Properties

Label 5488.2.a.h.1.3
Level $5488$
Weight $2$
Character 5488.1
Self dual yes
Analytic conductor $43.822$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5488,2,Mod(1,5488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5488.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5488, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5488 = 2^{4} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5488.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-5,0,11,0,0,0,9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.8219006293\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.1279733.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 10x^{3} + 10x^{2} - 11x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 343)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.908891\) of defining polynomial
Character \(\chi\) \(=\) 5488.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.20643 q^{3} -1.84420 q^{5} +1.86834 q^{9} -3.73428 q^{11} +3.52416 q^{13} +4.06910 q^{15} +6.63777 q^{17} -5.54425 q^{19} -0.379398 q^{23} -1.59893 q^{25} +2.49692 q^{27} -3.54898 q^{29} +4.54761 q^{31} +8.23944 q^{33} -11.6650 q^{37} -7.77581 q^{39} +6.30200 q^{41} -6.46316 q^{43} -3.44560 q^{45} -6.14079 q^{47} -14.6458 q^{51} +0.224289 q^{53} +6.88676 q^{55} +12.2330 q^{57} -0.866024 q^{59} +0.566291 q^{61} -6.49924 q^{65} +10.5141 q^{67} +0.837116 q^{69} +0.137550 q^{71} -13.1670 q^{73} +3.52794 q^{75} -3.31595 q^{79} -11.1143 q^{81} -14.9402 q^{83} -12.2414 q^{85} +7.83058 q^{87} +2.14997 q^{89} -10.0340 q^{93} +10.2247 q^{95} -2.84765 q^{97} -6.97693 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 5 q^{3} + 11 q^{5} + 9 q^{9} + q^{11} + 7 q^{13} + 5 q^{15} + 26 q^{17} + 3 q^{19} + 9 q^{23} + 15 q^{25} - 8 q^{27} - 2 q^{29} + 2 q^{31} + 18 q^{33} - 2 q^{37} - 7 q^{39} + 28 q^{41} - 5 q^{43}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.20643 −1.27388 −0.636942 0.770912i \(-0.719801\pi\)
−0.636942 + 0.770912i \(0.719801\pi\)
\(4\) 0 0
\(5\) −1.84420 −0.824751 −0.412375 0.911014i \(-0.635301\pi\)
−0.412375 + 0.911014i \(0.635301\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.86834 0.622781
\(10\) 0 0
\(11\) −3.73428 −1.12593 −0.562964 0.826481i \(-0.690339\pi\)
−0.562964 + 0.826481i \(0.690339\pi\)
\(12\) 0 0
\(13\) 3.52416 0.977425 0.488712 0.872445i \(-0.337467\pi\)
0.488712 + 0.872445i \(0.337467\pi\)
\(14\) 0 0
\(15\) 4.06910 1.05064
\(16\) 0 0
\(17\) 6.63777 1.60989 0.804947 0.593346i \(-0.202193\pi\)
0.804947 + 0.593346i \(0.202193\pi\)
\(18\) 0 0
\(19\) −5.54425 −1.27194 −0.635969 0.771714i \(-0.719399\pi\)
−0.635969 + 0.771714i \(0.719399\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.379398 −0.0791099 −0.0395550 0.999217i \(-0.512594\pi\)
−0.0395550 + 0.999217i \(0.512594\pi\)
\(24\) 0 0
\(25\) −1.59893 −0.319786
\(26\) 0 0
\(27\) 2.49692 0.480533
\(28\) 0 0
\(29\) −3.54898 −0.659029 −0.329514 0.944151i \(-0.606885\pi\)
−0.329514 + 0.944151i \(0.606885\pi\)
\(30\) 0 0
\(31\) 4.54761 0.816775 0.408387 0.912809i \(-0.366091\pi\)
0.408387 + 0.912809i \(0.366091\pi\)
\(32\) 0 0
\(33\) 8.23944 1.43430
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −11.6650 −1.91772 −0.958858 0.283885i \(-0.908376\pi\)
−0.958858 + 0.283885i \(0.908376\pi\)
\(38\) 0 0
\(39\) −7.77581 −1.24513
\(40\) 0 0
\(41\) 6.30200 0.984207 0.492103 0.870537i \(-0.336228\pi\)
0.492103 + 0.870537i \(0.336228\pi\)
\(42\) 0 0
\(43\) −6.46316 −0.985622 −0.492811 0.870136i \(-0.664031\pi\)
−0.492811 + 0.870136i \(0.664031\pi\)
\(44\) 0 0
\(45\) −3.44560 −0.513639
\(46\) 0 0
\(47\) −6.14079 −0.895726 −0.447863 0.894102i \(-0.647815\pi\)
−0.447863 + 0.894102i \(0.647815\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −14.6458 −2.05082
\(52\) 0 0
\(53\) 0.224289 0.0308085 0.0154043 0.999881i \(-0.495096\pi\)
0.0154043 + 0.999881i \(0.495096\pi\)
\(54\) 0 0
\(55\) 6.88676 0.928610
\(56\) 0 0
\(57\) 12.2330 1.62030
\(58\) 0 0
\(59\) −0.866024 −0.112747 −0.0563734 0.998410i \(-0.517954\pi\)
−0.0563734 + 0.998410i \(0.517954\pi\)
\(60\) 0 0
\(61\) 0.566291 0.0725061 0.0362531 0.999343i \(-0.488458\pi\)
0.0362531 + 0.999343i \(0.488458\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.49924 −0.806132
\(66\) 0 0
\(67\) 10.5141 1.28450 0.642248 0.766497i \(-0.278002\pi\)
0.642248 + 0.766497i \(0.278002\pi\)
\(68\) 0 0
\(69\) 0.837116 0.100777
\(70\) 0 0
\(71\) 0.137550 0.0163241 0.00816207 0.999967i \(-0.497402\pi\)
0.00816207 + 0.999967i \(0.497402\pi\)
\(72\) 0 0
\(73\) −13.1670 −1.54108 −0.770541 0.637391i \(-0.780014\pi\)
−0.770541 + 0.637391i \(0.780014\pi\)
\(74\) 0 0
\(75\) 3.52794 0.407371
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.31595 −0.373074 −0.186537 0.982448i \(-0.559726\pi\)
−0.186537 + 0.982448i \(0.559726\pi\)
\(80\) 0 0
\(81\) −11.1143 −1.23492
\(82\) 0 0
\(83\) −14.9402 −1.63990 −0.819950 0.572435i \(-0.805999\pi\)
−0.819950 + 0.572435i \(0.805999\pi\)
\(84\) 0 0
\(85\) −12.2414 −1.32776
\(86\) 0 0
\(87\) 7.83058 0.839526
\(88\) 0 0
\(89\) 2.14997 0.227896 0.113948 0.993487i \(-0.463650\pi\)
0.113948 + 0.993487i \(0.463650\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −10.0340 −1.04048
\(94\) 0 0
\(95\) 10.2247 1.04903
\(96\) 0 0
\(97\) −2.84765 −0.289135 −0.144568 0.989495i \(-0.546179\pi\)
−0.144568 + 0.989495i \(0.546179\pi\)
\(98\) 0 0
\(99\) −6.97693 −0.701207
\(100\) 0 0
\(101\) −3.80643 −0.378753 −0.189377 0.981905i \(-0.560647\pi\)
−0.189377 + 0.981905i \(0.560647\pi\)
\(102\) 0 0
\(103\) −0.283953 −0.0279787 −0.0139893 0.999902i \(-0.504453\pi\)
−0.0139893 + 0.999902i \(0.504453\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.97848 −0.481288 −0.240644 0.970614i \(-0.577359\pi\)
−0.240644 + 0.970614i \(0.577359\pi\)
\(108\) 0 0
\(109\) 10.7863 1.03314 0.516571 0.856244i \(-0.327208\pi\)
0.516571 + 0.856244i \(0.327208\pi\)
\(110\) 0 0
\(111\) 25.7381 2.44295
\(112\) 0 0
\(113\) −13.0423 −1.22692 −0.613460 0.789726i \(-0.710223\pi\)
−0.613460 + 0.789726i \(0.710223\pi\)
\(114\) 0 0
\(115\) 0.699685 0.0652459
\(116\) 0 0
\(117\) 6.58434 0.608722
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.94486 0.267715
\(122\) 0 0
\(123\) −13.9049 −1.25377
\(124\) 0 0
\(125\) 12.1697 1.08849
\(126\) 0 0
\(127\) 16.5277 1.46660 0.733300 0.679905i \(-0.237979\pi\)
0.733300 + 0.679905i \(0.237979\pi\)
\(128\) 0 0
\(129\) 14.2605 1.25557
\(130\) 0 0
\(131\) 10.7096 0.935698 0.467849 0.883808i \(-0.345029\pi\)
0.467849 + 0.883808i \(0.345029\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −4.60482 −0.396320
\(136\) 0 0
\(137\) −10.0277 −0.856722 −0.428361 0.903608i \(-0.640909\pi\)
−0.428361 + 0.903608i \(0.640909\pi\)
\(138\) 0 0
\(139\) 19.2745 1.63484 0.817421 0.576040i \(-0.195403\pi\)
0.817421 + 0.576040i \(0.195403\pi\)
\(140\) 0 0
\(141\) 13.5492 1.14105
\(142\) 0 0
\(143\) −13.1602 −1.10051
\(144\) 0 0
\(145\) 6.54502 0.543534
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.85089 0.725093 0.362546 0.931966i \(-0.381907\pi\)
0.362546 + 0.931966i \(0.381907\pi\)
\(150\) 0 0
\(151\) −0.492465 −0.0400762 −0.0200381 0.999799i \(-0.506379\pi\)
−0.0200381 + 0.999799i \(0.506379\pi\)
\(152\) 0 0
\(153\) 12.4016 1.00261
\(154\) 0 0
\(155\) −8.38669 −0.673635
\(156\) 0 0
\(157\) −7.46685 −0.595920 −0.297960 0.954578i \(-0.596306\pi\)
−0.297960 + 0.954578i \(0.596306\pi\)
\(158\) 0 0
\(159\) −0.494879 −0.0392465
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.25350 0.254834 0.127417 0.991849i \(-0.459331\pi\)
0.127417 + 0.991849i \(0.459331\pi\)
\(164\) 0 0
\(165\) −15.1952 −1.18294
\(166\) 0 0
\(167\) 6.52270 0.504742 0.252371 0.967631i \(-0.418790\pi\)
0.252371 + 0.967631i \(0.418790\pi\)
\(168\) 0 0
\(169\) −0.580329 −0.0446407
\(170\) 0 0
\(171\) −10.3586 −0.792140
\(172\) 0 0
\(173\) 7.80621 0.593495 0.296748 0.954956i \(-0.404098\pi\)
0.296748 + 0.954956i \(0.404098\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.91082 0.143626
\(178\) 0 0
\(179\) 0.743131 0.0555442 0.0277721 0.999614i \(-0.491159\pi\)
0.0277721 + 0.999614i \(0.491159\pi\)
\(180\) 0 0
\(181\) 1.36991 0.101824 0.0509122 0.998703i \(-0.483787\pi\)
0.0509122 + 0.998703i \(0.483787\pi\)
\(182\) 0 0
\(183\) −1.24948 −0.0923644
\(184\) 0 0
\(185\) 21.5126 1.58164
\(186\) 0 0
\(187\) −24.7873 −1.81263
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.58544 0.259434 0.129717 0.991551i \(-0.458593\pi\)
0.129717 + 0.991551i \(0.458593\pi\)
\(192\) 0 0
\(193\) 16.4604 1.18485 0.592423 0.805627i \(-0.298171\pi\)
0.592423 + 0.805627i \(0.298171\pi\)
\(194\) 0 0
\(195\) 14.3401 1.02692
\(196\) 0 0
\(197\) 10.3112 0.734641 0.367320 0.930094i \(-0.380275\pi\)
0.367320 + 0.930094i \(0.380275\pi\)
\(198\) 0 0
\(199\) −19.6837 −1.39534 −0.697669 0.716421i \(-0.745779\pi\)
−0.697669 + 0.716421i \(0.745779\pi\)
\(200\) 0 0
\(201\) −23.1986 −1.63630
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −11.6221 −0.811725
\(206\) 0 0
\(207\) −0.708846 −0.0492682
\(208\) 0 0
\(209\) 20.7038 1.43211
\(210\) 0 0
\(211\) −7.19588 −0.495385 −0.247692 0.968839i \(-0.579672\pi\)
−0.247692 + 0.968839i \(0.579672\pi\)
\(212\) 0 0
\(213\) −0.303494 −0.0207951
\(214\) 0 0
\(215\) 11.9193 0.812892
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 29.0521 1.96316
\(220\) 0 0
\(221\) 23.3925 1.57355
\(222\) 0 0
\(223\) −1.62864 −0.109062 −0.0545309 0.998512i \(-0.517366\pi\)
−0.0545309 + 0.998512i \(0.517366\pi\)
\(224\) 0 0
\(225\) −2.98736 −0.199157
\(226\) 0 0
\(227\) 3.73215 0.247711 0.123856 0.992300i \(-0.460474\pi\)
0.123856 + 0.992300i \(0.460474\pi\)
\(228\) 0 0
\(229\) −25.5932 −1.69125 −0.845624 0.533779i \(-0.820771\pi\)
−0.845624 + 0.533779i \(0.820771\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.74090 0.638148 0.319074 0.947730i \(-0.396628\pi\)
0.319074 + 0.947730i \(0.396628\pi\)
\(234\) 0 0
\(235\) 11.3248 0.738751
\(236\) 0 0
\(237\) 7.31643 0.475253
\(238\) 0 0
\(239\) 29.9105 1.93475 0.967376 0.253345i \(-0.0815306\pi\)
0.967376 + 0.253345i \(0.0815306\pi\)
\(240\) 0 0
\(241\) 0.780930 0.0503041 0.0251521 0.999684i \(-0.491993\pi\)
0.0251521 + 0.999684i \(0.491993\pi\)
\(242\) 0 0
\(243\) 17.0322 1.09262
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −19.5388 −1.24322
\(248\) 0 0
\(249\) 32.9646 2.08904
\(250\) 0 0
\(251\) 15.2681 0.963713 0.481857 0.876250i \(-0.339963\pi\)
0.481857 + 0.876250i \(0.339963\pi\)
\(252\) 0 0
\(253\) 1.41678 0.0890721
\(254\) 0 0
\(255\) 27.0097 1.69141
\(256\) 0 0
\(257\) 0.336019 0.0209603 0.0104801 0.999945i \(-0.496664\pi\)
0.0104801 + 0.999945i \(0.496664\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.63071 −0.410431
\(262\) 0 0
\(263\) 6.60022 0.406987 0.203494 0.979076i \(-0.434770\pi\)
0.203494 + 0.979076i \(0.434770\pi\)
\(264\) 0 0
\(265\) −0.413634 −0.0254093
\(266\) 0 0
\(267\) −4.74377 −0.290314
\(268\) 0 0
\(269\) −17.5132 −1.06780 −0.533901 0.845547i \(-0.679274\pi\)
−0.533901 + 0.845547i \(0.679274\pi\)
\(270\) 0 0
\(271\) 21.2849 1.29296 0.646482 0.762929i \(-0.276239\pi\)
0.646482 + 0.762929i \(0.276239\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.97086 0.360057
\(276\) 0 0
\(277\) −0.845076 −0.0507757 −0.0253878 0.999678i \(-0.508082\pi\)
−0.0253878 + 0.999678i \(0.508082\pi\)
\(278\) 0 0
\(279\) 8.49650 0.508672
\(280\) 0 0
\(281\) 0.184609 0.0110129 0.00550643 0.999985i \(-0.498247\pi\)
0.00550643 + 0.999985i \(0.498247\pi\)
\(282\) 0 0
\(283\) 11.9908 0.712780 0.356390 0.934337i \(-0.384007\pi\)
0.356390 + 0.934337i \(0.384007\pi\)
\(284\) 0 0
\(285\) −22.5601 −1.33635
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 27.0599 1.59176
\(290\) 0 0
\(291\) 6.28316 0.368325
\(292\) 0 0
\(293\) 21.4080 1.25067 0.625334 0.780358i \(-0.284963\pi\)
0.625334 + 0.780358i \(0.284963\pi\)
\(294\) 0 0
\(295\) 1.59712 0.0929880
\(296\) 0 0
\(297\) −9.32421 −0.541046
\(298\) 0 0
\(299\) −1.33706 −0.0773240
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 8.39862 0.482488
\(304\) 0 0
\(305\) −1.04435 −0.0597995
\(306\) 0 0
\(307\) 4.24526 0.242290 0.121145 0.992635i \(-0.461343\pi\)
0.121145 + 0.992635i \(0.461343\pi\)
\(308\) 0 0
\(309\) 0.626522 0.0356416
\(310\) 0 0
\(311\) 5.54344 0.314340 0.157170 0.987572i \(-0.449763\pi\)
0.157170 + 0.987572i \(0.449763\pi\)
\(312\) 0 0
\(313\) 8.07170 0.456239 0.228120 0.973633i \(-0.426742\pi\)
0.228120 + 0.973633i \(0.426742\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.52010 0.534702 0.267351 0.963599i \(-0.413852\pi\)
0.267351 + 0.963599i \(0.413852\pi\)
\(318\) 0 0
\(319\) 13.2529 0.742019
\(320\) 0 0
\(321\) 10.9847 0.613105
\(322\) 0 0
\(323\) −36.8014 −2.04769
\(324\) 0 0
\(325\) −5.63489 −0.312567
\(326\) 0 0
\(327\) −23.7993 −1.31610
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.956186 −0.0525567 −0.0262784 0.999655i \(-0.508366\pi\)
−0.0262784 + 0.999655i \(0.508366\pi\)
\(332\) 0 0
\(333\) −21.7943 −1.19432
\(334\) 0 0
\(335\) −19.3900 −1.05939
\(336\) 0 0
\(337\) −1.86777 −0.101744 −0.0508720 0.998705i \(-0.516200\pi\)
−0.0508720 + 0.998705i \(0.516200\pi\)
\(338\) 0 0
\(339\) 28.7770 1.56295
\(340\) 0 0
\(341\) −16.9821 −0.919630
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.54381 −0.0831158
\(346\) 0 0
\(347\) −18.5068 −0.993499 −0.496750 0.867894i \(-0.665473\pi\)
−0.496750 + 0.867894i \(0.665473\pi\)
\(348\) 0 0
\(349\) −13.8862 −0.743311 −0.371656 0.928371i \(-0.621210\pi\)
−0.371656 + 0.928371i \(0.621210\pi\)
\(350\) 0 0
\(351\) 8.79954 0.469685
\(352\) 0 0
\(353\) 31.1881 1.65997 0.829987 0.557783i \(-0.188348\pi\)
0.829987 + 0.557783i \(0.188348\pi\)
\(354\) 0 0
\(355\) −0.253669 −0.0134633
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.64177 0.139427 0.0697136 0.997567i \(-0.477791\pi\)
0.0697136 + 0.997567i \(0.477791\pi\)
\(360\) 0 0
\(361\) 11.7387 0.617827
\(362\) 0 0
\(363\) −6.49764 −0.341038
\(364\) 0 0
\(365\) 24.2826 1.27101
\(366\) 0 0
\(367\) −11.6596 −0.608626 −0.304313 0.952572i \(-0.598427\pi\)
−0.304313 + 0.952572i \(0.598427\pi\)
\(368\) 0 0
\(369\) 11.7743 0.612946
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.0116 −1.13972 −0.569859 0.821743i \(-0.693002\pi\)
−0.569859 + 0.821743i \(0.693002\pi\)
\(374\) 0 0
\(375\) −26.8517 −1.38662
\(376\) 0 0
\(377\) −12.5071 −0.644151
\(378\) 0 0
\(379\) −17.4248 −0.895054 −0.447527 0.894270i \(-0.647695\pi\)
−0.447527 + 0.894270i \(0.647695\pi\)
\(380\) 0 0
\(381\) −36.4673 −1.86828
\(382\) 0 0
\(383\) 8.16376 0.417149 0.208574 0.978007i \(-0.433118\pi\)
0.208574 + 0.978007i \(0.433118\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.0754 −0.613827
\(388\) 0 0
\(389\) −21.6439 −1.09739 −0.548696 0.836022i \(-0.684876\pi\)
−0.548696 + 0.836022i \(0.684876\pi\)
\(390\) 0 0
\(391\) −2.51835 −0.127359
\(392\) 0 0
\(393\) −23.6299 −1.19197
\(394\) 0 0
\(395\) 6.11528 0.307693
\(396\) 0 0
\(397\) 35.6323 1.78834 0.894168 0.447731i \(-0.147768\pi\)
0.894168 + 0.447731i \(0.147768\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.6190 1.17948 0.589739 0.807594i \(-0.299231\pi\)
0.589739 + 0.807594i \(0.299231\pi\)
\(402\) 0 0
\(403\) 16.0265 0.798336
\(404\) 0 0
\(405\) 20.4970 1.01850
\(406\) 0 0
\(407\) 43.5605 2.15921
\(408\) 0 0
\(409\) 16.3760 0.809740 0.404870 0.914374i \(-0.367317\pi\)
0.404870 + 0.914374i \(0.367317\pi\)
\(410\) 0 0
\(411\) 22.1254 1.09136
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 27.5527 1.35251
\(416\) 0 0
\(417\) −42.5279 −2.08260
\(418\) 0 0
\(419\) 36.1778 1.76740 0.883700 0.468053i \(-0.155045\pi\)
0.883700 + 0.468053i \(0.155045\pi\)
\(420\) 0 0
\(421\) −28.8191 −1.40456 −0.702279 0.711901i \(-0.747834\pi\)
−0.702279 + 0.711901i \(0.747834\pi\)
\(422\) 0 0
\(423\) −11.4731 −0.557842
\(424\) 0 0
\(425\) −10.6133 −0.514823
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 29.0371 1.40192
\(430\) 0 0
\(431\) 13.3922 0.645081 0.322541 0.946556i \(-0.395463\pi\)
0.322541 + 0.946556i \(0.395463\pi\)
\(432\) 0 0
\(433\) 27.0966 1.30218 0.651090 0.759001i \(-0.274312\pi\)
0.651090 + 0.759001i \(0.274312\pi\)
\(434\) 0 0
\(435\) −14.4411 −0.692400
\(436\) 0 0
\(437\) 2.10348 0.100623
\(438\) 0 0
\(439\) −20.7508 −0.990384 −0.495192 0.868784i \(-0.664902\pi\)
−0.495192 + 0.868784i \(0.664902\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 31.2488 1.48467 0.742337 0.670027i \(-0.233717\pi\)
0.742337 + 0.670027i \(0.233717\pi\)
\(444\) 0 0
\(445\) −3.96497 −0.187958
\(446\) 0 0
\(447\) −19.5289 −0.923684
\(448\) 0 0
\(449\) −22.4427 −1.05914 −0.529569 0.848267i \(-0.677646\pi\)
−0.529569 + 0.848267i \(0.677646\pi\)
\(450\) 0 0
\(451\) −23.5334 −1.10815
\(452\) 0 0
\(453\) 1.08659 0.0510525
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.3509 1.32620 0.663100 0.748531i \(-0.269241\pi\)
0.663100 + 0.748531i \(0.269241\pi\)
\(458\) 0 0
\(459\) 16.5740 0.773607
\(460\) 0 0
\(461\) 5.42872 0.252841 0.126420 0.991977i \(-0.459651\pi\)
0.126420 + 0.991977i \(0.459651\pi\)
\(462\) 0 0
\(463\) −5.13489 −0.238638 −0.119319 0.992856i \(-0.538071\pi\)
−0.119319 + 0.992856i \(0.538071\pi\)
\(464\) 0 0
\(465\) 18.5047 0.858134
\(466\) 0 0
\(467\) 30.2927 1.40178 0.700889 0.713270i \(-0.252787\pi\)
0.700889 + 0.713270i \(0.252787\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 16.4751 0.759133
\(472\) 0 0
\(473\) 24.1352 1.10974
\(474\) 0 0
\(475\) 8.86488 0.406749
\(476\) 0 0
\(477\) 0.419050 0.0191870
\(478\) 0 0
\(479\) −25.1959 −1.15123 −0.575616 0.817720i \(-0.695238\pi\)
−0.575616 + 0.817720i \(0.695238\pi\)
\(480\) 0 0
\(481\) −41.1093 −1.87442
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.25164 0.238465
\(486\) 0 0
\(487\) −24.3018 −1.10122 −0.550609 0.834763i \(-0.685604\pi\)
−0.550609 + 0.834763i \(0.685604\pi\)
\(488\) 0 0
\(489\) −7.17864 −0.324629
\(490\) 0 0
\(491\) 27.5779 1.24457 0.622286 0.782790i \(-0.286204\pi\)
0.622286 + 0.782790i \(0.286204\pi\)
\(492\) 0 0
\(493\) −23.5573 −1.06097
\(494\) 0 0
\(495\) 12.8668 0.578321
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 26.6883 1.19473 0.597366 0.801969i \(-0.296214\pi\)
0.597366 + 0.801969i \(0.296214\pi\)
\(500\) 0 0
\(501\) −14.3919 −0.642983
\(502\) 0 0
\(503\) 32.4635 1.44747 0.723737 0.690076i \(-0.242423\pi\)
0.723737 + 0.690076i \(0.242423\pi\)
\(504\) 0 0
\(505\) 7.01980 0.312377
\(506\) 0 0
\(507\) 1.28046 0.0568670
\(508\) 0 0
\(509\) 40.4630 1.79349 0.896745 0.442547i \(-0.145925\pi\)
0.896745 + 0.442547i \(0.145925\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −13.8436 −0.611208
\(514\) 0 0
\(515\) 0.523665 0.0230754
\(516\) 0 0
\(517\) 22.9314 1.00852
\(518\) 0 0
\(519\) −17.2239 −0.756044
\(520\) 0 0
\(521\) 21.1552 0.926827 0.463413 0.886142i \(-0.346624\pi\)
0.463413 + 0.886142i \(0.346624\pi\)
\(522\) 0 0
\(523\) −7.87515 −0.344356 −0.172178 0.985066i \(-0.555080\pi\)
−0.172178 + 0.985066i \(0.555080\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 30.1860 1.31492
\(528\) 0 0
\(529\) −22.8561 −0.993742
\(530\) 0 0
\(531\) −1.61803 −0.0702166
\(532\) 0 0
\(533\) 22.2092 0.961988
\(534\) 0 0
\(535\) 9.18130 0.396942
\(536\) 0 0
\(537\) −1.63967 −0.0707569
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 26.8628 1.15492 0.577462 0.816418i \(-0.304043\pi\)
0.577462 + 0.816418i \(0.304043\pi\)
\(542\) 0 0
\(543\) −3.02261 −0.129712
\(544\) 0 0
\(545\) −19.8921 −0.852084
\(546\) 0 0
\(547\) −41.5859 −1.77808 −0.889042 0.457826i \(-0.848628\pi\)
−0.889042 + 0.457826i \(0.848628\pi\)
\(548\) 0 0
\(549\) 1.05803 0.0451555
\(550\) 0 0
\(551\) 19.6764 0.838244
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −47.4661 −2.01482
\(556\) 0 0
\(557\) 40.8401 1.73045 0.865226 0.501382i \(-0.167175\pi\)
0.865226 + 0.501382i \(0.167175\pi\)
\(558\) 0 0
\(559\) −22.7772 −0.963372
\(560\) 0 0
\(561\) 54.6915 2.30908
\(562\) 0 0
\(563\) −31.7933 −1.33993 −0.669964 0.742394i \(-0.733690\pi\)
−0.669964 + 0.742394i \(0.733690\pi\)
\(564\) 0 0
\(565\) 24.0526 1.01190
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −39.6010 −1.66016 −0.830080 0.557645i \(-0.811705\pi\)
−0.830080 + 0.557645i \(0.811705\pi\)
\(570\) 0 0
\(571\) −26.8217 −1.12245 −0.561226 0.827662i \(-0.689670\pi\)
−0.561226 + 0.827662i \(0.689670\pi\)
\(572\) 0 0
\(573\) −7.91104 −0.330488
\(574\) 0 0
\(575\) 0.606631 0.0252983
\(576\) 0 0
\(577\) 23.7753 0.989778 0.494889 0.868956i \(-0.335209\pi\)
0.494889 + 0.868956i \(0.335209\pi\)
\(578\) 0 0
\(579\) −36.3188 −1.50936
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.837560 −0.0346882
\(584\) 0 0
\(585\) −12.1428 −0.502044
\(586\) 0 0
\(587\) 5.32973 0.219982 0.109991 0.993933i \(-0.464918\pi\)
0.109991 + 0.993933i \(0.464918\pi\)
\(588\) 0 0
\(589\) −25.2131 −1.03889
\(590\) 0 0
\(591\) −22.7509 −0.935847
\(592\) 0 0
\(593\) 15.9452 0.654792 0.327396 0.944887i \(-0.393829\pi\)
0.327396 + 0.944887i \(0.393829\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 43.4306 1.77750
\(598\) 0 0
\(599\) 30.0532 1.22794 0.613971 0.789329i \(-0.289571\pi\)
0.613971 + 0.789329i \(0.289571\pi\)
\(600\) 0 0
\(601\) 26.2894 1.07237 0.536183 0.844102i \(-0.319866\pi\)
0.536183 + 0.844102i \(0.319866\pi\)
\(602\) 0 0
\(603\) 19.6439 0.799960
\(604\) 0 0
\(605\) −5.43091 −0.220798
\(606\) 0 0
\(607\) 17.5340 0.711683 0.355841 0.934546i \(-0.384194\pi\)
0.355841 + 0.934546i \(0.384194\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.6411 −0.875505
\(612\) 0 0
\(613\) −13.6953 −0.553148 −0.276574 0.960993i \(-0.589199\pi\)
−0.276574 + 0.960993i \(0.589199\pi\)
\(614\) 0 0
\(615\) 25.6435 1.03404
\(616\) 0 0
\(617\) 38.9699 1.56887 0.784435 0.620211i \(-0.212953\pi\)
0.784435 + 0.620211i \(0.212953\pi\)
\(618\) 0 0
\(619\) 19.2030 0.771835 0.385918 0.922533i \(-0.373885\pi\)
0.385918 + 0.922533i \(0.373885\pi\)
\(620\) 0 0
\(621\) −0.947327 −0.0380149
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −14.4488 −0.577950
\(626\) 0 0
\(627\) −45.6815 −1.82434
\(628\) 0 0
\(629\) −77.4296 −3.08732
\(630\) 0 0
\(631\) 6.72503 0.267719 0.133860 0.991000i \(-0.457263\pi\)
0.133860 + 0.991000i \(0.457263\pi\)
\(632\) 0 0
\(633\) 15.8772 0.631063
\(634\) 0 0
\(635\) −30.4804 −1.20958
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.256990 0.0101664
\(640\) 0 0
\(641\) 1.87232 0.0739522 0.0369761 0.999316i \(-0.488227\pi\)
0.0369761 + 0.999316i \(0.488227\pi\)
\(642\) 0 0
\(643\) −12.7541 −0.502974 −0.251487 0.967861i \(-0.580920\pi\)
−0.251487 + 0.967861i \(0.580920\pi\)
\(644\) 0 0
\(645\) −26.2992 −1.03553
\(646\) 0 0
\(647\) 27.5115 1.08159 0.540795 0.841154i \(-0.318123\pi\)
0.540795 + 0.841154i \(0.318123\pi\)
\(648\) 0 0
\(649\) 3.23398 0.126945
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −42.6671 −1.66969 −0.834847 0.550482i \(-0.814444\pi\)
−0.834847 + 0.550482i \(0.814444\pi\)
\(654\) 0 0
\(655\) −19.7505 −0.771717
\(656\) 0 0
\(657\) −24.6005 −0.959757
\(658\) 0 0
\(659\) 1.61927 0.0630777 0.0315388 0.999503i \(-0.489959\pi\)
0.0315388 + 0.999503i \(0.489959\pi\)
\(660\) 0 0
\(661\) −31.7881 −1.23641 −0.618207 0.786016i \(-0.712141\pi\)
−0.618207 + 0.786016i \(0.712141\pi\)
\(662\) 0 0
\(663\) −51.6140 −2.00452
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.34647 0.0521357
\(668\) 0 0
\(669\) 3.59348 0.138932
\(670\) 0 0
\(671\) −2.11469 −0.0816367
\(672\) 0 0
\(673\) −4.13772 −0.159497 −0.0797487 0.996815i \(-0.525412\pi\)
−0.0797487 + 0.996815i \(0.525412\pi\)
\(674\) 0 0
\(675\) −3.99241 −0.153668
\(676\) 0 0
\(677\) 28.5136 1.09587 0.547933 0.836522i \(-0.315415\pi\)
0.547933 + 0.836522i \(0.315415\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −8.23473 −0.315555
\(682\) 0 0
\(683\) 16.3795 0.626743 0.313372 0.949631i \(-0.398541\pi\)
0.313372 + 0.949631i \(0.398541\pi\)
\(684\) 0 0
\(685\) 18.4930 0.706582
\(686\) 0 0
\(687\) 56.4697 2.15445
\(688\) 0 0
\(689\) 0.790430 0.0301130
\(690\) 0 0
\(691\) −28.8843 −1.09881 −0.549406 0.835555i \(-0.685146\pi\)
−0.549406 + 0.835555i \(0.685146\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −35.5460 −1.34834
\(696\) 0 0
\(697\) 41.8312 1.58447
\(698\) 0 0
\(699\) −21.4926 −0.812926
\(700\) 0 0
\(701\) −14.4916 −0.547338 −0.273669 0.961824i \(-0.588237\pi\)
−0.273669 + 0.961824i \(0.588237\pi\)
\(702\) 0 0
\(703\) 64.6738 2.43922
\(704\) 0 0
\(705\) −24.9875 −0.941083
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.96069 0.148747 0.0743735 0.997230i \(-0.476304\pi\)
0.0743735 + 0.997230i \(0.476304\pi\)
\(710\) 0 0
\(711\) −6.19534 −0.232344
\(712\) 0 0
\(713\) −1.72535 −0.0646150
\(714\) 0 0
\(715\) 24.2700 0.907647
\(716\) 0 0
\(717\) −65.9956 −2.46465
\(718\) 0 0
\(719\) −13.3939 −0.499508 −0.249754 0.968309i \(-0.580350\pi\)
−0.249754 + 0.968309i \(0.580350\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.72307 −0.0640816
\(724\) 0 0
\(725\) 5.67457 0.210748
\(726\) 0 0
\(727\) −5.08669 −0.188655 −0.0943275 0.995541i \(-0.530070\pi\)
−0.0943275 + 0.995541i \(0.530070\pi\)
\(728\) 0 0
\(729\) −4.23751 −0.156945
\(730\) 0 0
\(731\) −42.9009 −1.58675
\(732\) 0 0
\(733\) −46.0447 −1.70070 −0.850351 0.526217i \(-0.823610\pi\)
−0.850351 + 0.526217i \(0.823610\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39.2624 −1.44625
\(738\) 0 0
\(739\) 8.62542 0.317291 0.158646 0.987336i \(-0.449287\pi\)
0.158646 + 0.987336i \(0.449287\pi\)
\(740\) 0 0
\(741\) 43.1110 1.58372
\(742\) 0 0
\(743\) −47.1158 −1.72851 −0.864255 0.503054i \(-0.832210\pi\)
−0.864255 + 0.503054i \(0.832210\pi\)
\(744\) 0 0
\(745\) −16.3228 −0.598021
\(746\) 0 0
\(747\) −27.9134 −1.02130
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −44.0986 −1.60918 −0.804591 0.593830i \(-0.797615\pi\)
−0.804591 + 0.593830i \(0.797615\pi\)
\(752\) 0 0
\(753\) −33.6880 −1.22766
\(754\) 0 0
\(755\) 0.908203 0.0330529
\(756\) 0 0
\(757\) 16.0489 0.583309 0.291654 0.956524i \(-0.405794\pi\)
0.291654 + 0.956524i \(0.405794\pi\)
\(758\) 0 0
\(759\) −3.12603 −0.113468
\(760\) 0 0
\(761\) 33.3388 1.20853 0.604266 0.796783i \(-0.293466\pi\)
0.604266 + 0.796783i \(0.293466\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −22.8711 −0.826905
\(766\) 0 0
\(767\) −3.05200 −0.110201
\(768\) 0 0
\(769\) −24.5500 −0.885296 −0.442648 0.896695i \(-0.645961\pi\)
−0.442648 + 0.896695i \(0.645961\pi\)
\(770\) 0 0
\(771\) −0.741404 −0.0267010
\(772\) 0 0
\(773\) −2.90051 −0.104324 −0.0521621 0.998639i \(-0.516611\pi\)
−0.0521621 + 0.998639i \(0.516611\pi\)
\(774\) 0 0
\(775\) −7.27132 −0.261193
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −34.9399 −1.25185
\(780\) 0 0
\(781\) −0.513649 −0.0183798
\(782\) 0 0
\(783\) −8.86152 −0.316685
\(784\) 0 0
\(785\) 13.7704 0.491485
\(786\) 0 0
\(787\) 33.7397 1.20269 0.601345 0.798989i \(-0.294632\pi\)
0.601345 + 0.798989i \(0.294632\pi\)
\(788\) 0 0
\(789\) −14.5629 −0.518455
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.99570 0.0708693
\(794\) 0 0
\(795\) 0.912655 0.0323686
\(796\) 0 0
\(797\) −30.9331 −1.09571 −0.547853 0.836575i \(-0.684555\pi\)
−0.547853 + 0.836575i \(0.684555\pi\)
\(798\) 0 0
\(799\) −40.7611 −1.44202
\(800\) 0 0
\(801\) 4.01689 0.141930
\(802\) 0 0
\(803\) 49.1693 1.73515
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 38.6418 1.36026
\(808\) 0 0
\(809\) 13.1237 0.461404 0.230702 0.973024i \(-0.425898\pi\)
0.230702 + 0.973024i \(0.425898\pi\)
\(810\) 0 0
\(811\) −4.05213 −0.142289 −0.0711447 0.997466i \(-0.522665\pi\)
−0.0711447 + 0.997466i \(0.522665\pi\)
\(812\) 0 0
\(813\) −46.9637 −1.64709
\(814\) 0 0
\(815\) −6.00011 −0.210175
\(816\) 0 0
\(817\) 35.8334 1.25365
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.1792 1.08816 0.544081 0.839032i \(-0.316878\pi\)
0.544081 + 0.839032i \(0.316878\pi\)
\(822\) 0 0
\(823\) 13.9653 0.486800 0.243400 0.969926i \(-0.421737\pi\)
0.243400 + 0.969926i \(0.421737\pi\)
\(824\) 0 0
\(825\) −13.1743 −0.458671
\(826\) 0 0
\(827\) 10.2868 0.357707 0.178853 0.983876i \(-0.442761\pi\)
0.178853 + 0.983876i \(0.442761\pi\)
\(828\) 0 0
\(829\) −5.41383 −0.188030 −0.0940150 0.995571i \(-0.529970\pi\)
−0.0940150 + 0.995571i \(0.529970\pi\)
\(830\) 0 0
\(831\) 1.86460 0.0646823
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −12.0292 −0.416286
\(836\) 0 0
\(837\) 11.3550 0.392487
\(838\) 0 0
\(839\) −36.3155 −1.25375 −0.626875 0.779120i \(-0.715666\pi\)
−0.626875 + 0.779120i \(0.715666\pi\)
\(840\) 0 0
\(841\) −16.4048 −0.565681
\(842\) 0 0
\(843\) −0.407328 −0.0140291
\(844\) 0 0
\(845\) 1.07024 0.0368174
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −26.4569 −0.907999
\(850\) 0 0
\(851\) 4.42568 0.151710
\(852\) 0 0
\(853\) −47.6293 −1.63080 −0.815398 0.578901i \(-0.803482\pi\)
−0.815398 + 0.578901i \(0.803482\pi\)
\(854\) 0 0
\(855\) 19.1033 0.653318
\(856\) 0 0
\(857\) 6.32479 0.216051 0.108025 0.994148i \(-0.465547\pi\)
0.108025 + 0.994148i \(0.465547\pi\)
\(858\) 0 0
\(859\) 17.1359 0.584668 0.292334 0.956316i \(-0.405568\pi\)
0.292334 + 0.956316i \(0.405568\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −35.5864 −1.21138 −0.605688 0.795702i \(-0.707102\pi\)
−0.605688 + 0.795702i \(0.707102\pi\)
\(864\) 0 0
\(865\) −14.3962 −0.489486
\(866\) 0 0
\(867\) −59.7059 −2.02772
\(868\) 0 0
\(869\) 12.3827 0.420055
\(870\) 0 0
\(871\) 37.0532 1.25550
\(872\) 0 0
\(873\) −5.32040 −0.180068
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9.35708 −0.315966 −0.157983 0.987442i \(-0.550499\pi\)
−0.157983 + 0.987442i \(0.550499\pi\)
\(878\) 0 0
\(879\) −47.2353 −1.59321
\(880\) 0 0
\(881\) −8.26401 −0.278422 −0.139211 0.990263i \(-0.544457\pi\)
−0.139211 + 0.990263i \(0.544457\pi\)
\(882\) 0 0
\(883\) −27.8225 −0.936301 −0.468151 0.883649i \(-0.655080\pi\)
−0.468151 + 0.883649i \(0.655080\pi\)
\(884\) 0 0
\(885\) −3.52394 −0.118456
\(886\) 0 0
\(887\) 4.18643 0.140567 0.0702833 0.997527i \(-0.477610\pi\)
0.0702833 + 0.997527i \(0.477610\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 41.5040 1.39044
\(892\) 0 0
\(893\) 34.0461 1.13931
\(894\) 0 0
\(895\) −1.37048 −0.0458101
\(896\) 0 0
\(897\) 2.95013 0.0985018
\(898\) 0 0
\(899\) −16.1394 −0.538278
\(900\) 0 0
\(901\) 1.48878 0.0495985
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.52638 −0.0839797
\(906\) 0 0
\(907\) 6.94057 0.230458 0.115229 0.993339i \(-0.463240\pi\)
0.115229 + 0.993339i \(0.463240\pi\)
\(908\) 0 0
\(909\) −7.11171 −0.235881
\(910\) 0 0
\(911\) −21.7159 −0.719480 −0.359740 0.933053i \(-0.617135\pi\)
−0.359740 + 0.933053i \(0.617135\pi\)
\(912\) 0 0
\(913\) 55.7909 1.84641
\(914\) 0 0
\(915\) 2.30429 0.0761776
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 8.02713 0.264790 0.132395 0.991197i \(-0.457733\pi\)
0.132395 + 0.991197i \(0.457733\pi\)
\(920\) 0 0
\(921\) −9.36688 −0.308649
\(922\) 0 0
\(923\) 0.484747 0.0159556
\(924\) 0 0
\(925\) 18.6516 0.613260
\(926\) 0 0
\(927\) −0.530521 −0.0174246
\(928\) 0 0
\(929\) 3.37852 0.110846 0.0554229 0.998463i \(-0.482349\pi\)
0.0554229 + 0.998463i \(0.482349\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −12.2312 −0.400432
\(934\) 0 0
\(935\) 45.7127 1.49496
\(936\) 0 0
\(937\) −14.0973 −0.460538 −0.230269 0.973127i \(-0.573961\pi\)
−0.230269 + 0.973127i \(0.573961\pi\)
\(938\) 0 0
\(939\) −17.8097 −0.581196
\(940\) 0 0
\(941\) 51.7670 1.68756 0.843779 0.536691i \(-0.180326\pi\)
0.843779 + 0.536691i \(0.180326\pi\)
\(942\) 0 0
\(943\) −2.39096 −0.0778605
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.4993 0.731128 0.365564 0.930786i \(-0.380876\pi\)
0.365564 + 0.930786i \(0.380876\pi\)
\(948\) 0 0
\(949\) −46.4026 −1.50629
\(950\) 0 0
\(951\) −21.0055 −0.681149
\(952\) 0 0
\(953\) −49.0717 −1.58959 −0.794794 0.606880i \(-0.792421\pi\)
−0.794794 + 0.606880i \(0.792421\pi\)
\(954\) 0 0
\(955\) −6.61227 −0.213968
\(956\) 0 0
\(957\) −29.2416 −0.945246
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −10.3193 −0.332879
\(962\) 0 0
\(963\) −9.30151 −0.299737
\(964\) 0 0
\(965\) −30.3563 −0.977203
\(966\) 0 0
\(967\) −2.06335 −0.0663530 −0.0331765 0.999450i \(-0.510562\pi\)
−0.0331765 + 0.999450i \(0.510562\pi\)
\(968\) 0 0
\(969\) 81.1999 2.60852
\(970\) 0 0
\(971\) 21.2584 0.682213 0.341107 0.940025i \(-0.389198\pi\)
0.341107 + 0.940025i \(0.389198\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 12.4330 0.398175
\(976\) 0 0
\(977\) −56.6371 −1.81198 −0.905990 0.423298i \(-0.860872\pi\)
−0.905990 + 0.423298i \(0.860872\pi\)
\(978\) 0 0
\(979\) −8.02860 −0.256595
\(980\) 0 0
\(981\) 20.1526 0.643421
\(982\) 0 0
\(983\) −23.9416 −0.763618 −0.381809 0.924241i \(-0.624699\pi\)
−0.381809 + 0.924241i \(0.624699\pi\)
\(984\) 0 0
\(985\) −19.0159 −0.605895
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.45211 0.0779725
\(990\) 0 0
\(991\) 53.0929 1.68655 0.843276 0.537480i \(-0.180624\pi\)
0.843276 + 0.537480i \(0.180624\pi\)
\(992\) 0 0
\(993\) 2.10976 0.0669512
\(994\) 0 0
\(995\) 36.3006 1.15081
\(996\) 0 0
\(997\) −11.2226 −0.355422 −0.177711 0.984083i \(-0.556869\pi\)
−0.177711 + 0.984083i \(0.556869\pi\)
\(998\) 0 0
\(999\) −29.1266 −0.921526
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5488.2.a.h.1.3 6
4.3 odd 2 343.2.a.d.1.3 yes 6
7.6 odd 2 5488.2.a.p.1.4 6
12.11 even 2 3087.2.a.j.1.4 6
20.19 odd 2 8575.2.a.n.1.4 6
28.3 even 6 343.2.c.e.324.4 12
28.11 odd 6 343.2.c.d.324.4 12
28.19 even 6 343.2.c.e.18.4 12
28.23 odd 6 343.2.c.d.18.4 12
28.27 even 2 343.2.a.c.1.3 6
84.83 odd 2 3087.2.a.k.1.4 6
140.139 even 2 8575.2.a.o.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
343.2.a.c.1.3 6 28.27 even 2
343.2.a.d.1.3 yes 6 4.3 odd 2
343.2.c.d.18.4 12 28.23 odd 6
343.2.c.d.324.4 12 28.11 odd 6
343.2.c.e.18.4 12 28.19 even 6
343.2.c.e.324.4 12 28.3 even 6
3087.2.a.j.1.4 6 12.11 even 2
3087.2.a.k.1.4 6 84.83 odd 2
5488.2.a.h.1.3 6 1.1 even 1 trivial
5488.2.a.p.1.4 6 7.6 odd 2
8575.2.a.n.1.4 6 20.19 odd 2
8575.2.a.o.1.4 6 140.139 even 2