)
\(812\) 0 0
\(813\) 2.76494 0.0969705
\(814\) 0 0
\(815\) 19.9940 0.700360
\(816\) 0 0
\(817\) 22.4409 0.785109
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.97247 0.243341 0.121670 0.992571i \(-0.461175\pi\)
0.121670 + 0.992571i \(0.461175\pi\)
\(822\) 0 0
\(823\) 49.0630 1.71023 0.855115 0.518438i \(-0.173486\pi\)
0.855115 + 0.518438i \(0.173486\pi\)
\(824\) 0 0
\(825\) −10.7293 −0.373548
\(826\) 0 0
\(827\) 51.0207 1.77416 0.887081 0.461614i \(-0.152729\pi\)
0.887081 + 0.461614i \(0.152729\pi\)
\(828\) 0 0
\(829\) 6.24791 0.216999 0.108499 0.994097i \(-0.465395\pi\)
0.108499 + 0.994097i \(0.465395\pi\)
\(830\) 0 0
\(831\) 9.55684 0.331523
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −50.6458 −1.75267
\(836\) 0 0
\(837\) −29.5833 −1.02255
\(838\) 0 0
\(839\) −29.5930 −1.02166 −0.510831 0.859681i \(-0.670662\pi\)
−0.510831 + 0.859681i \(0.670662\pi\)
\(840\) 0 0
\(841\) 5.23040 0.180358
\(842\) 0 0
\(843\) −38.9514 −1.34156
\(844\) 0 0
\(845\) −20.7475 −0.713735
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.5894 0.397749
\(850\) 0 0
\(851\) 45.2368 1.55070
\(852\) 0 0
\(853\) 30.6985 1.05110 0.525548 0.850764i \(-0.323860\pi\)
0.525548 + 0.850764i \(0.323860\pi\)
\(854\) 0 0
\(855\) 21.9602 0.751024
\(856\) 0 0
\(857\) −48.1238 −1.64388 −0.821939 0.569576i \(-0.807108\pi\)
−0.821939 + 0.569576i \(0.807108\pi\)
\(858\) 0 0
\(859\) −18.9605 −0.646925 −0.323462 0.946241i \(-0.604847\pi\)
−0.323462 + 0.946241i \(0.604847\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −29.5822 −1.00699 −0.503495 0.863998i \(-0.667953\pi\)
−0.503495 + 0.863998i \(0.667953\pi\)
\(864\) 0 0
\(865\) 27.3914 0.931335
\(866\) 0 0
\(867\) 12.6987 0.431272
\(868\) 0 0
\(869\) −9.94065 −0.337213
\(870\) 0 0
\(871\) 23.1221 0.783462
\(872\) 0 0
\(873\) −9.46422 −0.320315
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 18.8873 0.637780 0.318890 0.947792i \(-0.396690\pi\)
0.318890 + 0.947792i \(0.396690\pi\)
\(878\) 0 0
\(879\) −8.80271 −0.296908
\(880\) 0 0
\(881\) 4.56470 0.153789 0.0768943 0.997039i \(-0.475500\pi\)
0.0768943 + 0.997039i \(0.475500\pi\)
\(882\) 0 0
\(883\) 25.3199 0.852081 0.426040 0.904704i \(-0.359908\pi\)
0.426040 + 0.904704i \(0.359908\pi\)
\(884\) 0 0
\(885\) −22.2832 −0.749043
\(886\) 0 0
\(887\) −29.3736 −0.986270 −0.493135 0.869953i \(-0.664149\pi\)
−0.493135 + 0.869953i \(0.664149\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 6.28528 0.210565
\(892\) 0 0
\(893\) −30.8904 −1.03371
\(894\) 0 0
\(895\) 49.4992 1.65458
\(896\) 0 0
\(897\) 20.3567 0.679692
\(898\) 0 0
\(899\) 30.6015 1.02062
\(900\) 0 0
\(901\) −52.5822 −1.75177
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −77.2115 −2.56660
\(906\) 0 0
\(907\) −46.0953 −1.53057 −0.765284 0.643692i \(-0.777402\pi\)
−0.765284 + 0.643692i \(0.777402\pi\)
\(908\) 0 0
\(909\) −19.1720 −0.635897
\(910\) 0 0
\(911\) −25.0040 −0.828420 −0.414210 0.910181i \(-0.635942\pi\)
−0.414210 + 0.910181i \(0.635942\pi\)
\(912\) 0 0
\(913\) 6.74872 0.223350
\(914\) 0 0
\(915\) −56.3332 −1.86232
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −57.2666 −1.88905 −0.944526 0.328437i \(-0.893478\pi\)
−0.944526 + 0.328437i \(0.893478\pi\)
\(920\) 0 0
\(921\) −19.3426 −0.637361
\(922\) 0 0
\(923\) 19.6916 0.648158
\(924\) 0 0
\(925\) 47.1255 1.54948
\(926\) 0 0
\(927\) −11.3647 −0.373265
\(928\) 0 0
\(929\) 58.7295 1.92685 0.963427 0.267972i \(-0.0863536\pi\)
0.963427 + 0.267972i \(0.0863536\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −14.1487 −0.463208
\(934\) 0 0
\(935\) −22.0295 −0.720441
\(936\) 0 0
\(937\) −2.21448 −0.0723437 −0.0361719 0.999346i \(-0.511516\pi\)
−0.0361719 + 0.999346i \(0.511516\pi\)
\(938\) 0 0
\(939\) −16.6871 −0.544564
\(940\) 0 0
\(941\) 15.5903 0.508228 0.254114 0.967174i \(-0.418216\pi\)
0.254114 + 0.967174i \(0.418216\pi\)
\(942\) 0 0
\(943\) −7.89501 −0.257097
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.4310 −1.05386 −0.526932 0.849907i \(-0.676658\pi\)
−0.526932 + 0.849907i \(0.676658\pi\)
\(948\) 0 0
\(949\) 9.30989 0.302212
\(950\) 0 0
\(951\) −36.6995 −1.19006
\(952\) 0 0
\(953\) 44.7409 1.44930 0.724650 0.689117i \(-0.242002\pi\)
0.724650 + 0.689117i \(0.242002\pi\)
\(954\) 0 0
\(955\) −22.4813 −0.727479
\(956\) 0 0
\(957\) −10.7284 −0.346800
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −3.64260 −0.117503
\(962\) 0 0
\(963\) 11.4128 0.367773
\(964\) 0 0
\(965\) 20.0954 0.646894
\(966\) 0 0
\(967\) −10.6192 −0.341489 −0.170745 0.985315i \(-0.554617\pi\)
−0.170745 + 0.985315i \(0.554617\pi\)
\(968\) 0 0
\(969\) −45.8255 −1.47213
\(970\) 0 0
\(971\) −39.8498 −1.27884 −0.639420 0.768857i \(-0.720826\pi\)
−0.639420 + 0.768857i \(0.720826\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 21.2067 0.679156
\(976\) 0 0
\(977\) −39.0141 −1.24817 −0.624086 0.781355i \(-0.714529\pi\)
−0.624086 + 0.781355i \(0.714529\pi\)
\(978\) 0 0
\(979\) −4.44267 −0.141988
\(980\) 0 0
\(981\) −10.1972 −0.325572
\(982\) 0 0
\(983\) −53.6270 −1.71043 −0.855217 0.518270i \(-0.826576\pi\)
−0.855217 + 0.518270i \(0.826576\pi\)
\(984\) 0 0
\(985\) 46.3944 1.47825
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −19.6618 −0.625210
\(990\) 0 0
\(991\) −29.1681 −0.926555 −0.463277 0.886213i \(-0.653327\pi\)
−0.463277 + 0.886213i \(0.653327\pi\)
\(992\) 0 0
\(993\) −22.7824 −0.722978
\(994\) 0 0
\(995\) 67.5120 2.14027
\(996\) 0 0
\(997\) 20.2783 0.642219 0.321110 0.947042i \(-0.395944\pi\)
0.321110 + 0.947042i \(0.395944\pi\)
\(998\) 0 0
\(999\) −45.5534 −1.44125
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5488.2.a.h.1.5 6
4.3 odd 2 343.2.a.d.1.4 yes 6
7.6 odd 2 5488.2.a.p.1.2 6
12.11 even 2 3087.2.a.j.1.3 6
20.19 odd 2 8575.2.a.n.1.3 6
28.3 even 6 343.2.c.e.324.3 12
28.11 odd 6 343.2.c.d.324.3 12
28.19 even 6 343.2.c.e.18.3 12
28.23 odd 6 343.2.c.d.18.3 12
28.27 even 2 343.2.a.c.1.4 6
84.83 odd 2 3087.2.a.k.1.3 6
140.139 even 2 8575.2.a.o.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
343.2.a.c.1.4 6 28.27 even 2
343.2.a.d.1.4 yes 6 4.3 odd 2
343.2.c.d.18.3 12 28.23 odd 6
343.2.c.d.324.3 12 28.11 odd 6
343.2.c.e.18.3 12 28.19 even 6
343.2.c.e.324.3 12 28.3 even 6
3087.2.a.j.1.3 6 12.11 even 2
3087.2.a.k.1.3 6 84.83 odd 2
5488.2.a.h.1.5 6 1.1 even 1 trivial
5488.2.a.p.1.2 6 7.6 odd 2
8575.2.a.n.1.3 6 20.19 odd 2
8575.2.a.o.1.3 6 140.139 even 2