Properties

Label 1372.2.e.d.1353.1
Level $1372$
Weight $2$
Character 1372.1353
Analytic conductor $10.955$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1372,2,Mod(361,1372)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1372.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1372, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1372 = 2^{2} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1372.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,7,0,7,0,0,0,-9,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9554751573\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 10 x^{10} - 7 x^{9} + 68 x^{8} - 44 x^{7} + 225 x^{6} - 77 x^{5} + 490 x^{4} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1353.1
Root \(0.529947 - 0.917895i\) of defining polynomial
Character \(\chi\) \(=\) 1372.1353
Dual form 1372.2.e.d.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.653437 - 1.13179i) q^{3} +(0.483381 - 0.837240i) q^{5} +(0.646041 - 1.11898i) q^{9} +(1.89324 + 3.27919i) q^{11} +2.23352 q^{13} -1.26343 q^{15} +(1.22501 + 2.12179i) q^{17} +(4.11950 - 7.13518i) q^{19} +(-2.43732 + 4.22156i) q^{23} +(2.03269 + 3.52072i) q^{25} -5.60921 q^{27} +2.43817 q^{29} +(0.826242 + 1.43109i) q^{31} +(2.47423 - 4.28549i) q^{33} +(1.82386 - 3.15902i) q^{37} +(-1.45946 - 2.52787i) q^{39} +0.608796 q^{41} +3.24779 q^{43} +(-0.624567 - 1.08178i) q^{45} +(4.73365 - 8.19893i) q^{47} +(1.60094 - 2.77291i) q^{51} +(0.881856 + 1.52742i) q^{53} +3.66063 q^{55} -10.7673 q^{57} +(-0.302587 - 0.524095i) q^{59} +(4.20579 - 7.28465i) q^{61} +(1.07964 - 1.86999i) q^{65} +(-4.67472 - 8.09685i) q^{67} +6.37053 q^{69} -5.91185 q^{71} +(-5.29447 - 9.17030i) q^{73} +(2.65646 - 4.60113i) q^{75} +(-5.52311 + 9.56630i) q^{79} +(1.72714 + 2.99150i) q^{81} -12.9132 q^{83} +2.36859 q^{85} +(-1.59319 - 2.75948i) q^{87} +(7.97696 - 13.8165i) q^{89} +(1.07979 - 1.87026i) q^{93} +(-3.98257 - 6.89802i) q^{95} +9.28081 q^{97} +4.89245 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 7 q^{3} + 7 q^{5} - 9 q^{9} - 3 q^{11} - 14 q^{13} + 22 q^{15} + 7 q^{19} - 11 q^{23} - 3 q^{25} - 56 q^{27} + 12 q^{29} + 14 q^{31} + 6 q^{37} - 5 q^{39} - 6 q^{43} + 21 q^{45} + 42 q^{47} + 17 q^{51}+ \cdots - 68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1372\mathbb{Z}\right)^\times\).

\(n\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.653437 1.13179i −0.377262 0.653437i 0.613401 0.789772i \(-0.289801\pi\)
−0.990663 + 0.136335i \(0.956468\pi\)
\(4\) 0 0
\(5\) 0.483381 0.837240i 0.216174 0.374425i −0.737461 0.675390i \(-0.763975\pi\)
0.953635 + 0.300965i \(0.0973087\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.646041 1.11898i 0.215347 0.372992i
\(10\) 0 0
\(11\) 1.89324 + 3.27919i 0.570834 + 0.988714i 0.996481 + 0.0838246i \(0.0267135\pi\)
−0.425646 + 0.904890i \(0.639953\pi\)
\(12\) 0 0
\(13\) 2.23352 0.619467 0.309734 0.950823i \(-0.399760\pi\)
0.309734 + 0.950823i \(0.399760\pi\)
\(14\) 0 0
\(15\) −1.26343 −0.326217
\(16\) 0 0
\(17\) 1.22501 + 2.12179i 0.297110 + 0.514609i 0.975473 0.220117i \(-0.0706440\pi\)
−0.678364 + 0.734726i \(0.737311\pi\)
\(18\) 0 0
\(19\) 4.11950 7.13518i 0.945078 1.63692i 0.189483 0.981884i \(-0.439319\pi\)
0.755595 0.655039i \(-0.227348\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.43732 + 4.22156i −0.508216 + 0.880255i 0.491739 + 0.870743i \(0.336361\pi\)
−0.999955 + 0.00951279i \(0.996972\pi\)
\(24\) 0 0
\(25\) 2.03269 + 3.52072i 0.406537 + 0.704143i
\(26\) 0 0
\(27\) −5.60921 −1.07949
\(28\) 0 0
\(29\) 2.43817 0.452756 0.226378 0.974040i \(-0.427312\pi\)
0.226378 + 0.974040i \(0.427312\pi\)
\(30\) 0 0
\(31\) 0.826242 + 1.43109i 0.148397 + 0.257032i 0.930635 0.365948i \(-0.119255\pi\)
−0.782238 + 0.622980i \(0.785922\pi\)
\(32\) 0 0
\(33\) 2.47423 4.28549i 0.430708 0.746009i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.82386 3.15902i 0.299841 0.519340i −0.676258 0.736665i \(-0.736400\pi\)
0.976099 + 0.217324i \(0.0697330\pi\)
\(38\) 0 0
\(39\) −1.45946 2.52787i −0.233701 0.404783i
\(40\) 0 0
\(41\) 0.608796 0.0950780 0.0475390 0.998869i \(-0.484862\pi\)
0.0475390 + 0.998869i \(0.484862\pi\)
\(42\) 0 0
\(43\) 3.24779 0.495283 0.247641 0.968852i \(-0.420345\pi\)
0.247641 + 0.968852i \(0.420345\pi\)
\(44\) 0 0
\(45\) −0.624567 1.08178i −0.0931049 0.161263i
\(46\) 0 0
\(47\) 4.73365 8.19893i 0.690474 1.19594i −0.281209 0.959647i \(-0.590735\pi\)
0.971683 0.236290i \(-0.0759314\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.60094 2.77291i 0.224176 0.388285i
\(52\) 0 0
\(53\) 0.881856 + 1.52742i 0.121132 + 0.209807i 0.920214 0.391415i \(-0.128014\pi\)
−0.799082 + 0.601222i \(0.794681\pi\)
\(54\) 0 0
\(55\) 3.66063 0.493599
\(56\) 0 0
\(57\) −10.7673 −1.42617
\(58\) 0 0
\(59\) −0.302587 0.524095i −0.0393934 0.0682314i 0.845656 0.533728i \(-0.179209\pi\)
−0.885050 + 0.465496i \(0.845876\pi\)
\(60\) 0 0
\(61\) 4.20579 7.28465i 0.538497 0.932703i −0.460489 0.887666i \(-0.652326\pi\)
0.998985 0.0450378i \(-0.0143408\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.07964 1.86999i 0.133913 0.231944i
\(66\) 0 0
\(67\) −4.67472 8.09685i −0.571108 0.989188i −0.996453 0.0841562i \(-0.973181\pi\)
0.425345 0.905031i \(-0.360153\pi\)
\(68\) 0 0
\(69\) 6.37053 0.766922
\(70\) 0 0
\(71\) −5.91185 −0.701608 −0.350804 0.936449i \(-0.614092\pi\)
−0.350804 + 0.936449i \(0.614092\pi\)
\(72\) 0 0
\(73\) −5.29447 9.17030i −0.619671 1.07330i −0.989546 0.144220i \(-0.953933\pi\)
0.369874 0.929082i \(-0.379401\pi\)
\(74\) 0 0
\(75\) 2.65646 4.60113i 0.306742 0.531293i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.52311 + 9.56630i −0.621398 + 1.07629i 0.367827 + 0.929894i \(0.380102\pi\)
−0.989226 + 0.146399i \(0.953232\pi\)
\(80\) 0 0
\(81\) 1.72714 + 2.99150i 0.191905 + 0.332389i
\(82\) 0 0
\(83\) −12.9132 −1.41740 −0.708701 0.705509i \(-0.750719\pi\)
−0.708701 + 0.705509i \(0.750719\pi\)
\(84\) 0 0
\(85\) 2.36859 0.256910
\(86\) 0 0
\(87\) −1.59319 2.75948i −0.170808 0.295847i
\(88\) 0 0
\(89\) 7.97696 13.8165i 0.845556 1.46455i −0.0395811 0.999216i \(-0.512602\pi\)
0.885137 0.465330i \(-0.154064\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.07979 1.87026i 0.111969 0.193937i
\(94\) 0 0
\(95\) −3.98257 6.89802i −0.408603 0.707722i
\(96\) 0 0
\(97\) 9.28081 0.942324 0.471162 0.882047i \(-0.343835\pi\)
0.471162 + 0.882047i \(0.343835\pi\)
\(98\) 0 0
\(99\) 4.89245 0.491710
\(100\) 0 0
\(101\) 9.45150 + 16.3705i 0.940459 + 1.62892i 0.764597 + 0.644508i \(0.222938\pi\)
0.175862 + 0.984415i \(0.443729\pi\)
\(102\) 0 0
\(103\) −2.54813 + 4.41349i −0.251074 + 0.434874i −0.963822 0.266547i \(-0.914117\pi\)
0.712747 + 0.701421i \(0.247451\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.80989 4.86687i 0.271642 0.470498i −0.697640 0.716448i \(-0.745767\pi\)
0.969282 + 0.245950i \(0.0791000\pi\)
\(108\) 0 0
\(109\) −5.11617 8.86146i −0.490040 0.848774i 0.509894 0.860237i \(-0.329685\pi\)
−0.999934 + 0.0114629i \(0.996351\pi\)
\(110\) 0 0
\(111\) −4.76712 −0.452475
\(112\) 0 0
\(113\) 15.1691 1.42699 0.713494 0.700662i \(-0.247112\pi\)
0.713494 + 0.700662i \(0.247112\pi\)
\(114\) 0 0
\(115\) 2.35630 + 4.08124i 0.219726 + 0.380577i
\(116\) 0 0
\(117\) 1.44294 2.49925i 0.133400 0.231056i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.66874 + 2.89035i −0.151704 + 0.262759i
\(122\) 0 0
\(123\) −0.397810 0.689027i −0.0358693 0.0621275i
\(124\) 0 0
\(125\) 8.76405 0.783881
\(126\) 0 0
\(127\) 3.20619 0.284503 0.142252 0.989831i \(-0.454566\pi\)
0.142252 + 0.989831i \(0.454566\pi\)
\(128\) 0 0
\(129\) −2.12222 3.67580i −0.186851 0.323636i
\(130\) 0 0
\(131\) −2.75372 + 4.76958i −0.240593 + 0.416720i −0.960883 0.276953i \(-0.910675\pi\)
0.720290 + 0.693673i \(0.244009\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.71138 + 4.69625i −0.233359 + 0.404189i
\(136\) 0 0
\(137\) −5.98185 10.3609i −0.511064 0.885188i −0.999918 0.0128228i \(-0.995918\pi\)
0.488854 0.872366i \(-0.337415\pi\)
\(138\) 0 0
\(139\) −10.4025 −0.882325 −0.441162 0.897427i \(-0.645434\pi\)
−0.441162 + 0.897427i \(0.645434\pi\)
\(140\) 0 0
\(141\) −12.3726 −1.04196
\(142\) 0 0
\(143\) 4.22860 + 7.32415i 0.353613 + 0.612476i
\(144\) 0 0
\(145\) 1.17856 2.04133i 0.0978743 0.169523i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.36252 14.4843i 0.685084 1.18660i −0.288326 0.957532i \(-0.593099\pi\)
0.973410 0.229069i \(-0.0735680\pi\)
\(150\) 0 0
\(151\) 9.27503 + 16.0648i 0.754791 + 1.30734i 0.945478 + 0.325686i \(0.105595\pi\)
−0.190687 + 0.981651i \(0.561071\pi\)
\(152\) 0 0
\(153\) 3.16564 0.255926
\(154\) 0 0
\(155\) 1.59756 0.128319
\(156\) 0 0
\(157\) −6.11381 10.5894i −0.487935 0.845128i 0.511969 0.859004i \(-0.328916\pi\)
−0.999904 + 0.0138760i \(0.995583\pi\)
\(158\) 0 0
\(159\) 1.15247 1.99614i 0.0913972 0.158305i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.53806 + 13.0563i −0.590427 + 1.02265i 0.403748 + 0.914870i \(0.367707\pi\)
−0.994175 + 0.107779i \(0.965626\pi\)
\(164\) 0 0
\(165\) −2.39199 4.14305i −0.186216 0.322536i
\(166\) 0 0
\(167\) −8.55828 −0.662260 −0.331130 0.943585i \(-0.607430\pi\)
−0.331130 + 0.943585i \(0.607430\pi\)
\(168\) 0 0
\(169\) −8.01139 −0.616261
\(170\) 0 0
\(171\) −5.32273 9.21923i −0.407039 0.705012i
\(172\) 0 0
\(173\) −8.88041 + 15.3813i −0.675165 + 1.16942i 0.301255 + 0.953544i \(0.402594\pi\)
−0.976421 + 0.215877i \(0.930739\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.395443 + 0.684927i −0.0297233 + 0.0514822i
\(178\) 0 0
\(179\) 7.03069 + 12.1775i 0.525498 + 0.910189i 0.999559 + 0.0296973i \(0.00945433\pi\)
−0.474061 + 0.880492i \(0.657212\pi\)
\(180\) 0 0
\(181\) −3.14416 −0.233704 −0.116852 0.993149i \(-0.537280\pi\)
−0.116852 + 0.993149i \(0.537280\pi\)
\(182\) 0 0
\(183\) −10.9929 −0.812617
\(184\) 0 0
\(185\) −1.76324 3.05402i −0.129636 0.224536i
\(186\) 0 0
\(187\) −4.63850 + 8.03412i −0.339201 + 0.587513i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.4797 18.1515i 0.758288 1.31339i −0.185435 0.982656i \(-0.559369\pi\)
0.943723 0.330737i \(-0.107297\pi\)
\(192\) 0 0
\(193\) 2.42093 + 4.19318i 0.174262 + 0.301831i 0.939906 0.341434i \(-0.110913\pi\)
−0.765643 + 0.643265i \(0.777579\pi\)
\(194\) 0 0
\(195\) −2.82191 −0.202081
\(196\) 0 0
\(197\) 18.6607 1.32952 0.664759 0.747058i \(-0.268534\pi\)
0.664759 + 0.747058i \(0.268534\pi\)
\(198\) 0 0
\(199\) −3.19746 5.53817i −0.226662 0.392590i 0.730155 0.683282i \(-0.239448\pi\)
−0.956817 + 0.290692i \(0.906115\pi\)
\(200\) 0 0
\(201\) −6.10927 + 10.5816i −0.430914 + 0.746366i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.294280 0.509708i 0.0205534 0.0355996i
\(206\) 0 0
\(207\) 3.14921 + 5.45459i 0.218885 + 0.379120i
\(208\) 0 0
\(209\) 31.1969 2.15793
\(210\) 0 0
\(211\) 22.2657 1.53283 0.766417 0.642344i \(-0.222038\pi\)
0.766417 + 0.642344i \(0.222038\pi\)
\(212\) 0 0
\(213\) 3.86302 + 6.69095i 0.264690 + 0.458457i
\(214\) 0 0
\(215\) 1.56992 2.71918i 0.107067 0.185446i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.91921 + 11.9844i −0.467557 + 0.809832i
\(220\) 0 0
\(221\) 2.73609 + 4.73905i 0.184050 + 0.318783i
\(222\) 0 0
\(223\) −20.2710 −1.35745 −0.678724 0.734393i \(-0.737467\pi\)
−0.678724 + 0.734393i \(0.737467\pi\)
\(224\) 0 0
\(225\) 5.25279 0.350186
\(226\) 0 0
\(227\) 7.44311 + 12.8918i 0.494016 + 0.855661i 0.999976 0.00689568i \(-0.00219498\pi\)
−0.505960 + 0.862557i \(0.668862\pi\)
\(228\) 0 0
\(229\) −5.32467 + 9.22260i −0.351864 + 0.609447i −0.986576 0.163302i \(-0.947785\pi\)
0.634712 + 0.772749i \(0.281119\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.9958 + 22.5093i −0.851381 + 1.47464i 0.0285809 + 0.999591i \(0.490901\pi\)
−0.879962 + 0.475044i \(0.842432\pi\)
\(234\) 0 0
\(235\) −4.57631 7.92640i −0.298526 0.517062i
\(236\) 0 0
\(237\) 14.4360 0.937720
\(238\) 0 0
\(239\) −18.0618 −1.16832 −0.584162 0.811637i \(-0.698577\pi\)
−0.584162 + 0.811637i \(0.698577\pi\)
\(240\) 0 0
\(241\) −5.67427 9.82812i −0.365512 0.633085i 0.623347 0.781946i \(-0.285773\pi\)
−0.988858 + 0.148861i \(0.952439\pi\)
\(242\) 0 0
\(243\) −6.15666 + 10.6636i −0.394950 + 0.684073i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9.20099 15.9366i 0.585445 1.01402i
\(248\) 0 0
\(249\) 8.43793 + 14.6149i 0.534732 + 0.926183i
\(250\) 0 0
\(251\) −2.21702 −0.139937 −0.0699685 0.997549i \(-0.522290\pi\)
−0.0699685 + 0.997549i \(0.522290\pi\)
\(252\) 0 0
\(253\) −18.4577 −1.16043
\(254\) 0 0
\(255\) −1.54773 2.68074i −0.0969224 0.167874i
\(256\) 0 0
\(257\) −15.7130 + 27.2158i −0.980153 + 1.69767i −0.318391 + 0.947959i \(0.603143\pi\)
−0.661761 + 0.749715i \(0.730191\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.57515 2.72825i 0.0974996 0.168874i
\(262\) 0 0
\(263\) −3.26071 5.64771i −0.201064 0.348253i 0.747808 0.663915i \(-0.231107\pi\)
−0.948871 + 0.315663i \(0.897773\pi\)
\(264\) 0 0
\(265\) 1.70509 0.104743
\(266\) 0 0
\(267\) −20.8498 −1.27598
\(268\) 0 0
\(269\) 15.3654 + 26.6136i 0.936844 + 1.62266i 0.771313 + 0.636456i \(0.219600\pi\)
0.165531 + 0.986205i \(0.447066\pi\)
\(270\) 0 0
\(271\) −5.85225 + 10.1364i −0.355499 + 0.615742i −0.987203 0.159467i \(-0.949022\pi\)
0.631704 + 0.775209i \(0.282356\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.69674 + 13.3311i −0.464131 + 0.803898i
\(276\) 0 0
\(277\) 14.2446 + 24.6724i 0.855874 + 1.48242i 0.875832 + 0.482617i \(0.160314\pi\)
−0.0199572 + 0.999801i \(0.506353\pi\)
\(278\) 0 0
\(279\) 2.13514 0.127828
\(280\) 0 0
\(281\) −5.96553 −0.355874 −0.177937 0.984042i \(-0.556942\pi\)
−0.177937 + 0.984042i \(0.556942\pi\)
\(282\) 0 0
\(283\) 0.537836 + 0.931560i 0.0319711 + 0.0553755i 0.881568 0.472057i \(-0.156488\pi\)
−0.849597 + 0.527432i \(0.823155\pi\)
\(284\) 0 0
\(285\) −5.20472 + 9.01484i −0.308301 + 0.533993i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.49868 9.52399i 0.323452 0.560235i
\(290\) 0 0
\(291\) −6.06442 10.5039i −0.355503 0.615749i
\(292\) 0 0
\(293\) −3.88129 −0.226747 −0.113374 0.993552i \(-0.536166\pi\)
−0.113374 + 0.993552i \(0.536166\pi\)
\(294\) 0 0
\(295\) −0.585058 −0.0340634
\(296\) 0 0
\(297\) −10.6196 18.3937i −0.616212 1.06731i
\(298\) 0 0
\(299\) −5.44380 + 9.42893i −0.314823 + 0.545289i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 12.3519 21.3941i 0.709599 1.22906i
\(304\) 0 0
\(305\) −4.06600 7.04251i −0.232818 0.403253i
\(306\) 0 0
\(307\) −21.6625 −1.23635 −0.618173 0.786042i \(-0.712127\pi\)
−0.618173 + 0.786042i \(0.712127\pi\)
\(308\) 0 0
\(309\) 6.66016 0.378883
\(310\) 0 0
\(311\) 4.86363 + 8.42405i 0.275791 + 0.477684i 0.970334 0.241767i \(-0.0777269\pi\)
−0.694543 + 0.719451i \(0.744394\pi\)
\(312\) 0 0
\(313\) −5.11573 + 8.86071i −0.289158 + 0.500837i −0.973609 0.228222i \(-0.926709\pi\)
0.684451 + 0.729059i \(0.260042\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.0918 + 17.4796i −0.566815 + 0.981752i 0.430064 + 0.902799i \(0.358491\pi\)
−0.996878 + 0.0789533i \(0.974842\pi\)
\(318\) 0 0
\(319\) 4.61604 + 7.99522i 0.258449 + 0.447646i
\(320\) 0 0
\(321\) −7.34433 −0.409921
\(322\) 0 0
\(323\) 20.1858 1.12317
\(324\) 0 0
\(325\) 4.54005 + 7.86359i 0.251836 + 0.436194i
\(326\) 0 0
\(327\) −6.68619 + 11.5808i −0.369747 + 0.640420i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 11.7824 20.4077i 0.647620 1.12171i −0.336070 0.941837i \(-0.609098\pi\)
0.983690 0.179874i \(-0.0575688\pi\)
\(332\) 0 0
\(333\) −2.35658 4.08171i −0.129140 0.223677i
\(334\) 0 0
\(335\) −9.03867 −0.493835
\(336\) 0 0
\(337\) 17.6174 0.959680 0.479840 0.877356i \(-0.340695\pi\)
0.479840 + 0.877356i \(0.340695\pi\)
\(338\) 0 0
\(339\) −9.91204 17.1682i −0.538348 0.932446i
\(340\) 0 0
\(341\) −3.12856 + 5.41882i −0.169421 + 0.293445i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3.07939 5.33366i 0.165789 0.287155i
\(346\) 0 0
\(347\) 13.4143 + 23.2342i 0.720116 + 1.24728i 0.960953 + 0.276712i \(0.0892449\pi\)
−0.240836 + 0.970566i \(0.577422\pi\)
\(348\) 0 0
\(349\) 28.0841 1.50331 0.751654 0.659557i \(-0.229256\pi\)
0.751654 + 0.659557i \(0.229256\pi\)
\(350\) 0 0
\(351\) −12.5283 −0.668710
\(352\) 0 0
\(353\) 5.91904 + 10.2521i 0.315039 + 0.545663i 0.979446 0.201708i \(-0.0646492\pi\)
−0.664407 + 0.747371i \(0.731316\pi\)
\(354\) 0 0
\(355\) −2.85768 + 4.94964i −0.151670 + 0.262700i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.27300 + 9.13310i −0.278298 + 0.482027i −0.970962 0.239234i \(-0.923104\pi\)
0.692664 + 0.721261i \(0.256437\pi\)
\(360\) 0 0
\(361\) −24.4406 42.3323i −1.28634 2.22801i
\(362\) 0 0
\(363\) 4.36168 0.228929
\(364\) 0 0
\(365\) −10.2370 −0.535828
\(366\) 0 0
\(367\) −11.5228 19.9581i −0.601487 1.04181i −0.992596 0.121462i \(-0.961242\pi\)
0.391109 0.920344i \(-0.372092\pi\)
\(368\) 0 0
\(369\) 0.393307 0.681228i 0.0204747 0.0354633i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −15.7484 + 27.2771i −0.815424 + 1.41235i 0.0935999 + 0.995610i \(0.470163\pi\)
−0.909023 + 0.416745i \(0.863171\pi\)
\(374\) 0 0
\(375\) −5.72675 9.91903i −0.295728 0.512216i
\(376\) 0 0
\(377\) 5.44569 0.280467
\(378\) 0 0
\(379\) 24.2707 1.24670 0.623351 0.781942i \(-0.285771\pi\)
0.623351 + 0.781942i \(0.285771\pi\)
\(380\) 0 0
\(381\) −2.09504 3.62872i −0.107332 0.185905i
\(382\) 0 0
\(383\) −2.48829 + 4.30984i −0.127146 + 0.220223i −0.922570 0.385831i \(-0.873915\pi\)
0.795424 + 0.606053i \(0.207248\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.09820 3.63419i 0.106658 0.184736i
\(388\) 0 0
\(389\) −6.98785 12.1033i −0.354298 0.613662i 0.632700 0.774397i \(-0.281947\pi\)
−0.986998 + 0.160735i \(0.948614\pi\)
\(390\) 0 0
\(391\) −11.9430 −0.603983
\(392\) 0 0
\(393\) 7.19752 0.363067
\(394\) 0 0
\(395\) 5.33953 + 9.24833i 0.268661 + 0.465334i
\(396\) 0 0
\(397\) 2.67606 4.63507i 0.134308 0.232628i −0.791025 0.611784i \(-0.790452\pi\)
0.925333 + 0.379156i \(0.123786\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.906693 + 1.57044i −0.0452781 + 0.0784239i −0.887776 0.460275i \(-0.847751\pi\)
0.842498 + 0.538699i \(0.181084\pi\)
\(402\) 0 0
\(403\) 1.84543 + 3.19638i 0.0919274 + 0.159223i
\(404\) 0 0
\(405\) 3.33947 0.165939
\(406\) 0 0
\(407\) 13.8121 0.684639
\(408\) 0 0
\(409\) −16.9503 29.3588i −0.838140 1.45170i −0.891448 0.453123i \(-0.850310\pi\)
0.0533078 0.998578i \(-0.483024\pi\)
\(410\) 0 0
\(411\) −7.81752 + 13.5403i −0.385610 + 0.667896i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6.24197 + 10.8114i −0.306406 + 0.530711i
\(416\) 0 0
\(417\) 6.79735 + 11.7734i 0.332868 + 0.576543i
\(418\) 0 0
\(419\) 15.6842 0.766226 0.383113 0.923702i \(-0.374852\pi\)
0.383113 + 0.923702i \(0.374852\pi\)
\(420\) 0 0
\(421\) −1.36544 −0.0665477 −0.0332739 0.999446i \(-0.510593\pi\)
−0.0332739 + 0.999446i \(0.510593\pi\)
\(422\) 0 0
\(423\) −6.11626 10.5937i −0.297383 0.515082i
\(424\) 0 0
\(425\) −4.98014 + 8.62586i −0.241572 + 0.418415i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 5.52624 9.57174i 0.266810 0.462128i
\(430\) 0 0
\(431\) −13.9372 24.1399i −0.671331 1.16278i −0.977527 0.210811i \(-0.932390\pi\)
0.306196 0.951969i \(-0.400944\pi\)
\(432\) 0 0
\(433\) −10.5777 −0.508334 −0.254167 0.967160i \(-0.581801\pi\)
−0.254167 + 0.967160i \(0.581801\pi\)
\(434\) 0 0
\(435\) −3.08046 −0.147697
\(436\) 0 0
\(437\) 20.0811 + 34.7814i 0.960607 + 1.66382i
\(438\) 0 0
\(439\) −14.7647 + 25.5732i −0.704679 + 1.22054i 0.262128 + 0.965033i \(0.415576\pi\)
−0.966807 + 0.255507i \(0.917758\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.73998 13.4060i 0.367737 0.636940i −0.621474 0.783435i \(-0.713466\pi\)
0.989211 + 0.146495i \(0.0467992\pi\)
\(444\) 0 0
\(445\) −7.71182 13.3573i −0.365575 0.633195i
\(446\) 0 0
\(447\) −21.8575 −1.03383
\(448\) 0 0
\(449\) −36.5746 −1.72606 −0.863032 0.505149i \(-0.831438\pi\)
−0.863032 + 0.505149i \(0.831438\pi\)
\(450\) 0 0
\(451\) 1.15260 + 1.99636i 0.0542738 + 0.0940050i
\(452\) 0 0
\(453\) 12.1213 20.9947i 0.569508 0.986417i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.84871 6.66617i 0.180035 0.311830i −0.761857 0.647745i \(-0.775712\pi\)
0.941892 + 0.335915i \(0.109046\pi\)
\(458\) 0 0
\(459\) −6.87136 11.9015i −0.320728 0.555517i
\(460\) 0 0
\(461\) −13.4571 −0.626761 −0.313381 0.949628i \(-0.601462\pi\)
−0.313381 + 0.949628i \(0.601462\pi\)
\(462\) 0 0
\(463\) −27.7916 −1.29158 −0.645792 0.763514i \(-0.723473\pi\)
−0.645792 + 0.763514i \(0.723473\pi\)
\(464\) 0 0
\(465\) −1.04390 1.80809i −0.0484099 0.0838483i
\(466\) 0 0
\(467\) 15.6279 27.0683i 0.723171 1.25257i −0.236551 0.971619i \(-0.576017\pi\)
0.959722 0.280950i \(-0.0906496\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −7.98997 + 13.8390i −0.368159 + 0.637669i
\(472\) 0 0
\(473\) 6.14885 + 10.6501i 0.282724 + 0.489693i
\(474\) 0 0
\(475\) 33.4946 1.53684
\(476\) 0 0
\(477\) 2.27886 0.104342
\(478\) 0 0
\(479\) 20.5651 + 35.6198i 0.939643 + 1.62751i 0.766138 + 0.642677i \(0.222176\pi\)
0.173505 + 0.984833i \(0.444491\pi\)
\(480\) 0 0
\(481\) 4.07364 7.05574i 0.185742 0.321714i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.48616 7.77027i 0.203706 0.352830i
\(486\) 0 0
\(487\) −1.05975 1.83553i −0.0480217 0.0831760i 0.841015 0.541011i \(-0.181958\pi\)
−0.889037 + 0.457835i \(0.848625\pi\)
\(488\) 0 0
\(489\) 19.7026 0.890982
\(490\) 0 0
\(491\) 27.0278 1.21975 0.609873 0.792499i \(-0.291220\pi\)
0.609873 + 0.792499i \(0.291220\pi\)
\(492\) 0 0
\(493\) 2.98679 + 5.17327i 0.134518 + 0.232992i
\(494\) 0 0
\(495\) 2.36492 4.09615i 0.106295 0.184108i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.9235 25.8482i 0.668065 1.15712i −0.310379 0.950613i \(-0.600456\pi\)
0.978444 0.206510i \(-0.0662107\pi\)
\(500\) 0 0
\(501\) 5.59230 + 9.68614i 0.249845 + 0.432745i
\(502\) 0 0
\(503\) −30.5276 −1.36116 −0.680580 0.732674i \(-0.738272\pi\)
−0.680580 + 0.732674i \(0.738272\pi\)
\(504\) 0 0
\(505\) 18.2747 0.813213
\(506\) 0 0
\(507\) 5.23494 + 9.06717i 0.232492 + 0.402687i
\(508\) 0 0
\(509\) −6.38305 + 11.0558i −0.282924 + 0.490038i −0.972104 0.234552i \(-0.924638\pi\)
0.689180 + 0.724590i \(0.257971\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −23.1071 + 40.0227i −1.02020 + 1.76705i
\(514\) 0 0
\(515\) 2.46343 + 4.26679i 0.108552 + 0.188017i
\(516\) 0 0
\(517\) 35.8478 1.57659
\(518\) 0 0
\(519\) 23.2112 1.01886
\(520\) 0 0
\(521\) −8.26051 14.3076i −0.361900 0.626829i 0.626374 0.779523i \(-0.284538\pi\)
−0.988273 + 0.152694i \(0.951205\pi\)
\(522\) 0 0
\(523\) 5.21484 9.03237i 0.228029 0.394958i −0.729195 0.684306i \(-0.760105\pi\)
0.957224 + 0.289348i \(0.0934386\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.02432 + 3.50622i −0.0881806 + 0.152733i
\(528\) 0 0
\(529\) −0.381027 0.659958i −0.0165664 0.0286938i
\(530\) 0 0
\(531\) −0.781933 −0.0339330
\(532\) 0 0
\(533\) 1.35976 0.0588977
\(534\) 0 0
\(535\) −2.71649 4.70510i −0.117444 0.203419i
\(536\) 0 0
\(537\) 9.18822 15.9145i 0.396501 0.686760i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 13.2024 22.8672i 0.567614 0.983136i −0.429187 0.903216i \(-0.641200\pi\)
0.996801 0.0799208i \(-0.0254668\pi\)
\(542\) 0 0
\(543\) 2.05451 + 3.55852i 0.0881675 + 0.152711i
\(544\) 0 0
\(545\) −9.89223 −0.423736
\(546\) 0 0
\(547\) −23.1444 −0.989584 −0.494792 0.869012i \(-0.664756\pi\)
−0.494792 + 0.869012i \(0.664756\pi\)
\(548\) 0 0
\(549\) −5.43422 9.41235i −0.231927 0.401709i
\(550\) 0 0
\(551\) 10.0440 17.3968i 0.427890 0.741127i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.30433 + 3.99122i −0.0978135 + 0.169418i
\(556\) 0 0
\(557\) −2.47537 4.28747i −0.104885 0.181666i 0.808806 0.588075i \(-0.200114\pi\)
−0.913691 + 0.406409i \(0.866781\pi\)
\(558\) 0 0
\(559\) 7.25400 0.306811
\(560\) 0 0
\(561\) 12.1239 0.511870
\(562\) 0 0
\(563\) 6.28920 + 10.8932i 0.265058 + 0.459094i 0.967579 0.252569i \(-0.0812755\pi\)
−0.702521 + 0.711663i \(0.747942\pi\)
\(564\) 0 0
\(565\) 7.33244 12.7002i 0.308478 0.534300i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.25293 9.09834i 0.220214 0.381422i −0.734659 0.678437i \(-0.762658\pi\)
0.954873 + 0.297015i \(0.0959910\pi\)
\(570\) 0 0
\(571\) 1.60966 + 2.78800i 0.0673620 + 0.116674i 0.897739 0.440527i \(-0.145208\pi\)
−0.830377 + 0.557201i \(0.811875\pi\)
\(572\) 0 0
\(573\) −27.3914 −1.14429
\(574\) 0 0
\(575\) −19.8172 −0.826434
\(576\) 0 0
\(577\) −12.8218 22.2080i −0.533779 0.924533i −0.999221 0.0394545i \(-0.987438\pi\)
0.465442 0.885078i \(-0.345895\pi\)
\(578\) 0 0
\(579\) 3.16385 5.47995i 0.131485 0.227739i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.33914 + 5.78356i −0.138293 + 0.239530i
\(584\) 0 0
\(585\) −1.39498 2.41618i −0.0576755 0.0998968i
\(586\) 0 0
\(587\) −13.6017 −0.561402 −0.280701 0.959795i \(-0.590567\pi\)
−0.280701 + 0.959795i \(0.590567\pi\)
\(588\) 0 0
\(589\) 13.6148 0.560989
\(590\) 0 0
\(591\) −12.1936 21.1199i −0.501577 0.868756i
\(592\) 0 0
\(593\) 15.9857 27.6881i 0.656455 1.13701i −0.325071 0.945689i \(-0.605388\pi\)
0.981527 0.191325i \(-0.0612783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.17868 + 7.23768i −0.171022 + 0.296219i
\(598\) 0 0
\(599\) 3.96809 + 6.87294i 0.162132 + 0.280821i 0.935633 0.352974i \(-0.114830\pi\)
−0.773501 + 0.633795i \(0.781496\pi\)
\(600\) 0 0
\(601\) −2.41626 −0.0985612 −0.0492806 0.998785i \(-0.515693\pi\)
−0.0492806 + 0.998785i \(0.515693\pi\)
\(602\) 0 0
\(603\) −12.0802 −0.491945
\(604\) 0 0
\(605\) 1.61328 + 2.79428i 0.0655891 + 0.113604i
\(606\) 0 0
\(607\) 6.66779 11.5489i 0.270637 0.468757i −0.698388 0.715719i \(-0.746099\pi\)
0.969025 + 0.246962i \(0.0794323\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.5727 18.3125i 0.427726 0.740843i
\(612\) 0 0
\(613\) 12.3696 + 21.4247i 0.499602 + 0.865337i 1.00000 0.000458946i \(-0.000146087\pi\)
−0.500397 + 0.865796i \(0.666813\pi\)
\(614\) 0 0
\(615\) −0.769174 −0.0310161
\(616\) 0 0
\(617\) −13.6111 −0.547963 −0.273982 0.961735i \(-0.588341\pi\)
−0.273982 + 0.961735i \(0.588341\pi\)
\(618\) 0 0
\(619\) −6.72445 11.6471i −0.270278 0.468136i 0.698655 0.715459i \(-0.253782\pi\)
−0.968933 + 0.247323i \(0.920449\pi\)
\(620\) 0 0
\(621\) 13.6714 23.6796i 0.548615 0.950229i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.92706 + 10.2660i −0.237082 + 0.410639i
\(626\) 0 0
\(627\) −20.3852 35.3082i −0.814106 1.41007i
\(628\) 0 0
\(629\) 8.93703 0.356343
\(630\) 0 0
\(631\) −34.2018 −1.36155 −0.680777 0.732491i \(-0.738358\pi\)
−0.680777 + 0.732491i \(0.738358\pi\)
\(632\) 0 0
\(633\) −14.5492 25.2000i −0.578280 1.00161i
\(634\) 0 0
\(635\) 1.54981 2.68435i 0.0615023 0.106525i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3.81930 + 6.61522i −0.151089 + 0.261694i
\(640\) 0 0
\(641\) 21.1280 + 36.5948i 0.834506 + 1.44541i 0.894432 + 0.447204i \(0.147580\pi\)
−0.0599258 + 0.998203i \(0.519086\pi\)
\(642\) 0 0
\(643\) −21.6806 −0.855000 −0.427500 0.904015i \(-0.640606\pi\)
−0.427500 + 0.904015i \(0.640606\pi\)
\(644\) 0 0
\(645\) −4.10337 −0.161570
\(646\) 0 0
\(647\) 16.7909 + 29.0826i 0.660117 + 1.14336i 0.980584 + 0.196097i \(0.0628268\pi\)
−0.320467 + 0.947260i \(0.603840\pi\)
\(648\) 0 0
\(649\) 1.14574 1.98448i 0.0449743 0.0778977i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.37144 + 4.10746i −0.0928017 + 0.160737i −0.908689 0.417474i \(-0.862916\pi\)
0.815887 + 0.578211i \(0.196249\pi\)
\(654\) 0 0
\(655\) 2.66219 + 4.61105i 0.104020 + 0.180168i
\(656\) 0 0
\(657\) −13.6818 −0.533777
\(658\) 0 0
\(659\) −11.1917 −0.435968 −0.217984 0.975952i \(-0.569948\pi\)
−0.217984 + 0.975952i \(0.569948\pi\)
\(660\) 0 0
\(661\) 22.2191 + 38.4846i 0.864222 + 1.49688i 0.867817 + 0.496883i \(0.165522\pi\)
−0.00359535 + 0.999994i \(0.501144\pi\)
\(662\) 0 0
\(663\) 3.57573 6.19335i 0.138870 0.240530i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.94258 + 10.2929i −0.230098 + 0.398541i
\(668\) 0 0
\(669\) 13.2458 + 22.9425i 0.512114 + 0.887007i
\(670\) 0 0
\(671\) 31.8504 1.22957
\(672\) 0 0
\(673\) −29.0230 −1.11875 −0.559377 0.828913i \(-0.688960\pi\)
−0.559377 + 0.828913i \(0.688960\pi\)
\(674\) 0 0
\(675\) −11.4018 19.7484i −0.438854 0.760117i
\(676\) 0 0
\(677\) 1.39441 2.41519i 0.0535916 0.0928234i −0.837985 0.545693i \(-0.816266\pi\)
0.891577 + 0.452870i \(0.149600\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 9.72720 16.8480i 0.372747 0.645617i
\(682\) 0 0
\(683\) 2.85501 + 4.94503i 0.109244 + 0.189216i 0.915464 0.402399i \(-0.131824\pi\)
−0.806220 + 0.591616i \(0.798490\pi\)
\(684\) 0 0
\(685\) −11.5660 −0.441916
\(686\) 0 0
\(687\) 13.9173 0.530980
\(688\) 0 0
\(689\) 1.96964 + 3.41152i 0.0750374 + 0.129969i
\(690\) 0 0
\(691\) 25.6527 44.4318i 0.975875 1.69027i 0.298859 0.954297i \(-0.403394\pi\)
0.677016 0.735968i \(-0.263273\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.02835 + 8.70935i −0.190736 + 0.330364i
\(696\) 0 0
\(697\) 0.745784 + 1.29174i 0.0282486 + 0.0489280i
\(698\) 0 0
\(699\) 33.9677 1.28477
\(700\) 0 0
\(701\) 30.6669 1.15827 0.579137 0.815230i \(-0.303390\pi\)
0.579137 + 0.815230i \(0.303390\pi\)
\(702\) 0 0
\(703\) −15.0268 26.0272i −0.566747 0.981634i
\(704\) 0 0
\(705\) −5.98066 + 10.3588i −0.225245 + 0.390135i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −13.6077 + 23.5693i −0.511049 + 0.885162i 0.488869 + 0.872357i \(0.337409\pi\)
−0.999918 + 0.0128053i \(0.995924\pi\)
\(710\) 0 0
\(711\) 7.13630 + 12.3604i 0.267632 + 0.463553i
\(712\) 0 0
\(713\) −8.05526 −0.301672
\(714\) 0 0
\(715\) 8.17609 0.305768
\(716\) 0 0
\(717\) 11.8023 + 20.4421i 0.440764 + 0.763425i
\(718\) 0 0
\(719\) 24.7463 42.8619i 0.922881 1.59848i 0.127948 0.991781i \(-0.459161\pi\)
0.794933 0.606697i \(-0.207506\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −7.41555 + 12.8441i −0.275787 + 0.477678i
\(724\) 0 0
\(725\) 4.95603 + 8.58409i 0.184062 + 0.318805i
\(726\) 0 0
\(727\) 34.1732 1.26742 0.633708 0.773573i \(-0.281532\pi\)
0.633708 + 0.773573i \(0.281532\pi\)
\(728\) 0 0
\(729\) 26.4548 0.979807
\(730\) 0 0
\(731\) 3.97858 + 6.89111i 0.147153 + 0.254877i
\(732\) 0 0
\(733\) 19.4898 33.7573i 0.719873 1.24686i −0.241177 0.970481i \(-0.577534\pi\)
0.961050 0.276375i \(-0.0891331\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 17.7008 30.6586i 0.652016 1.12932i
\(738\) 0 0
\(739\) 14.1386 + 24.4887i 0.520096 + 0.900833i 0.999727 + 0.0233626i \(0.00743722\pi\)
−0.479631 + 0.877470i \(0.659229\pi\)
\(740\) 0 0
\(741\) −24.0491 −0.883464
\(742\) 0 0
\(743\) 27.4681 1.00771 0.503854 0.863789i \(-0.331915\pi\)
0.503854 + 0.863789i \(0.331915\pi\)
\(744\) 0 0
\(745\) −8.08456 14.0029i −0.296195 0.513025i
\(746\) 0 0
\(747\) −8.34242 + 14.4495i −0.305233 + 0.528679i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0.100004 0.173212i 0.00364920 0.00632060i −0.864195 0.503157i \(-0.832172\pi\)
0.867844 + 0.496836i \(0.165505\pi\)
\(752\) 0 0
\(753\) 1.44868 + 2.50919i 0.0527929 + 0.0914400i
\(754\) 0 0
\(755\) 17.9335 0.652666
\(756\) 0 0
\(757\) −9.94418 −0.361427 −0.180714 0.983536i \(-0.557841\pi\)
−0.180714 + 0.983536i \(0.557841\pi\)
\(758\) 0 0
\(759\) 12.0610 + 20.8902i 0.437785 + 0.758267i
\(760\) 0 0
\(761\) −2.93378 + 5.08145i −0.106349 + 0.184202i −0.914289 0.405063i \(-0.867250\pi\)
0.807939 + 0.589266i \(0.200583\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.53021 2.65040i 0.0553248 0.0958253i
\(766\) 0 0
\(767\) −0.675833 1.17058i −0.0244029 0.0422671i
\(768\) 0 0
\(769\) 12.9114 0.465596 0.232798 0.972525i \(-0.425212\pi\)
0.232798 + 0.972525i \(0.425212\pi\)
\(770\) 0 0
\(771\) 41.0699 1.47910
\(772\) 0 0
\(773\) 19.9558 + 34.5645i 0.717760 + 1.24320i 0.961885 + 0.273453i \(0.0881659\pi\)
−0.244125 + 0.969744i \(0.578501\pi\)
\(774\) 0 0
\(775\) −3.35898 + 5.81793i −0.120658 + 0.208986i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.50794 4.34387i 0.0898561 0.155635i
\(780\) 0 0
\(781\) −11.1926 19.3861i −0.400502 0.693690i
\(782\) 0 0
\(783\) −13.6762 −0.488747
\(784\) 0 0
\(785\) −11.8212 −0.421916
\(786\) 0 0
\(787\) −5.59497 9.69077i −0.199439 0.345439i 0.748908 0.662674i \(-0.230579\pi\)
−0.948347 + 0.317236i \(0.897245\pi\)
\(788\) 0 0
\(789\) −4.26133 + 7.38084i −0.151707 + 0.262765i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 9.39372 16.2704i 0.333581 0.577779i
\(794\) 0 0
\(795\) −1.11417 1.92980i −0.0395155 0.0684428i
\(796\) 0 0
\(797\) −27.4646 −0.972846 −0.486423 0.873723i \(-0.661699\pi\)
−0.486423 + 0.873723i \(0.661699\pi\)
\(798\) 0 0
\(799\) 23.1952 0.820586
\(800\) 0 0
\(801\) −10.3069 17.8520i −0.364176 0.630771i
\(802\) 0 0
\(803\) 20.0475 34.7232i 0.707459 1.22536i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 20.0806 34.7806i 0.706871 1.22434i
\(808\) 0 0
\(809\) −19.4532 33.6939i −0.683938 1.18462i −0.973769 0.227538i \(-0.926932\pi\)
0.289831 0.957078i \(-0.406401\pi\)
\(810\) 0 0
\(811\) −24.3485 −0.854992 −0.427496 0.904017i \(-0.640604\pi\)
−0.427496 + 0.904017i \(0.640604\pi\)
\(812\) 0 0
\(813\) 15.2963 0.536465
\(814\) 0 0
\(815\) 7.28751 + 12.6223i 0.255270 + 0.442141i
\(816\) 0 0
\(817\) 13.3793 23.1735i 0.468081 0.810740i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.18816 + 2.05795i −0.0414670 + 0.0718230i −0.886014 0.463658i \(-0.846536\pi\)
0.844547 + 0.535481i \(0.179870\pi\)
\(822\) 0 0
\(823\) 4.35915 + 7.55027i 0.151951 + 0.263186i 0.931944 0.362601i \(-0.118111\pi\)
−0.779994 + 0.625787i \(0.784778\pi\)
\(824\) 0 0
\(825\) 20.1173 0.700396
\(826\) 0 0
\(827\) −37.7669 −1.31328 −0.656642 0.754202i \(-0.728024\pi\)
−0.656642 + 0.754202i \(0.728024\pi\)
\(828\) 0 0
\(829\) 7.66959 + 13.2841i 0.266376 + 0.461377i 0.967923 0.251246i \(-0.0808404\pi\)
−0.701547 + 0.712623i \(0.747507\pi\)
\(830\) 0 0
\(831\) 18.6159 32.2436i 0.645778 1.11852i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −4.13691 + 7.16533i −0.143164 + 0.247967i
\(836\) 0 0
\(837\) −4.63456 8.02730i −0.160194 0.277464i
\(838\) 0 0
\(839\) 44.2930 1.52916 0.764582 0.644526i \(-0.222945\pi\)
0.764582 + 0.644526i \(0.222945\pi\)
\(840\) 0 0
\(841\) −23.0553 −0.795012
\(842\) 0 0
\(843\) 3.89810 + 6.75170i 0.134258 + 0.232541i
\(844\) 0 0
\(845\) −3.87255 + 6.70745i −0.133220 + 0.230743i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0.702884 1.21743i 0.0241229 0.0417821i
\(850\) 0 0
\(851\) 8.89066 + 15.3991i 0.304768 + 0.527874i
\(852\) 0 0
\(853\) −28.4674 −0.974706 −0.487353 0.873205i \(-0.662038\pi\)
−0.487353 + 0.873205i \(0.662038\pi\)
\(854\) 0 0
\(855\) −10.2916 −0.351966
\(856\) 0 0
\(857\) −12.2048 21.1394i −0.416909 0.722108i 0.578717 0.815528i \(-0.303553\pi\)
−0.995627 + 0.0934199i \(0.970220\pi\)
\(858\) 0 0
\(859\) −2.09041 + 3.62069i −0.0713237 + 0.123536i −0.899482 0.436958i \(-0.856056\pi\)
0.828158 + 0.560495i \(0.189389\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.8316 + 43.0096i −0.845277 + 1.46406i 0.0401029 + 0.999196i \(0.487231\pi\)
−0.885380 + 0.464868i \(0.846102\pi\)
\(864\) 0 0
\(865\) 8.58524 + 14.8701i 0.291907 + 0.505598i
\(866\) 0 0
\(867\) −14.3722 −0.488104
\(868\) 0 0
\(869\) −41.8264 −1.41886
\(870\) 0 0
\(871\) −10.4411 18.0845i −0.353782 0.612769i
\(872\) 0 0
\(873\) 5.99578 10.3850i 0.202926 0.351479i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.81217 6.60288i 0.128728 0.222963i −0.794456 0.607322i \(-0.792244\pi\)
0.923184 + 0.384358i \(0.125577\pi\)
\(878\) 0 0
\(879\) 2.53617 + 4.39278i 0.0855431 + 0.148165i
\(880\) 0 0
\(881\) −23.6086 −0.795393 −0.397697 0.917517i \(-0.630190\pi\)
−0.397697 + 0.917517i \(0.630190\pi\)
\(882\) 0 0
\(883\) −1.58826 −0.0534491 −0.0267245 0.999643i \(-0.508508\pi\)
−0.0267245 + 0.999643i \(0.508508\pi\)
\(884\) 0 0
\(885\) 0.382299 + 0.662160i 0.0128508 + 0.0222583i
\(886\) 0 0
\(887\) 3.66635 6.35031i 0.123104 0.213223i −0.797886 0.602808i \(-0.794048\pi\)
0.920990 + 0.389586i \(0.127382\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −6.53980 + 11.3273i −0.219092 + 0.379478i
\(892\) 0 0
\(893\) −39.0006 67.5509i −1.30510 2.26051i
\(894\) 0 0
\(895\) 13.5940 0.454397
\(896\) 0 0
\(897\) 14.2287 0.475083
\(898\) 0 0
\(899\) 2.01452 + 3.48924i 0.0671879 + 0.116373i
\(900\) 0 0
\(901\) −2.16057 + 3.74222i −0.0719791 + 0.124671i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.51983 + 2.63242i −0.0505207 + 0.0875045i
\(906\) 0 0
\(907\) −13.6499 23.6424i −0.453239 0.785033i 0.545346 0.838211i \(-0.316398\pi\)
−0.998585 + 0.0531781i \(0.983065\pi\)
\(908\) 0 0
\(909\) 24.4242 0.810100
\(910\) 0 0
\(911\) −13.1608 −0.436036 −0.218018 0.975945i \(-0.569959\pi\)
−0.218018 + 0.975945i \(0.569959\pi\)
\(912\) 0 0
\(913\) −24.4477 42.3447i −0.809102 1.40141i
\(914\) 0 0
\(915\) −5.31374 + 9.20368i −0.175667 + 0.304264i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −3.11792 + 5.40040i −0.102851 + 0.178143i −0.912858 0.408277i \(-0.866130\pi\)
0.810007 + 0.586420i \(0.199463\pi\)
\(920\) 0 0
\(921\) 14.1551 + 24.5174i 0.466427 + 0.807875i
\(922\) 0 0
\(923\) −13.2042 −0.434623
\(924\) 0 0
\(925\) 14.8294 0.487587
\(926\) 0 0
\(927\) 3.29239 + 5.70258i 0.108136 + 0.187297i
\(928\) 0 0
\(929\) −21.6686 + 37.5311i −0.710923 + 1.23135i 0.253588 + 0.967312i \(0.418389\pi\)
−0.964511 + 0.264042i \(0.914944\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 6.35615 11.0092i 0.208091 0.360424i
\(934\) 0 0
\(935\) 4.48432 + 7.76708i 0.146653 + 0.254011i
\(936\) 0 0
\(937\) −47.4200 −1.54914 −0.774572 0.632486i \(-0.782035\pi\)
−0.774572 + 0.632486i \(0.782035\pi\)
\(938\) 0 0
\(939\) 13.3712 0.436354
\(940\) 0 0
\(941\) 18.9537 + 32.8288i 0.617874 + 1.07019i 0.989873 + 0.141955i \(0.0453390\pi\)
−0.372000 + 0.928233i \(0.621328\pi\)
\(942\) 0 0
\(943\) −1.48383 + 2.57007i −0.0483201 + 0.0836929i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −24.2538 + 42.0088i −0.788142 + 1.36510i 0.138962 + 0.990298i \(0.455624\pi\)
−0.927104 + 0.374805i \(0.877710\pi\)
\(948\) 0 0
\(949\) −11.8253 20.4820i −0.383866 0.664875i
\(950\) 0 0
\(951\) 26.3775 0.855351
\(952\) 0 0
\(953\) 33.8440 1.09631 0.548157 0.836376i \(-0.315330\pi\)
0.548157 + 0.836376i \(0.315330\pi\)
\(954\) 0 0
\(955\) −10.1314 17.5481i −0.327845 0.567844i
\(956\) 0 0
\(957\) 6.03258 10.4487i 0.195006 0.337760i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 14.1346 24.4819i 0.455956 0.789740i
\(962\) 0 0
\(963\) −3.63060 6.28839i −0.116994 0.202640i
\(964\) 0 0
\(965\) 4.68093 0.150684
\(966\) 0 0
\(967\) 28.6546 0.921471 0.460735 0.887538i \(-0.347586\pi\)
0.460735 + 0.887538i \(0.347586\pi\)
\(968\) 0 0
\(969\) −13.1901 22.8460i −0.423728 0.733919i
\(970\) 0 0
\(971\) −19.2384 + 33.3220i −0.617391 + 1.06935i 0.372569 + 0.928004i \(0.378477\pi\)
−0.989960 + 0.141348i \(0.954856\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 5.93327 10.2767i 0.190017 0.329118i
\(976\) 0 0
\(977\) −3.43627 5.95179i −0.109936 0.190414i 0.805808 0.592177i \(-0.201731\pi\)
−0.915744 + 0.401762i \(0.868398\pi\)
\(978\) 0 0
\(979\) 60.4093 1.93069
\(980\) 0 0
\(981\) −13.2210 −0.422114
\(982\) 0 0
\(983\) −5.97653 10.3517i −0.190622 0.330167i 0.754835 0.655915i \(-0.227717\pi\)
−0.945456 + 0.325748i \(0.894384\pi\)
\(984\) 0 0
\(985\) 9.02021 15.6235i 0.287408 0.497805i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.91588 + 13.7107i −0.251710 + 0.435975i
\(990\) 0 0
\(991\) 14.5774 + 25.2488i 0.463066 + 0.802054i 0.999112 0.0421347i \(-0.0134159\pi\)
−0.536046 + 0.844189i \(0.680083\pi\)
\(992\) 0 0
\(993\) −30.7962 −0.977289
\(994\) 0 0
\(995\) −6.18236 −0.195994
\(996\) 0 0
\(997\) 1.49686 + 2.59263i 0.0474059 + 0.0821094i 0.888755 0.458383i \(-0.151571\pi\)
−0.841349 + 0.540493i \(0.818238\pi\)
\(998\) 0 0
\(999\) −10.2304 + 17.7196i −0.323676 + 0.560624i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1372.2.e.d.1353.1 12
7.2 even 3 1372.2.a.a.1.6 6
7.3 odd 6 1372.2.e.a.361.6 12
7.4 even 3 inner 1372.2.e.d.361.1 12
7.5 odd 6 1372.2.a.d.1.1 yes 6
7.6 odd 2 1372.2.e.a.1353.6 12
28.19 even 6 5488.2.a.g.1.6 6
28.23 odd 6 5488.2.a.q.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1372.2.a.a.1.6 6 7.2 even 3
1372.2.a.d.1.1 yes 6 7.5 odd 6
1372.2.e.a.361.6 12 7.3 odd 6
1372.2.e.a.1353.6 12 7.6 odd 2
1372.2.e.d.361.1 12 7.4 even 3 inner
1372.2.e.d.1353.1 12 1.1 even 1 trivial
5488.2.a.g.1.6 6 28.19 even 6
5488.2.a.q.1.1 6 28.23 odd 6