Properties

Label 5488.2.a.g.1.6
Level $5488$
Weight $2$
Character 5488.1
Self dual yes
Analytic conductor $43.822$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5488,2,Mod(1,5488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5488.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5488, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5488 = 2^{4} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5488.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-7,0,7,0,0,0,9,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.8219006293\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.2624293.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 9x^{4} + 8x^{3} + 21x^{2} - 14x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1372)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.05989\) of defining polynomial
Character \(\chi\) \(=\) 5488.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30687 q^{3} +0.966761 q^{5} -1.29208 q^{9} +3.78649 q^{11} -2.23352 q^{13} +1.26343 q^{15} +2.45003 q^{17} -8.23900 q^{19} -4.87463 q^{23} -4.06537 q^{25} -5.60921 q^{27} +2.43817 q^{29} -1.65248 q^{31} +4.94846 q^{33} -3.64773 q^{37} -2.91893 q^{39} -0.608796 q^{41} -3.24779 q^{43} -1.24913 q^{45} -9.46730 q^{47} +3.20188 q^{51} -1.76371 q^{53} +3.66063 q^{55} -10.7673 q^{57} +0.605173 q^{59} +8.41158 q^{61} -2.15928 q^{65} -9.34944 q^{67} -6.37053 q^{69} +5.91185 q^{71} -10.5889 q^{73} -5.31293 q^{75} -11.0462 q^{79} -3.45428 q^{81} -12.9132 q^{83} +2.36859 q^{85} +3.18637 q^{87} +15.9539 q^{89} -2.15959 q^{93} -7.96515 q^{95} -9.28081 q^{97} -4.89245 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 7 q^{3} + 7 q^{5} + 9 q^{9} - 3 q^{11} + 7 q^{13} - 11 q^{15} - 7 q^{19} - 11 q^{23} + 3 q^{25} - 28 q^{27} + 6 q^{29} - 14 q^{31} - 6 q^{37} - 5 q^{39} + 3 q^{43} + 21 q^{45} - 42 q^{47} + 17 q^{51}+ \cdots + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.30687 0.754524 0.377262 0.926107i \(-0.376866\pi\)
0.377262 + 0.926107i \(0.376866\pi\)
\(4\) 0 0
\(5\) 0.966761 0.432349 0.216174 0.976355i \(-0.430642\pi\)
0.216174 + 0.976355i \(0.430642\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.29208 −0.430694
\(10\) 0 0
\(11\) 3.78649 1.14167 0.570834 0.821065i \(-0.306620\pi\)
0.570834 + 0.821065i \(0.306620\pi\)
\(12\) 0 0
\(13\) −2.23352 −0.619467 −0.309734 0.950823i \(-0.600240\pi\)
−0.309734 + 0.950823i \(0.600240\pi\)
\(14\) 0 0
\(15\) 1.26343 0.326217
\(16\) 0 0
\(17\) 2.45003 0.594219 0.297110 0.954843i \(-0.403977\pi\)
0.297110 + 0.954843i \(0.403977\pi\)
\(18\) 0 0
\(19\) −8.23900 −1.89016 −0.945078 0.326845i \(-0.894015\pi\)
−0.945078 + 0.326845i \(0.894015\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.87463 −1.01643 −0.508216 0.861230i \(-0.669695\pi\)
−0.508216 + 0.861230i \(0.669695\pi\)
\(24\) 0 0
\(25\) −4.06537 −0.813075
\(26\) 0 0
\(27\) −5.60921 −1.07949
\(28\) 0 0
\(29\) 2.43817 0.452756 0.226378 0.974040i \(-0.427312\pi\)
0.226378 + 0.974040i \(0.427312\pi\)
\(30\) 0 0
\(31\) −1.65248 −0.296795 −0.148397 0.988928i \(-0.547411\pi\)
−0.148397 + 0.988928i \(0.547411\pi\)
\(32\) 0 0
\(33\) 4.94846 0.861417
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.64773 −0.599682 −0.299841 0.953989i \(-0.596934\pi\)
−0.299841 + 0.953989i \(0.596934\pi\)
\(38\) 0 0
\(39\) −2.91893 −0.467403
\(40\) 0 0
\(41\) −0.608796 −0.0950780 −0.0475390 0.998869i \(-0.515138\pi\)
−0.0475390 + 0.998869i \(0.515138\pi\)
\(42\) 0 0
\(43\) −3.24779 −0.495283 −0.247641 0.968852i \(-0.579655\pi\)
−0.247641 + 0.968852i \(0.579655\pi\)
\(44\) 0 0
\(45\) −1.24913 −0.186210
\(46\) 0 0
\(47\) −9.46730 −1.38095 −0.690474 0.723357i \(-0.742598\pi\)
−0.690474 + 0.723357i \(0.742598\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3.20188 0.448353
\(52\) 0 0
\(53\) −1.76371 −0.242264 −0.121132 0.992636i \(-0.538653\pi\)
−0.121132 + 0.992636i \(0.538653\pi\)
\(54\) 0 0
\(55\) 3.66063 0.493599
\(56\) 0 0
\(57\) −10.7673 −1.42617
\(58\) 0 0
\(59\) 0.605173 0.0787869 0.0393934 0.999224i \(-0.487457\pi\)
0.0393934 + 0.999224i \(0.487457\pi\)
\(60\) 0 0
\(61\) 8.41158 1.07699 0.538497 0.842628i \(-0.318993\pi\)
0.538497 + 0.842628i \(0.318993\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.15928 −0.267826
\(66\) 0 0
\(67\) −9.34944 −1.14222 −0.571108 0.820875i \(-0.693486\pi\)
−0.571108 + 0.820875i \(0.693486\pi\)
\(68\) 0 0
\(69\) −6.37053 −0.766922
\(70\) 0 0
\(71\) 5.91185 0.701608 0.350804 0.936449i \(-0.385908\pi\)
0.350804 + 0.936449i \(0.385908\pi\)
\(72\) 0 0
\(73\) −10.5889 −1.23934 −0.619671 0.784861i \(-0.712734\pi\)
−0.619671 + 0.784861i \(0.712734\pi\)
\(74\) 0 0
\(75\) −5.31293 −0.613484
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11.0462 −1.24280 −0.621398 0.783495i \(-0.713435\pi\)
−0.621398 + 0.783495i \(0.713435\pi\)
\(80\) 0 0
\(81\) −3.45428 −0.383809
\(82\) 0 0
\(83\) −12.9132 −1.41740 −0.708701 0.705509i \(-0.750719\pi\)
−0.708701 + 0.705509i \(0.750719\pi\)
\(84\) 0 0
\(85\) 2.36859 0.256910
\(86\) 0 0
\(87\) 3.18637 0.341615
\(88\) 0 0
\(89\) 15.9539 1.69111 0.845556 0.533886i \(-0.179269\pi\)
0.845556 + 0.533886i \(0.179269\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.15959 −0.223939
\(94\) 0 0
\(95\) −7.96515 −0.817207
\(96\) 0 0
\(97\) −9.28081 −0.942324 −0.471162 0.882047i \(-0.656165\pi\)
−0.471162 + 0.882047i \(0.656165\pi\)
\(98\) 0 0
\(99\) −4.89245 −0.491710
\(100\) 0 0
\(101\) 18.9030 1.88092 0.940459 0.339906i \(-0.110395\pi\)
0.940459 + 0.339906i \(0.110395\pi\)
\(102\) 0 0
\(103\) 5.09626 0.502149 0.251074 0.967968i \(-0.419216\pi\)
0.251074 + 0.967968i \(0.419216\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.61977 0.543284 0.271642 0.962398i \(-0.412433\pi\)
0.271642 + 0.962398i \(0.412433\pi\)
\(108\) 0 0
\(109\) 10.2323 0.980080 0.490040 0.871700i \(-0.336982\pi\)
0.490040 + 0.871700i \(0.336982\pi\)
\(110\) 0 0
\(111\) −4.76712 −0.452475
\(112\) 0 0
\(113\) 15.1691 1.42699 0.713494 0.700662i \(-0.247112\pi\)
0.713494 + 0.700662i \(0.247112\pi\)
\(114\) 0 0
\(115\) −4.71261 −0.439453
\(116\) 0 0
\(117\) 2.88589 0.266801
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.33749 0.303408
\(122\) 0 0
\(123\) −0.795620 −0.0717386
\(124\) 0 0
\(125\) −8.76405 −0.783881
\(126\) 0 0
\(127\) −3.20619 −0.284503 −0.142252 0.989831i \(-0.545434\pi\)
−0.142252 + 0.989831i \(0.545434\pi\)
\(128\) 0 0
\(129\) −4.24445 −0.373703
\(130\) 0 0
\(131\) 5.50744 0.481187 0.240593 0.970626i \(-0.422658\pi\)
0.240593 + 0.970626i \(0.422658\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.42277 −0.466717
\(136\) 0 0
\(137\) 11.9637 1.02213 0.511064 0.859543i \(-0.329252\pi\)
0.511064 + 0.859543i \(0.329252\pi\)
\(138\) 0 0
\(139\) −10.4025 −0.882325 −0.441162 0.897427i \(-0.645434\pi\)
−0.441162 + 0.897427i \(0.645434\pi\)
\(140\) 0 0
\(141\) −12.3726 −1.04196
\(142\) 0 0
\(143\) −8.45720 −0.707226
\(144\) 0 0
\(145\) 2.35712 0.195749
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −16.7250 −1.37017 −0.685084 0.728464i \(-0.740235\pi\)
−0.685084 + 0.728464i \(0.740235\pi\)
\(150\) 0 0
\(151\) 18.5501 1.50958 0.754791 0.655965i \(-0.227738\pi\)
0.754791 + 0.655965i \(0.227738\pi\)
\(152\) 0 0
\(153\) −3.16564 −0.255926
\(154\) 0 0
\(155\) −1.59756 −0.128319
\(156\) 0 0
\(157\) −12.2276 −0.975870 −0.487935 0.872880i \(-0.662250\pi\)
−0.487935 + 0.872880i \(0.662250\pi\)
\(158\) 0 0
\(159\) −2.30495 −0.182794
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −15.0761 −1.18085 −0.590427 0.807091i \(-0.701041\pi\)
−0.590427 + 0.807091i \(0.701041\pi\)
\(164\) 0 0
\(165\) 4.78398 0.372432
\(166\) 0 0
\(167\) −8.55828 −0.662260 −0.331130 0.943585i \(-0.607430\pi\)
−0.331130 + 0.943585i \(0.607430\pi\)
\(168\) 0 0
\(169\) −8.01139 −0.616261
\(170\) 0 0
\(171\) 10.6455 0.814078
\(172\) 0 0
\(173\) −17.7608 −1.35033 −0.675165 0.737666i \(-0.735928\pi\)
−0.675165 + 0.737666i \(0.735928\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.790885 0.0594466
\(178\) 0 0
\(179\) 14.0614 1.05100 0.525498 0.850795i \(-0.323879\pi\)
0.525498 + 0.850795i \(0.323879\pi\)
\(180\) 0 0
\(181\) 3.14416 0.233704 0.116852 0.993149i \(-0.462720\pi\)
0.116852 + 0.993149i \(0.462720\pi\)
\(182\) 0 0
\(183\) 10.9929 0.812617
\(184\) 0 0
\(185\) −3.52648 −0.259272
\(186\) 0 0
\(187\) 9.27700 0.678402
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.9595 1.51658 0.758288 0.651920i \(-0.226036\pi\)
0.758288 + 0.651920i \(0.226036\pi\)
\(192\) 0 0
\(193\) −4.84186 −0.348525 −0.174262 0.984699i \(-0.555754\pi\)
−0.174262 + 0.984699i \(0.555754\pi\)
\(194\) 0 0
\(195\) −2.82191 −0.202081
\(196\) 0 0
\(197\) 18.6607 1.32952 0.664759 0.747058i \(-0.268534\pi\)
0.664759 + 0.747058i \(0.268534\pi\)
\(198\) 0 0
\(199\) 6.39492 0.453324 0.226662 0.973973i \(-0.427219\pi\)
0.226662 + 0.973973i \(0.427219\pi\)
\(200\) 0 0
\(201\) −12.2185 −0.861829
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.588561 −0.0411069
\(206\) 0 0
\(207\) 6.29842 0.437771
\(208\) 0 0
\(209\) −31.1969 −2.15793
\(210\) 0 0
\(211\) −22.2657 −1.53283 −0.766417 0.642344i \(-0.777962\pi\)
−0.766417 + 0.642344i \(0.777962\pi\)
\(212\) 0 0
\(213\) 7.72605 0.529380
\(214\) 0 0
\(215\) −3.13983 −0.214135
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −13.8384 −0.935113
\(220\) 0 0
\(221\) −5.47219 −0.368099
\(222\) 0 0
\(223\) −20.2710 −1.35745 −0.678724 0.734393i \(-0.737467\pi\)
−0.678724 + 0.734393i \(0.737467\pi\)
\(224\) 0 0
\(225\) 5.25279 0.350186
\(226\) 0 0
\(227\) −14.8862 −0.988033 −0.494016 0.869453i \(-0.664472\pi\)
−0.494016 + 0.869453i \(0.664472\pi\)
\(228\) 0 0
\(229\) −10.6493 −0.703728 −0.351864 0.936051i \(-0.614452\pi\)
−0.351864 + 0.936051i \(0.614452\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 25.9915 1.70276 0.851381 0.524548i \(-0.175765\pi\)
0.851381 + 0.524548i \(0.175765\pi\)
\(234\) 0 0
\(235\) −9.15262 −0.597051
\(236\) 0 0
\(237\) −14.4360 −0.937720
\(238\) 0 0
\(239\) 18.0618 1.16832 0.584162 0.811637i \(-0.301423\pi\)
0.584162 + 0.811637i \(0.301423\pi\)
\(240\) 0 0
\(241\) −11.3485 −0.731023 −0.365512 0.930807i \(-0.619106\pi\)
−0.365512 + 0.930807i \(0.619106\pi\)
\(242\) 0 0
\(243\) 12.3133 0.789899
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 18.4020 1.17089
\(248\) 0 0
\(249\) −16.8759 −1.06946
\(250\) 0 0
\(251\) −2.21702 −0.139937 −0.0699685 0.997549i \(-0.522290\pi\)
−0.0699685 + 0.997549i \(0.522290\pi\)
\(252\) 0 0
\(253\) −18.4577 −1.16043
\(254\) 0 0
\(255\) 3.09545 0.193845
\(256\) 0 0
\(257\) −31.4261 −1.96031 −0.980153 0.198245i \(-0.936476\pi\)
−0.980153 + 0.198245i \(0.936476\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.15031 −0.194999
\(262\) 0 0
\(263\) −6.52141 −0.402128 −0.201064 0.979578i \(-0.564440\pi\)
−0.201064 + 0.979578i \(0.564440\pi\)
\(264\) 0 0
\(265\) −1.70509 −0.104743
\(266\) 0 0
\(267\) 20.8498 1.27598
\(268\) 0 0
\(269\) 30.7308 1.87369 0.936844 0.349748i \(-0.113733\pi\)
0.936844 + 0.349748i \(0.113733\pi\)
\(270\) 0 0
\(271\) 11.7045 0.710998 0.355499 0.934677i \(-0.384311\pi\)
0.355499 + 0.934677i \(0.384311\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.3935 −0.928262
\(276\) 0 0
\(277\) −28.4892 −1.71175 −0.855874 0.517184i \(-0.826980\pi\)
−0.855874 + 0.517184i \(0.826980\pi\)
\(278\) 0 0
\(279\) 2.13514 0.127828
\(280\) 0 0
\(281\) −5.96553 −0.355874 −0.177937 0.984042i \(-0.556942\pi\)
−0.177937 + 0.984042i \(0.556942\pi\)
\(282\) 0 0
\(283\) −1.07567 −0.0639421 −0.0319711 0.999489i \(-0.510178\pi\)
−0.0319711 + 0.999489i \(0.510178\pi\)
\(284\) 0 0
\(285\) −10.4094 −0.616602
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −10.9974 −0.646903
\(290\) 0 0
\(291\) −12.1288 −0.711006
\(292\) 0 0
\(293\) 3.88129 0.226747 0.113374 0.993552i \(-0.463834\pi\)
0.113374 + 0.993552i \(0.463834\pi\)
\(294\) 0 0
\(295\) 0.585058 0.0340634
\(296\) 0 0
\(297\) −21.2392 −1.23242
\(298\) 0 0
\(299\) 10.8876 0.629646
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 24.7038 1.41920
\(304\) 0 0
\(305\) 8.13199 0.465637
\(306\) 0 0
\(307\) −21.6625 −1.23635 −0.618173 0.786042i \(-0.712127\pi\)
−0.618173 + 0.786042i \(0.712127\pi\)
\(308\) 0 0
\(309\) 6.66016 0.378883
\(310\) 0 0
\(311\) −9.72726 −0.551582 −0.275791 0.961218i \(-0.588940\pi\)
−0.275791 + 0.961218i \(0.588940\pi\)
\(312\) 0 0
\(313\) −10.2315 −0.578317 −0.289158 0.957281i \(-0.593375\pi\)
−0.289158 + 0.957281i \(0.593375\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.1837 1.13363 0.566815 0.823845i \(-0.308176\pi\)
0.566815 + 0.823845i \(0.308176\pi\)
\(318\) 0 0
\(319\) 9.23209 0.516898
\(320\) 0 0
\(321\) 7.34433 0.409921
\(322\) 0 0
\(323\) −20.1858 −1.12317
\(324\) 0 0
\(325\) 9.08009 0.503673
\(326\) 0 0
\(327\) 13.3724 0.739494
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 23.5648 1.29524 0.647620 0.761964i \(-0.275764\pi\)
0.647620 + 0.761964i \(0.275764\pi\)
\(332\) 0 0
\(333\) 4.71316 0.258279
\(334\) 0 0
\(335\) −9.03867 −0.493835
\(336\) 0 0
\(337\) 17.6174 0.959680 0.479840 0.877356i \(-0.340695\pi\)
0.479840 + 0.877356i \(0.340695\pi\)
\(338\) 0 0
\(339\) 19.8241 1.07670
\(340\) 0 0
\(341\) −6.25711 −0.338842
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −6.15878 −0.331578
\(346\) 0 0
\(347\) 26.8286 1.44023 0.720116 0.693853i \(-0.244088\pi\)
0.720116 + 0.693853i \(0.244088\pi\)
\(348\) 0 0
\(349\) −28.0841 −1.50331 −0.751654 0.659557i \(-0.770744\pi\)
−0.751654 + 0.659557i \(0.770744\pi\)
\(350\) 0 0
\(351\) 12.5283 0.668710
\(352\) 0 0
\(353\) 11.8381 0.630077 0.315039 0.949079i \(-0.397982\pi\)
0.315039 + 0.949079i \(0.397982\pi\)
\(354\) 0 0
\(355\) 5.71535 0.303339
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.5460 −0.556596 −0.278298 0.960495i \(-0.589770\pi\)
−0.278298 + 0.960495i \(0.589770\pi\)
\(360\) 0 0
\(361\) 48.8811 2.57269
\(362\) 0 0
\(363\) 4.36168 0.228929
\(364\) 0 0
\(365\) −10.2370 −0.535828
\(366\) 0 0
\(367\) 23.0457 1.20297 0.601487 0.798882i \(-0.294575\pi\)
0.601487 + 0.798882i \(0.294575\pi\)
\(368\) 0 0
\(369\) 0.786614 0.0409495
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 31.4969 1.63085 0.815424 0.578865i \(-0.196504\pi\)
0.815424 + 0.578865i \(0.196504\pi\)
\(374\) 0 0
\(375\) −11.4535 −0.591457
\(376\) 0 0
\(377\) −5.44569 −0.280467
\(378\) 0 0
\(379\) −24.2707 −1.24670 −0.623351 0.781942i \(-0.714229\pi\)
−0.623351 + 0.781942i \(0.714229\pi\)
\(380\) 0 0
\(381\) −4.19008 −0.214665
\(382\) 0 0
\(383\) 4.97658 0.254291 0.127146 0.991884i \(-0.459418\pi\)
0.127146 + 0.991884i \(0.459418\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.19640 0.213315
\(388\) 0 0
\(389\) 13.9757 0.708596 0.354298 0.935133i \(-0.384720\pi\)
0.354298 + 0.935133i \(0.384720\pi\)
\(390\) 0 0
\(391\) −11.9430 −0.603983
\(392\) 0 0
\(393\) 7.19752 0.363067
\(394\) 0 0
\(395\) −10.6791 −0.537322
\(396\) 0 0
\(397\) 5.35212 0.268615 0.134308 0.990940i \(-0.457119\pi\)
0.134308 + 0.990940i \(0.457119\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.81339 0.0905561 0.0452781 0.998974i \(-0.485583\pi\)
0.0452781 + 0.998974i \(0.485583\pi\)
\(402\) 0 0
\(403\) 3.69086 0.183855
\(404\) 0 0
\(405\) −3.33947 −0.165939
\(406\) 0 0
\(407\) −13.8121 −0.684639
\(408\) 0 0
\(409\) −33.9007 −1.67628 −0.838140 0.545455i \(-0.816357\pi\)
−0.838140 + 0.545455i \(0.816357\pi\)
\(410\) 0 0
\(411\) 15.6350 0.771220
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.4839 −0.612812
\(416\) 0 0
\(417\) −13.5947 −0.665735
\(418\) 0 0
\(419\) 15.6842 0.766226 0.383113 0.923702i \(-0.374852\pi\)
0.383113 + 0.923702i \(0.374852\pi\)
\(420\) 0 0
\(421\) −1.36544 −0.0665477 −0.0332739 0.999446i \(-0.510593\pi\)
−0.0332739 + 0.999446i \(0.510593\pi\)
\(422\) 0 0
\(423\) 12.2325 0.594766
\(424\) 0 0
\(425\) −9.96028 −0.483145
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −11.0525 −0.533619
\(430\) 0 0
\(431\) −27.8744 −1.34266 −0.671331 0.741158i \(-0.734277\pi\)
−0.671331 + 0.741158i \(0.734277\pi\)
\(432\) 0 0
\(433\) 10.5777 0.508334 0.254167 0.967160i \(-0.418199\pi\)
0.254167 + 0.967160i \(0.418199\pi\)
\(434\) 0 0
\(435\) 3.08046 0.147697
\(436\) 0 0
\(437\) 40.1621 1.92121
\(438\) 0 0
\(439\) 29.5293 1.40936 0.704679 0.709526i \(-0.251091\pi\)
0.704679 + 0.709526i \(0.251091\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.4800 0.735475 0.367737 0.929930i \(-0.380132\pi\)
0.367737 + 0.929930i \(0.380132\pi\)
\(444\) 0 0
\(445\) 15.4236 0.731150
\(446\) 0 0
\(447\) −21.8575 −1.03383
\(448\) 0 0
\(449\) −36.5746 −1.72606 −0.863032 0.505149i \(-0.831438\pi\)
−0.863032 + 0.505149i \(0.831438\pi\)
\(450\) 0 0
\(451\) −2.30520 −0.108548
\(452\) 0 0
\(453\) 24.2426 1.13902
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.69743 −0.360070 −0.180035 0.983660i \(-0.557621\pi\)
−0.180035 + 0.983660i \(0.557621\pi\)
\(458\) 0 0
\(459\) −13.7427 −0.641455
\(460\) 0 0
\(461\) 13.4571 0.626761 0.313381 0.949628i \(-0.398538\pi\)
0.313381 + 0.949628i \(0.398538\pi\)
\(462\) 0 0
\(463\) 27.7916 1.29158 0.645792 0.763514i \(-0.276527\pi\)
0.645792 + 0.763514i \(0.276527\pi\)
\(464\) 0 0
\(465\) −2.08781 −0.0968197
\(466\) 0 0
\(467\) −31.2557 −1.44634 −0.723171 0.690669i \(-0.757316\pi\)
−0.723171 + 0.690669i \(0.757316\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −15.9799 −0.736317
\(472\) 0 0
\(473\) −12.2977 −0.565449
\(474\) 0 0
\(475\) 33.4946 1.53684
\(476\) 0 0
\(477\) 2.27886 0.104342
\(478\) 0 0
\(479\) −41.1302 −1.87929 −0.939643 0.342156i \(-0.888843\pi\)
−0.939643 + 0.342156i \(0.888843\pi\)
\(480\) 0 0
\(481\) 8.14727 0.371484
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.97233 −0.407412
\(486\) 0 0
\(487\) −2.11949 −0.0960434 −0.0480217 0.998846i \(-0.515292\pi\)
−0.0480217 + 0.998846i \(0.515292\pi\)
\(488\) 0 0
\(489\) −19.7026 −0.890982
\(490\) 0 0
\(491\) −27.0278 −1.21975 −0.609873 0.792499i \(-0.708780\pi\)
−0.609873 + 0.792499i \(0.708780\pi\)
\(492\) 0 0
\(493\) 5.97358 0.269036
\(494\) 0 0
\(495\) −4.72983 −0.212590
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 29.8469 1.33613 0.668065 0.744103i \(-0.267123\pi\)
0.668065 + 0.744103i \(0.267123\pi\)
\(500\) 0 0
\(501\) −11.1846 −0.499691
\(502\) 0 0
\(503\) −30.5276 −1.36116 −0.680580 0.732674i \(-0.738272\pi\)
−0.680580 + 0.732674i \(0.738272\pi\)
\(504\) 0 0
\(505\) 18.2747 0.813213
\(506\) 0 0
\(507\) −10.4699 −0.464983
\(508\) 0 0
\(509\) −12.7661 −0.565848 −0.282924 0.959142i \(-0.591304\pi\)
−0.282924 + 0.959142i \(0.591304\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 46.2143 2.04041
\(514\) 0 0
\(515\) 4.92686 0.217104
\(516\) 0 0
\(517\) −35.8478 −1.57659
\(518\) 0 0
\(519\) −23.2112 −1.01886
\(520\) 0 0
\(521\) −16.5210 −0.723799 −0.361900 0.932217i \(-0.617872\pi\)
−0.361900 + 0.932217i \(0.617872\pi\)
\(522\) 0 0
\(523\) −10.4297 −0.456058 −0.228029 0.973654i \(-0.573228\pi\)
−0.228029 + 0.973654i \(0.573228\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.04863 −0.176361
\(528\) 0 0
\(529\) 0.762053 0.0331328
\(530\) 0 0
\(531\) −0.781933 −0.0339330
\(532\) 0 0
\(533\) 1.35976 0.0588977
\(534\) 0 0
\(535\) 5.43298 0.234888
\(536\) 0 0
\(537\) 18.3764 0.793002
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −26.4047 −1.13523 −0.567614 0.823295i \(-0.692133\pi\)
−0.567614 + 0.823295i \(0.692133\pi\)
\(542\) 0 0
\(543\) 4.10902 0.176335
\(544\) 0 0
\(545\) 9.89223 0.423736
\(546\) 0 0
\(547\) 23.1444 0.989584 0.494792 0.869012i \(-0.335244\pi\)
0.494792 + 0.869012i \(0.335244\pi\)
\(548\) 0 0
\(549\) −10.8684 −0.463854
\(550\) 0 0
\(551\) −20.0880 −0.855780
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.60866 −0.195627
\(556\) 0 0
\(557\) 4.95075 0.209770 0.104885 0.994484i \(-0.466553\pi\)
0.104885 + 0.994484i \(0.466553\pi\)
\(558\) 0 0
\(559\) 7.25400 0.306811
\(560\) 0 0
\(561\) 12.1239 0.511870
\(562\) 0 0
\(563\) −12.5784 −0.530116 −0.265058 0.964232i \(-0.585391\pi\)
−0.265058 + 0.964232i \(0.585391\pi\)
\(564\) 0 0
\(565\) 14.6649 0.616956
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.5059 −0.440428 −0.220214 0.975452i \(-0.570676\pi\)
−0.220214 + 0.975452i \(0.570676\pi\)
\(570\) 0 0
\(571\) 3.21931 0.134724 0.0673620 0.997729i \(-0.478542\pi\)
0.0673620 + 0.997729i \(0.478542\pi\)
\(572\) 0 0
\(573\) 27.3914 1.14429
\(574\) 0 0
\(575\) 19.8172 0.826434
\(576\) 0 0
\(577\) −25.6436 −1.06756 −0.533779 0.845624i \(-0.679229\pi\)
−0.533779 + 0.845624i \(0.679229\pi\)
\(578\) 0 0
\(579\) −6.32770 −0.262970
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.67827 −0.276586
\(584\) 0 0
\(585\) 2.78997 0.115351
\(586\) 0 0
\(587\) −13.6017 −0.561402 −0.280701 0.959795i \(-0.590567\pi\)
−0.280701 + 0.959795i \(0.590567\pi\)
\(588\) 0 0
\(589\) 13.6148 0.560989
\(590\) 0 0
\(591\) 24.3871 1.00315
\(592\) 0 0
\(593\) 31.9715 1.31291 0.656455 0.754365i \(-0.272055\pi\)
0.656455 + 0.754365i \(0.272055\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.35736 0.342044
\(598\) 0 0
\(599\) 7.93619 0.324264 0.162132 0.986769i \(-0.448163\pi\)
0.162132 + 0.986769i \(0.448163\pi\)
\(600\) 0 0
\(601\) 2.41626 0.0985612 0.0492806 0.998785i \(-0.484307\pi\)
0.0492806 + 0.998785i \(0.484307\pi\)
\(602\) 0 0
\(603\) 12.0802 0.491945
\(604\) 0 0
\(605\) 3.22655 0.131178
\(606\) 0 0
\(607\) −13.3356 −0.541274 −0.270637 0.962681i \(-0.587234\pi\)
−0.270637 + 0.962681i \(0.587234\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 21.1454 0.855452
\(612\) 0 0
\(613\) −24.7392 −0.999205 −0.499602 0.866255i \(-0.666521\pi\)
−0.499602 + 0.866255i \(0.666521\pi\)
\(614\) 0 0
\(615\) −0.769174 −0.0310161
\(616\) 0 0
\(617\) −13.6111 −0.547963 −0.273982 0.961735i \(-0.588341\pi\)
−0.273982 + 0.961735i \(0.588341\pi\)
\(618\) 0 0
\(619\) 13.4489 0.540557 0.270278 0.962782i \(-0.412884\pi\)
0.270278 + 0.962782i \(0.412884\pi\)
\(620\) 0 0
\(621\) 27.3428 1.09723
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.8541 0.474165
\(626\) 0 0
\(627\) −40.7704 −1.62821
\(628\) 0 0
\(629\) −8.93703 −0.356343
\(630\) 0 0
\(631\) 34.2018 1.36155 0.680777 0.732491i \(-0.261642\pi\)
0.680777 + 0.732491i \(0.261642\pi\)
\(632\) 0 0
\(633\) −29.0984 −1.15656
\(634\) 0 0
\(635\) −3.09962 −0.123005
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −7.63859 −0.302178
\(640\) 0 0
\(641\) −42.2560 −1.66901 −0.834506 0.550999i \(-0.814247\pi\)
−0.834506 + 0.550999i \(0.814247\pi\)
\(642\) 0 0
\(643\) −21.6806 −0.855000 −0.427500 0.904015i \(-0.640606\pi\)
−0.427500 + 0.904015i \(0.640606\pi\)
\(644\) 0 0
\(645\) −4.10337 −0.161570
\(646\) 0 0
\(647\) −33.5817 −1.32023 −0.660117 0.751162i \(-0.729493\pi\)
−0.660117 + 0.751162i \(0.729493\pi\)
\(648\) 0 0
\(649\) 2.29148 0.0899485
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.74289 0.185603 0.0928017 0.995685i \(-0.470418\pi\)
0.0928017 + 0.995685i \(0.470418\pi\)
\(654\) 0 0
\(655\) 5.32438 0.208041
\(656\) 0 0
\(657\) 13.6818 0.533777
\(658\) 0 0
\(659\) 11.1917 0.435968 0.217984 0.975952i \(-0.430052\pi\)
0.217984 + 0.975952i \(0.430052\pi\)
\(660\) 0 0
\(661\) 44.4382 1.72844 0.864222 0.503110i \(-0.167811\pi\)
0.864222 + 0.503110i \(0.167811\pi\)
\(662\) 0 0
\(663\) −7.15146 −0.277740
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −11.8852 −0.460195
\(668\) 0 0
\(669\) −26.4917 −1.02423
\(670\) 0 0
\(671\) 31.8504 1.22957
\(672\) 0 0
\(673\) −29.0230 −1.11875 −0.559377 0.828913i \(-0.688960\pi\)
−0.559377 + 0.828913i \(0.688960\pi\)
\(674\) 0 0
\(675\) 22.8035 0.877708
\(676\) 0 0
\(677\) 2.78883 0.107183 0.0535916 0.998563i \(-0.482933\pi\)
0.0535916 + 0.998563i \(0.482933\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −19.4544 −0.745494
\(682\) 0 0
\(683\) 5.71003 0.218488 0.109244 0.994015i \(-0.465157\pi\)
0.109244 + 0.994015i \(0.465157\pi\)
\(684\) 0 0
\(685\) 11.5660 0.441916
\(686\) 0 0
\(687\) −13.9173 −0.530980
\(688\) 0 0
\(689\) 3.93929 0.150075
\(690\) 0 0
\(691\) −51.3054 −1.95175 −0.975875 0.218329i \(-0.929939\pi\)
−0.975875 + 0.218329i \(0.929939\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.0567 −0.381472
\(696\) 0 0
\(697\) −1.49157 −0.0564972
\(698\) 0 0
\(699\) 33.9677 1.28477
\(700\) 0 0
\(701\) 30.6669 1.15827 0.579137 0.815230i \(-0.303390\pi\)
0.579137 + 0.815230i \(0.303390\pi\)
\(702\) 0 0
\(703\) 30.0536 1.13349
\(704\) 0 0
\(705\) −11.9613 −0.450489
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 27.2154 1.02210 0.511049 0.859552i \(-0.329257\pi\)
0.511049 + 0.859552i \(0.329257\pi\)
\(710\) 0 0
\(711\) 14.2726 0.535265
\(712\) 0 0
\(713\) 8.05526 0.301672
\(714\) 0 0
\(715\) −8.17609 −0.305768
\(716\) 0 0
\(717\) 23.6045 0.881528
\(718\) 0 0
\(719\) −49.4926 −1.84576 −0.922881 0.385084i \(-0.874172\pi\)
−0.922881 + 0.385084i \(0.874172\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −14.8311 −0.551574
\(724\) 0 0
\(725\) −9.91205 −0.368124
\(726\) 0 0
\(727\) 34.1732 1.26742 0.633708 0.773573i \(-0.281532\pi\)
0.633708 + 0.773573i \(0.281532\pi\)
\(728\) 0 0
\(729\) 26.4548 0.979807
\(730\) 0 0
\(731\) −7.95717 −0.294306
\(732\) 0 0
\(733\) 38.9796 1.43975 0.719873 0.694106i \(-0.244200\pi\)
0.719873 + 0.694106i \(0.244200\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −35.4015 −1.30403
\(738\) 0 0
\(739\) 28.2772 1.04019 0.520096 0.854108i \(-0.325896\pi\)
0.520096 + 0.854108i \(0.325896\pi\)
\(740\) 0 0
\(741\) 24.0491 0.883464
\(742\) 0 0
\(743\) −27.4681 −1.00771 −0.503854 0.863789i \(-0.668085\pi\)
−0.503854 + 0.863789i \(0.668085\pi\)
\(744\) 0 0
\(745\) −16.1691 −0.592391
\(746\) 0 0
\(747\) 16.6848 0.610466
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0.200008 0.00729840 0.00364920 0.999993i \(-0.498838\pi\)
0.00364920 + 0.999993i \(0.498838\pi\)
\(752\) 0 0
\(753\) −2.89736 −0.105586
\(754\) 0 0
\(755\) 17.9335 0.652666
\(756\) 0 0
\(757\) −9.94418 −0.361427 −0.180714 0.983536i \(-0.557841\pi\)
−0.180714 + 0.983536i \(0.557841\pi\)
\(758\) 0 0
\(759\) −24.1219 −0.875571
\(760\) 0 0
\(761\) −5.86755 −0.212699 −0.106349 0.994329i \(-0.533916\pi\)
−0.106349 + 0.994329i \(0.533916\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.06041 −0.110650
\(766\) 0 0
\(767\) −1.35167 −0.0488059
\(768\) 0 0
\(769\) −12.9114 −0.465596 −0.232798 0.972525i \(-0.574788\pi\)
−0.232798 + 0.972525i \(0.574788\pi\)
\(770\) 0 0
\(771\) −41.0699 −1.47910
\(772\) 0 0
\(773\) 39.9116 1.43552 0.717760 0.696290i \(-0.245167\pi\)
0.717760 + 0.696290i \(0.245167\pi\)
\(774\) 0 0
\(775\) 6.71796 0.241316
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.01587 0.179712
\(780\) 0 0
\(781\) 22.3852 0.801004
\(782\) 0 0
\(783\) −13.6762 −0.488747
\(784\) 0 0
\(785\) −11.8212 −0.421916
\(786\) 0 0
\(787\) 11.1899 0.398878 0.199439 0.979910i \(-0.436088\pi\)
0.199439 + 0.979910i \(0.436088\pi\)
\(788\) 0 0
\(789\) −8.52267 −0.303415
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −18.7874 −0.667162
\(794\) 0 0
\(795\) −2.22834 −0.0790309
\(796\) 0 0
\(797\) 27.4646 0.972846 0.486423 0.873723i \(-0.338301\pi\)
0.486423 + 0.873723i \(0.338301\pi\)
\(798\) 0 0
\(799\) −23.1952 −0.820586
\(800\) 0 0
\(801\) −20.6138 −0.728351
\(802\) 0 0
\(803\) −40.0949 −1.41492
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 40.1612 1.41374
\(808\) 0 0
\(809\) 38.9064 1.36788 0.683938 0.729540i \(-0.260266\pi\)
0.683938 + 0.729540i \(0.260266\pi\)
\(810\) 0 0
\(811\) −24.3485 −0.854992 −0.427496 0.904017i \(-0.640604\pi\)
−0.427496 + 0.904017i \(0.640604\pi\)
\(812\) 0 0
\(813\) 15.2963 0.536465
\(814\) 0 0
\(815\) −14.5750 −0.510541
\(816\) 0 0
\(817\) 26.7585 0.936162
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.37632 0.0829341 0.0414670 0.999140i \(-0.486797\pi\)
0.0414670 + 0.999140i \(0.486797\pi\)
\(822\) 0 0
\(823\) 8.71831 0.303901 0.151951 0.988388i \(-0.451445\pi\)
0.151951 + 0.988388i \(0.451445\pi\)
\(824\) 0 0
\(825\) −20.1173 −0.700396
\(826\) 0 0
\(827\) 37.7669 1.31328 0.656642 0.754202i \(-0.271976\pi\)
0.656642 + 0.754202i \(0.271976\pi\)
\(828\) 0 0
\(829\) 15.3392 0.532752 0.266376 0.963869i \(-0.414174\pi\)
0.266376 + 0.963869i \(0.414174\pi\)
\(830\) 0 0
\(831\) −37.2318 −1.29156
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −8.27382 −0.286327
\(836\) 0 0
\(837\) 9.26913 0.320388
\(838\) 0 0
\(839\) 44.2930 1.52916 0.764582 0.644526i \(-0.222945\pi\)
0.764582 + 0.644526i \(0.222945\pi\)
\(840\) 0 0
\(841\) −23.0553 −0.795012
\(842\) 0 0
\(843\) −7.79619 −0.268515
\(844\) 0 0
\(845\) −7.74510 −0.266439
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.40577 −0.0482458
\(850\) 0 0
\(851\) 17.7813 0.609536
\(852\) 0 0
\(853\) 28.4674 0.974706 0.487353 0.873205i \(-0.337962\pi\)
0.487353 + 0.873205i \(0.337962\pi\)
\(854\) 0 0
\(855\) 10.2916 0.351966
\(856\) 0 0
\(857\) −24.4097 −0.833819 −0.416909 0.908948i \(-0.636887\pi\)
−0.416909 + 0.908948i \(0.636887\pi\)
\(858\) 0 0
\(859\) 4.18081 0.142647 0.0713237 0.997453i \(-0.477278\pi\)
0.0713237 + 0.997453i \(0.477278\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −49.6632 −1.69055 −0.845277 0.534328i \(-0.820565\pi\)
−0.845277 + 0.534328i \(0.820565\pi\)
\(864\) 0 0
\(865\) −17.1705 −0.583814
\(866\) 0 0
\(867\) −14.3722 −0.488104
\(868\) 0 0
\(869\) −41.8264 −1.41886
\(870\) 0 0
\(871\) 20.8822 0.707565
\(872\) 0 0
\(873\) 11.9916 0.405853
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −7.62435 −0.257456 −0.128728 0.991680i \(-0.541089\pi\)
−0.128728 + 0.991680i \(0.541089\pi\)
\(878\) 0 0
\(879\) 5.07235 0.171086
\(880\) 0 0
\(881\) 23.6086 0.795393 0.397697 0.917517i \(-0.369810\pi\)
0.397697 + 0.917517i \(0.369810\pi\)
\(882\) 0 0
\(883\) 1.58826 0.0534491 0.0267245 0.999643i \(-0.491492\pi\)
0.0267245 + 0.999643i \(0.491492\pi\)
\(884\) 0 0
\(885\) 0.764597 0.0257016
\(886\) 0 0
\(887\) −7.33270 −0.246208 −0.123104 0.992394i \(-0.539285\pi\)
−0.123104 + 0.992394i \(0.539285\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −13.0796 −0.438183
\(892\) 0 0
\(893\) 78.0011 2.61021
\(894\) 0 0
\(895\) 13.5940 0.454397
\(896\) 0 0
\(897\) 14.2287 0.475083
\(898\) 0 0
\(899\) −4.02903 −0.134376
\(900\) 0 0
\(901\) −4.32115 −0.143958
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.03965 0.101041
\(906\) 0 0
\(907\) −27.2999 −0.906478 −0.453239 0.891389i \(-0.649732\pi\)
−0.453239 + 0.891389i \(0.649732\pi\)
\(908\) 0 0
\(909\) −24.4242 −0.810100
\(910\) 0 0
\(911\) 13.1608 0.436036 0.218018 0.975945i \(-0.430041\pi\)
0.218018 + 0.975945i \(0.430041\pi\)
\(912\) 0 0
\(913\) −48.8955 −1.61820
\(914\) 0 0
\(915\) 10.6275 0.351334
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −6.23584 −0.205702 −0.102851 0.994697i \(-0.532796\pi\)
−0.102851 + 0.994697i \(0.532796\pi\)
\(920\) 0 0
\(921\) −28.3102 −0.932853
\(922\) 0 0
\(923\) −13.2042 −0.434623
\(924\) 0 0
\(925\) 14.8294 0.487587
\(926\) 0 0
\(927\) −6.58478 −0.216272
\(928\) 0 0
\(929\) −43.3372 −1.42185 −0.710923 0.703270i \(-0.751723\pi\)
−0.710923 + 0.703270i \(0.751723\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −12.7123 −0.416182
\(934\) 0 0
\(935\) 8.96865 0.293306
\(936\) 0 0
\(937\) 47.4200 1.54914 0.774572 0.632486i \(-0.217965\pi\)
0.774572 + 0.632486i \(0.217965\pi\)
\(938\) 0 0
\(939\) −13.3712 −0.436354
\(940\) 0 0
\(941\) 37.9074 1.23575 0.617874 0.786278i \(-0.287994\pi\)
0.617874 + 0.786278i \(0.287994\pi\)
\(942\) 0 0
\(943\) 2.96766 0.0966402
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −48.5076 −1.57628 −0.788142 0.615493i \(-0.788957\pi\)
−0.788142 + 0.615493i \(0.788957\pi\)
\(948\) 0 0
\(949\) 23.6506 0.767732
\(950\) 0 0
\(951\) 26.3775 0.855351
\(952\) 0 0
\(953\) 33.8440 1.09631 0.548157 0.836376i \(-0.315330\pi\)
0.548157 + 0.836376i \(0.315330\pi\)
\(954\) 0 0
\(955\) 20.2628 0.655690
\(956\) 0 0
\(957\) 12.0652 0.390012
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −28.2693 −0.911913
\(962\) 0 0
\(963\) −7.26120 −0.233989
\(964\) 0 0
\(965\) −4.68093 −0.150684
\(966\) 0 0
\(967\) −28.6546 −0.921471 −0.460735 0.887538i \(-0.652414\pi\)
−0.460735 + 0.887538i \(0.652414\pi\)
\(968\) 0 0
\(969\) −26.3803 −0.847456
\(970\) 0 0
\(971\) 38.4769 1.23478 0.617391 0.786656i \(-0.288190\pi\)
0.617391 + 0.786656i \(0.288190\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 11.8665 0.380033
\(976\) 0 0
\(977\) 6.87253 0.219872 0.109936 0.993939i \(-0.464935\pi\)
0.109936 + 0.993939i \(0.464935\pi\)
\(978\) 0 0
\(979\) 60.4093 1.93069
\(980\) 0 0
\(981\) −13.2210 −0.422114
\(982\) 0 0
\(983\) 11.9531 0.381244 0.190622 0.981664i \(-0.438950\pi\)
0.190622 + 0.981664i \(0.438950\pi\)
\(984\) 0 0
\(985\) 18.0404 0.574816
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15.8318 0.503421
\(990\) 0 0
\(991\) 29.1548 0.926132 0.463066 0.886324i \(-0.346749\pi\)
0.463066 + 0.886324i \(0.346749\pi\)
\(992\) 0 0
\(993\) 30.7962 0.977289
\(994\) 0 0
\(995\) 6.18236 0.195994
\(996\) 0 0
\(997\) 2.99371 0.0948118 0.0474059 0.998876i \(-0.484905\pi\)
0.0474059 + 0.998876i \(0.484905\pi\)
\(998\) 0 0
\(999\) 20.4609 0.647353
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5488.2.a.g.1.6 6
4.3 odd 2 1372.2.a.d.1.1 yes 6
7.6 odd 2 5488.2.a.q.1.1 6
28.3 even 6 1372.2.e.d.1353.1 12
28.11 odd 6 1372.2.e.a.1353.6 12
28.19 even 6 1372.2.e.d.361.1 12
28.23 odd 6 1372.2.e.a.361.6 12
28.27 even 2 1372.2.a.a.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1372.2.a.a.1.6 6 28.27 even 2
1372.2.a.d.1.1 yes 6 4.3 odd 2
1372.2.e.a.361.6 12 28.23 odd 6
1372.2.e.a.1353.6 12 28.11 odd 6
1372.2.e.d.361.1 12 28.19 even 6
1372.2.e.d.1353.1 12 28.3 even 6
5488.2.a.g.1.6 6 1.1 even 1 trivial
5488.2.a.q.1.1 6 7.6 odd 2