Properties

Label 5472.2.g.b.2737.5
Level $5472$
Weight $2$
Character 5472.2737
Analytic conductor $43.694$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5472,2,Mod(2737,5472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5472.2737"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5472 = 2^{5} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5472.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.6941399860\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 3 x^{14} - 4 x^{13} + 4 x^{12} + 4 x^{11} - 10 x^{10} + 24 x^{9} - 40 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2737.5
Root \(-0.466170 - 1.33517i\) of defining polynomial
Character \(\chi\) \(=\) 5472.2737
Dual form 5472.2.g.b.2737.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.10882i q^{5} +2.73436 q^{7} -4.66474i q^{11} -4.47791i q^{13} +6.85237 q^{17} -1.00000i q^{19} -1.20416 q^{23} +0.552894 q^{25} -9.57484i q^{29} +5.35842 q^{31} -5.76625i q^{35} -1.09693i q^{37} -7.33797 q^{41} +7.64408i q^{43} +7.56486 q^{47} +0.476702 q^{49} +3.11949i q^{53} -9.83708 q^{55} +10.2442i q^{59} -0.722061i q^{61} -9.44309 q^{65} -6.13698i q^{67} +4.62247 q^{71} -6.19270 q^{73} -12.7551i q^{77} +3.26723 q^{79} +8.97934i q^{83} -14.4504i q^{85} -0.620707 q^{89} -12.2442i q^{91} -2.10882 q^{95} -1.67284 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{7} + 8 q^{17} - 24 q^{25} - 16 q^{31} - 16 q^{41} + 24 q^{47} + 24 q^{49} - 16 q^{55} - 16 q^{65} + 48 q^{71} + 48 q^{79} + 16 q^{89} + 16 q^{95} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5472\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(2053\) \(3745\) \(4447\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.10882i − 0.943091i −0.881842 0.471546i \(-0.843696\pi\)
0.881842 0.471546i \(-0.156304\pi\)
\(6\) 0 0
\(7\) 2.73436 1.03349 0.516745 0.856140i \(-0.327144\pi\)
0.516745 + 0.856140i \(0.327144\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 4.66474i − 1.40647i −0.710957 0.703236i \(-0.751738\pi\)
0.710957 0.703236i \(-0.248262\pi\)
\(12\) 0 0
\(13\) − 4.47791i − 1.24195i −0.783831 0.620974i \(-0.786737\pi\)
0.783831 0.620974i \(-0.213263\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.85237 1.66194 0.830972 0.556314i \(-0.187785\pi\)
0.830972 + 0.556314i \(0.187785\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.20416 −0.251085 −0.125543 0.992088i \(-0.540067\pi\)
−0.125543 + 0.992088i \(0.540067\pi\)
\(24\) 0 0
\(25\) 0.552894 0.110579
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 9.57484i − 1.77800i −0.457904 0.889002i \(-0.651400\pi\)
0.457904 0.889002i \(-0.348600\pi\)
\(30\) 0 0
\(31\) 5.35842 0.962400 0.481200 0.876611i \(-0.340201\pi\)
0.481200 + 0.876611i \(0.340201\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 5.76625i − 0.974675i
\(36\) 0 0
\(37\) − 1.09693i − 0.180335i −0.995927 0.0901674i \(-0.971260\pi\)
0.995927 0.0901674i \(-0.0287402\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.33797 −1.14600 −0.573000 0.819556i \(-0.694220\pi\)
−0.573000 + 0.819556i \(0.694220\pi\)
\(42\) 0 0
\(43\) 7.64408i 1.16571i 0.812576 + 0.582856i \(0.198065\pi\)
−0.812576 + 0.582856i \(0.801935\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.56486 1.10345 0.551724 0.834027i \(-0.313970\pi\)
0.551724 + 0.834027i \(0.313970\pi\)
\(48\) 0 0
\(49\) 0.476702 0.0681003
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.11949i 0.428495i 0.976779 + 0.214248i \(0.0687300\pi\)
−0.976779 + 0.214248i \(0.931270\pi\)
\(54\) 0 0
\(55\) −9.83708 −1.32643
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.2442i 1.33368i 0.745201 + 0.666840i \(0.232354\pi\)
−0.745201 + 0.666840i \(0.767646\pi\)
\(60\) 0 0
\(61\) − 0.722061i − 0.0924504i −0.998931 0.0462252i \(-0.985281\pi\)
0.998931 0.0462252i \(-0.0147192\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.44309 −1.17127
\(66\) 0 0
\(67\) − 6.13698i − 0.749752i −0.927075 0.374876i \(-0.877685\pi\)
0.927075 0.374876i \(-0.122315\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.62247 0.548587 0.274293 0.961646i \(-0.411556\pi\)
0.274293 + 0.961646i \(0.411556\pi\)
\(72\) 0 0
\(73\) −6.19270 −0.724801 −0.362400 0.932022i \(-0.618043\pi\)
−0.362400 + 0.932022i \(0.618043\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 12.7551i − 1.45357i
\(78\) 0 0
\(79\) 3.26723 0.367592 0.183796 0.982964i \(-0.441161\pi\)
0.183796 + 0.982964i \(0.441161\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.97934i 0.985611i 0.870140 + 0.492805i \(0.164029\pi\)
−0.870140 + 0.492805i \(0.835971\pi\)
\(84\) 0 0
\(85\) − 14.4504i − 1.56736i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.620707 −0.0657948 −0.0328974 0.999459i \(-0.510473\pi\)
−0.0328974 + 0.999459i \(0.510473\pi\)
\(90\) 0 0
\(91\) − 12.2442i − 1.28354i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.10882 −0.216360
\(96\) 0 0
\(97\) −1.67284 −0.169851 −0.0849257 0.996387i \(-0.527065\pi\)
−0.0849257 + 0.996387i \(0.527065\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.30571i 0.726946i 0.931605 + 0.363473i \(0.118409\pi\)
−0.931605 + 0.363473i \(0.881591\pi\)
\(102\) 0 0
\(103\) 8.77332 0.864461 0.432231 0.901763i \(-0.357727\pi\)
0.432231 + 0.901763i \(0.357727\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.91355i 0.958379i 0.877711 + 0.479190i \(0.159069\pi\)
−0.877711 + 0.479190i \(0.840931\pi\)
\(108\) 0 0
\(109\) − 2.84589i − 0.272587i −0.990669 0.136293i \(-0.956481\pi\)
0.990669 0.136293i \(-0.0435189\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.58487 0.149092 0.0745462 0.997218i \(-0.476249\pi\)
0.0745462 + 0.997218i \(0.476249\pi\)
\(114\) 0 0
\(115\) 2.53936i 0.236797i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 18.7368 1.71760
\(120\) 0 0
\(121\) −10.7598 −0.978163
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.7100i − 1.04738i
\(126\) 0 0
\(127\) −14.2933 −1.26833 −0.634163 0.773199i \(-0.718655\pi\)
−0.634163 + 0.773199i \(0.718655\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.609006i 0.0532091i 0.999646 + 0.0266046i \(0.00846949\pi\)
−0.999646 + 0.0266046i \(0.991531\pi\)
\(132\) 0 0
\(133\) − 2.73436i − 0.237099i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −18.1589 −1.55142 −0.775710 0.631089i \(-0.782608\pi\)
−0.775710 + 0.631089i \(0.782608\pi\)
\(138\) 0 0
\(139\) 1.93421i 0.164058i 0.996630 + 0.0820289i \(0.0261400\pi\)
−0.996630 + 0.0820289i \(0.973860\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −20.8883 −1.74677
\(144\) 0 0
\(145\) −20.1916 −1.67682
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.5775i 1.27616i 0.769970 + 0.638080i \(0.220271\pi\)
−0.769970 + 0.638080i \(0.779729\pi\)
\(150\) 0 0
\(151\) 19.9746 1.62551 0.812756 0.582605i \(-0.197966\pi\)
0.812756 + 0.582605i \(0.197966\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 11.2999i − 0.907631i
\(156\) 0 0
\(157\) − 20.8872i − 1.66698i −0.552536 0.833489i \(-0.686340\pi\)
0.552536 0.833489i \(-0.313660\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.29261 −0.259494
\(162\) 0 0
\(163\) 2.54835i 0.199602i 0.995007 + 0.0998010i \(0.0318206\pi\)
−0.995007 + 0.0998010i \(0.968179\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.6644 −1.44429 −0.722146 0.691740i \(-0.756844\pi\)
−0.722146 + 0.691740i \(0.756844\pi\)
\(168\) 0 0
\(169\) −7.05167 −0.542436
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.42370i 0.640442i 0.947343 + 0.320221i \(0.103757\pi\)
−0.947343 + 0.320221i \(0.896243\pi\)
\(174\) 0 0
\(175\) 1.51181 0.114282
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.6809i 1.24679i 0.781908 + 0.623394i \(0.214247\pi\)
−0.781908 + 0.623394i \(0.785753\pi\)
\(180\) 0 0
\(181\) − 4.65888i − 0.346292i −0.984896 0.173146i \(-0.944607\pi\)
0.984896 0.173146i \(-0.0553932\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.31323 −0.170072
\(186\) 0 0
\(187\) − 31.9645i − 2.33748i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.0609 1.45155 0.725777 0.687930i \(-0.241480\pi\)
0.725777 + 0.687930i \(0.241480\pi\)
\(192\) 0 0
\(193\) 1.85117 0.133250 0.0666251 0.997778i \(-0.478777\pi\)
0.0666251 + 0.997778i \(0.478777\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.224883i 0.0160222i 0.999968 + 0.00801112i \(0.00255005\pi\)
−0.999968 + 0.00801112i \(0.997450\pi\)
\(198\) 0 0
\(199\) 1.77685 0.125957 0.0629787 0.998015i \(-0.479940\pi\)
0.0629787 + 0.998015i \(0.479940\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 26.1810i − 1.83755i
\(204\) 0 0
\(205\) 15.4744i 1.08078i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.66474 −0.322667
\(210\) 0 0
\(211\) 17.0194i 1.17166i 0.810433 + 0.585831i \(0.199232\pi\)
−0.810433 + 0.585831i \(0.800768\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 16.1200 1.09937
\(216\) 0 0
\(217\) 14.6518 0.994630
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 30.6843i − 2.06405i
\(222\) 0 0
\(223\) −13.6634 −0.914971 −0.457486 0.889217i \(-0.651250\pi\)
−0.457486 + 0.889217i \(0.651250\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.46152i 0.362494i 0.983438 + 0.181247i \(0.0580133\pi\)
−0.983438 + 0.181247i \(0.941987\pi\)
\(228\) 0 0
\(229\) − 3.22791i − 0.213306i −0.994296 0.106653i \(-0.965987\pi\)
0.994296 0.106653i \(-0.0340135\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.8344 1.16837 0.584185 0.811621i \(-0.301414\pi\)
0.584185 + 0.811621i \(0.301414\pi\)
\(234\) 0 0
\(235\) − 15.9529i − 1.04065i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.82556 0.118086 0.0590428 0.998255i \(-0.481195\pi\)
0.0590428 + 0.998255i \(0.481195\pi\)
\(240\) 0 0
\(241\) 6.47608 0.417161 0.208581 0.978005i \(-0.433116\pi\)
0.208581 + 0.978005i \(0.433116\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1.00528i − 0.0642248i
\(246\) 0 0
\(247\) −4.47791 −0.284923
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 3.10899i − 0.196238i −0.995175 0.0981189i \(-0.968717\pi\)
0.995175 0.0981189i \(-0.0312825\pi\)
\(252\) 0 0
\(253\) 5.61711i 0.353145i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.75606 −0.359053 −0.179526 0.983753i \(-0.557457\pi\)
−0.179526 + 0.983753i \(0.557457\pi\)
\(258\) 0 0
\(259\) − 2.99941i − 0.186374i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.58595 −0.282782 −0.141391 0.989954i \(-0.545157\pi\)
−0.141391 + 0.989954i \(0.545157\pi\)
\(264\) 0 0
\(265\) 6.57844 0.404110
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 11.3913i − 0.694542i −0.937765 0.347271i \(-0.887108\pi\)
0.937765 0.347271i \(-0.112892\pi\)
\(270\) 0 0
\(271\) −25.1252 −1.52625 −0.763124 0.646252i \(-0.776336\pi\)
−0.763124 + 0.646252i \(0.776336\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 2.57910i − 0.155526i
\(276\) 0 0
\(277\) − 18.2998i − 1.09953i −0.835321 0.549763i \(-0.814718\pi\)
0.835321 0.549763i \(-0.185282\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0708 1.07802 0.539008 0.842301i \(-0.318799\pi\)
0.539008 + 0.842301i \(0.318799\pi\)
\(282\) 0 0
\(283\) 15.3972i 0.915269i 0.889140 + 0.457634i \(0.151303\pi\)
−0.889140 + 0.457634i \(0.848697\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.0646 −1.18438
\(288\) 0 0
\(289\) 29.9550 1.76206
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 11.4407i 0.668374i 0.942507 + 0.334187i \(0.108462\pi\)
−0.942507 + 0.334187i \(0.891538\pi\)
\(294\) 0 0
\(295\) 21.6031 1.25778
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.39214i 0.311835i
\(300\) 0 0
\(301\) 20.9016i 1.20475i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.52269 −0.0871892
\(306\) 0 0
\(307\) − 21.3453i − 1.21824i −0.793077 0.609122i \(-0.791522\pi\)
0.793077 0.609122i \(-0.208478\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −21.7295 −1.23216 −0.616082 0.787682i \(-0.711281\pi\)
−0.616082 + 0.787682i \(0.711281\pi\)
\(312\) 0 0
\(313\) 34.1009 1.92750 0.963748 0.266814i \(-0.0859710\pi\)
0.963748 + 0.266814i \(0.0859710\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 22.2281i − 1.24845i −0.781244 0.624226i \(-0.785414\pi\)
0.781244 0.624226i \(-0.214586\pi\)
\(318\) 0 0
\(319\) −44.6641 −2.50071
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 6.85237i − 0.381276i
\(324\) 0 0
\(325\) − 2.47581i − 0.137333i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 20.6850 1.14040
\(330\) 0 0
\(331\) 24.1969i 1.32998i 0.746852 + 0.664991i \(0.231564\pi\)
−0.746852 + 0.664991i \(0.768436\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −12.9418 −0.707084
\(336\) 0 0
\(337\) −34.2735 −1.86700 −0.933498 0.358583i \(-0.883260\pi\)
−0.933498 + 0.358583i \(0.883260\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 24.9956i − 1.35359i
\(342\) 0 0
\(343\) −17.8370 −0.963108
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 26.9233i − 1.44532i −0.691206 0.722658i \(-0.742920\pi\)
0.691206 0.722658i \(-0.257080\pi\)
\(348\) 0 0
\(349\) − 8.65769i − 0.463436i −0.972783 0.231718i \(-0.925565\pi\)
0.972783 0.231718i \(-0.0744346\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.11265 0.485018 0.242509 0.970149i \(-0.422030\pi\)
0.242509 + 0.970149i \(0.422030\pi\)
\(354\) 0 0
\(355\) − 9.74795i − 0.517367i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.29978 0.226934 0.113467 0.993542i \(-0.463804\pi\)
0.113467 + 0.993542i \(0.463804\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.0593i 0.683553i
\(366\) 0 0
\(367\) 21.2873 1.11119 0.555594 0.831454i \(-0.312491\pi\)
0.555594 + 0.831454i \(0.312491\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.52980i 0.442845i
\(372\) 0 0
\(373\) 11.1076i 0.575129i 0.957761 + 0.287565i \(0.0928456\pi\)
−0.957761 + 0.287565i \(0.907154\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −42.8753 −2.20819
\(378\) 0 0
\(379\) − 20.6908i − 1.06281i −0.847117 0.531407i \(-0.821664\pi\)
0.847117 0.531407i \(-0.178336\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.1869 −0.622720 −0.311360 0.950292i \(-0.600785\pi\)
−0.311360 + 0.950292i \(0.600785\pi\)
\(384\) 0 0
\(385\) −26.8981 −1.37085
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 26.1769i 1.32722i 0.748078 + 0.663611i \(0.230977\pi\)
−0.748078 + 0.663611i \(0.769023\pi\)
\(390\) 0 0
\(391\) −8.25137 −0.417290
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 6.88999i − 0.346673i
\(396\) 0 0
\(397\) 14.8451i 0.745055i 0.928021 + 0.372528i \(0.121509\pi\)
−0.928021 + 0.372528i \(0.878491\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −34.4111 −1.71841 −0.859205 0.511632i \(-0.829041\pi\)
−0.859205 + 0.511632i \(0.829041\pi\)
\(402\) 0 0
\(403\) − 23.9945i − 1.19525i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.11691 −0.253636
\(408\) 0 0
\(409\) 1.43283 0.0708487 0.0354243 0.999372i \(-0.488722\pi\)
0.0354243 + 0.999372i \(0.488722\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 28.0113i 1.37834i
\(414\) 0 0
\(415\) 18.9358 0.929521
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 33.6886i − 1.64579i −0.568190 0.822897i \(-0.692356\pi\)
0.568190 0.822897i \(-0.307644\pi\)
\(420\) 0 0
\(421\) − 0.237430i − 0.0115716i −0.999983 0.00578582i \(-0.998158\pi\)
0.999983 0.00578582i \(-0.00184169\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.78863 0.183776
\(426\) 0 0
\(427\) − 1.97437i − 0.0955465i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.0743 0.629766 0.314883 0.949130i \(-0.398035\pi\)
0.314883 + 0.949130i \(0.398035\pi\)
\(432\) 0 0
\(433\) −9.67718 −0.465056 −0.232528 0.972590i \(-0.574700\pi\)
−0.232528 + 0.972590i \(0.574700\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.20416i 0.0576030i
\(438\) 0 0
\(439\) −17.7983 −0.849468 −0.424734 0.905318i \(-0.639632\pi\)
−0.424734 + 0.905318i \(0.639632\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.30468i 0.157010i 0.996914 + 0.0785050i \(0.0250147\pi\)
−0.996914 + 0.0785050i \(0.974985\pi\)
\(444\) 0 0
\(445\) 1.30896i 0.0620505i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 29.6543 1.39947 0.699735 0.714402i \(-0.253301\pi\)
0.699735 + 0.714402i \(0.253301\pi\)
\(450\) 0 0
\(451\) 34.2297i 1.61182i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −25.8208 −1.21050
\(456\) 0 0
\(457\) −20.2310 −0.946368 −0.473184 0.880964i \(-0.656895\pi\)
−0.473184 + 0.880964i \(0.656895\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 41.2429i − 1.92087i −0.278502 0.960436i \(-0.589838\pi\)
0.278502 0.960436i \(-0.410162\pi\)
\(462\) 0 0
\(463\) 16.5232 0.767896 0.383948 0.923355i \(-0.374564\pi\)
0.383948 + 0.923355i \(0.374564\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.9967i 1.15671i 0.815786 + 0.578355i \(0.196305\pi\)
−0.815786 + 0.578355i \(0.803695\pi\)
\(468\) 0 0
\(469\) − 16.7807i − 0.774860i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 35.6576 1.63954
\(474\) 0 0
\(475\) − 0.552894i − 0.0253685i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 10.0298 0.458273 0.229137 0.973394i \(-0.426410\pi\)
0.229137 + 0.973394i \(0.426410\pi\)
\(480\) 0 0
\(481\) −4.91197 −0.223966
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.52772i 0.160185i
\(486\) 0 0
\(487\) −41.6248 −1.88620 −0.943101 0.332508i \(-0.892105\pi\)
−0.943101 + 0.332508i \(0.892105\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 34.6939i − 1.56572i −0.622200 0.782858i \(-0.713761\pi\)
0.622200 0.782858i \(-0.286239\pi\)
\(492\) 0 0
\(493\) − 65.6104i − 2.95494i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.6395 0.566959
\(498\) 0 0
\(499\) − 14.1270i − 0.632413i −0.948690 0.316207i \(-0.897591\pi\)
0.948690 0.316207i \(-0.102409\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.01157 0.134279 0.0671395 0.997744i \(-0.478613\pi\)
0.0671395 + 0.997744i \(0.478613\pi\)
\(504\) 0 0
\(505\) 15.4064 0.685576
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 2.38122i − 0.105546i −0.998607 0.0527730i \(-0.983194\pi\)
0.998607 0.0527730i \(-0.0168060\pi\)
\(510\) 0 0
\(511\) −16.9330 −0.749074
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 18.5013i − 0.815266i
\(516\) 0 0
\(517\) − 35.2881i − 1.55197i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17.9133 −0.784798 −0.392399 0.919795i \(-0.628355\pi\)
−0.392399 + 0.919795i \(0.628355\pi\)
\(522\) 0 0
\(523\) − 18.9602i − 0.829071i −0.910033 0.414536i \(-0.863944\pi\)
0.910033 0.414536i \(-0.136056\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 36.7178 1.59945
\(528\) 0 0
\(529\) −21.5500 −0.936956
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 32.8588i 1.42327i
\(534\) 0 0
\(535\) 20.9059 0.903839
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 2.22369i − 0.0957811i
\(540\) 0 0
\(541\) 34.2027i 1.47049i 0.677802 + 0.735245i \(0.262933\pi\)
−0.677802 + 0.735245i \(0.737067\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.00145 −0.257074
\(546\) 0 0
\(547\) − 0.645113i − 0.0275830i −0.999905 0.0137915i \(-0.995610\pi\)
0.999905 0.0137915i \(-0.00439011\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −9.57484 −0.407902
\(552\) 0 0
\(553\) 8.93377 0.379903
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.2596i 0.434714i 0.976092 + 0.217357i \(0.0697436\pi\)
−0.976092 + 0.217357i \(0.930256\pi\)
\(558\) 0 0
\(559\) 34.2295 1.44775
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.9293i 0.544906i 0.962169 + 0.272453i \(0.0878350\pi\)
−0.962169 + 0.272453i \(0.912165\pi\)
\(564\) 0 0
\(565\) − 3.34221i − 0.140608i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.32637 −0.265215 −0.132608 0.991169i \(-0.542335\pi\)
−0.132608 + 0.991169i \(0.542335\pi\)
\(570\) 0 0
\(571\) − 31.1997i − 1.30566i −0.757502 0.652832i \(-0.773581\pi\)
0.757502 0.652832i \(-0.226419\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.665774 −0.0277647
\(576\) 0 0
\(577\) 5.48996 0.228550 0.114275 0.993449i \(-0.463545\pi\)
0.114275 + 0.993449i \(0.463545\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.5527i 1.01862i
\(582\) 0 0
\(583\) 14.5516 0.602666
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.4576i 0.720552i 0.932846 + 0.360276i \(0.117317\pi\)
−0.932846 + 0.360276i \(0.882683\pi\)
\(588\) 0 0
\(589\) − 5.35842i − 0.220790i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 16.7657 0.688486 0.344243 0.938881i \(-0.388136\pi\)
0.344243 + 0.938881i \(0.388136\pi\)
\(594\) 0 0
\(595\) − 39.5125i − 1.61985i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.357982 −0.0146267 −0.00731337 0.999973i \(-0.502328\pi\)
−0.00731337 + 0.999973i \(0.502328\pi\)
\(600\) 0 0
\(601\) 22.8949 0.933903 0.466952 0.884283i \(-0.345352\pi\)
0.466952 + 0.884283i \(0.345352\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22.6904i 0.922497i
\(606\) 0 0
\(607\) −1.33917 −0.0543551 −0.0271775 0.999631i \(-0.508652\pi\)
−0.0271775 + 0.999631i \(0.508652\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 33.8747i − 1.37043i
\(612\) 0 0
\(613\) 29.8667i 1.20631i 0.797625 + 0.603153i \(0.206089\pi\)
−0.797625 + 0.603153i \(0.793911\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 36.4935 1.46917 0.734587 0.678514i \(-0.237376\pi\)
0.734587 + 0.678514i \(0.237376\pi\)
\(618\) 0 0
\(619\) − 8.88669i − 0.357186i −0.983923 0.178593i \(-0.942845\pi\)
0.983923 0.178593i \(-0.0571546\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.69723 −0.0679982
\(624\) 0 0
\(625\) −21.9298 −0.877194
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 7.51659i − 0.299706i
\(630\) 0 0
\(631\) 28.1724 1.12153 0.560763 0.827977i \(-0.310508\pi\)
0.560763 + 0.827977i \(0.310508\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 30.1420i 1.19615i
\(636\) 0 0
\(637\) − 2.13463i − 0.0845771i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.58435 −0.141573 −0.0707867 0.997491i \(-0.522551\pi\)
−0.0707867 + 0.997491i \(0.522551\pi\)
\(642\) 0 0
\(643\) 19.8837i 0.784137i 0.919936 + 0.392069i \(0.128240\pi\)
−0.919936 + 0.392069i \(0.871760\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 35.7712 1.40631 0.703156 0.711036i \(-0.251774\pi\)
0.703156 + 0.711036i \(0.251774\pi\)
\(648\) 0 0
\(649\) 47.7865 1.87578
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 8.57378i − 0.335518i −0.985828 0.167759i \(-0.946347\pi\)
0.985828 0.167759i \(-0.0536531\pi\)
\(654\) 0 0
\(655\) 1.28428 0.0501810
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22.9993i 0.895927i 0.894052 + 0.447964i \(0.147851\pi\)
−0.894052 + 0.447964i \(0.852149\pi\)
\(660\) 0 0
\(661\) 28.4720i 1.10743i 0.832706 + 0.553716i \(0.186791\pi\)
−0.832706 + 0.553716i \(0.813209\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.76625 −0.223606
\(666\) 0 0
\(667\) 11.5297i 0.446431i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.36822 −0.130029
\(672\) 0 0
\(673\) 6.63685 0.255832 0.127916 0.991785i \(-0.459171\pi\)
0.127916 + 0.991785i \(0.459171\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.0823i 1.11772i 0.829261 + 0.558862i \(0.188762\pi\)
−0.829261 + 0.558862i \(0.811238\pi\)
\(678\) 0 0
\(679\) −4.57415 −0.175540
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 4.63939i − 0.177521i −0.996053 0.0887607i \(-0.971709\pi\)
0.996053 0.0887607i \(-0.0282906\pi\)
\(684\) 0 0
\(685\) 38.2938i 1.46313i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 13.9688 0.532169
\(690\) 0 0
\(691\) 5.11245i 0.194487i 0.995261 + 0.0972434i \(0.0310025\pi\)
−0.995261 + 0.0972434i \(0.968997\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.07890 0.154721
\(696\) 0 0
\(697\) −50.2825 −1.90459
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5.27938i 0.199399i 0.995018 + 0.0996997i \(0.0317882\pi\)
−0.995018 + 0.0996997i \(0.968212\pi\)
\(702\) 0 0
\(703\) −1.09693 −0.0413716
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.9764i 0.751290i
\(708\) 0 0
\(709\) 28.1441i 1.05697i 0.848942 + 0.528486i \(0.177240\pi\)
−0.848942 + 0.528486i \(0.822760\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.45241 −0.241645
\(714\) 0 0
\(715\) 44.0495i 1.64736i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.51160 0.354723 0.177361 0.984146i \(-0.443244\pi\)
0.177361 + 0.984146i \(0.443244\pi\)
\(720\) 0 0
\(721\) 23.9894 0.893412
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 5.29387i − 0.196609i
\(726\) 0 0
\(727\) −7.06196 −0.261914 −0.130957 0.991388i \(-0.541805\pi\)
−0.130957 + 0.991388i \(0.541805\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 52.3801i 1.93735i
\(732\) 0 0
\(733\) − 7.62443i − 0.281615i −0.990037 0.140807i \(-0.955030\pi\)
0.990037 0.140807i \(-0.0449698\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −28.6274 −1.05450
\(738\) 0 0
\(739\) 45.0131i 1.65583i 0.560851 + 0.827917i \(0.310474\pi\)
−0.560851 + 0.827917i \(0.689526\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.3137 0.561805 0.280903 0.959736i \(-0.409366\pi\)
0.280903 + 0.959736i \(0.409366\pi\)
\(744\) 0 0
\(745\) 32.8501 1.20354
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 27.1072i 0.990475i
\(750\) 0 0
\(751\) −4.09580 −0.149458 −0.0747290 0.997204i \(-0.523809\pi\)
−0.0747290 + 0.997204i \(0.523809\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 42.1228i − 1.53301i
\(756\) 0 0
\(757\) 9.51720i 0.345909i 0.984930 + 0.172954i \(0.0553313\pi\)
−0.984930 + 0.172954i \(0.944669\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 38.4841 1.39505 0.697523 0.716562i \(-0.254285\pi\)
0.697523 + 0.716562i \(0.254285\pi\)
\(762\) 0 0
\(763\) − 7.78167i − 0.281715i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 45.8726 1.65636
\(768\) 0 0
\(769\) 15.0210 0.541670 0.270835 0.962626i \(-0.412700\pi\)
0.270835 + 0.962626i \(0.412700\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 38.4471i − 1.38285i −0.722451 0.691423i \(-0.756984\pi\)
0.722451 0.691423i \(-0.243016\pi\)
\(774\) 0 0
\(775\) 2.96263 0.106421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.33797i 0.262910i
\(780\) 0 0
\(781\) − 21.5626i − 0.771572i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −44.0472 −1.57211
\(786\) 0 0
\(787\) − 30.8457i − 1.09953i −0.835319 0.549765i \(-0.814717\pi\)
0.835319 0.549765i \(-0.185283\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.33361 0.154085
\(792\) 0 0
\(793\) −3.23332 −0.114819
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 34.1285i − 1.20889i −0.796646 0.604446i \(-0.793394\pi\)
0.796646 0.604446i \(-0.206606\pi\)
\(798\) 0 0
\(799\) 51.8372 1.83387
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 28.8873i 1.01941i
\(804\) 0 0
\(805\) 6.94351i 0.244727i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 25.9170 0.911192 0.455596 0.890187i \(-0.349426\pi\)
0.455596 + 0.890187i \(0.349426\pi\)
\(810\) 0 0
\(811\) 33.7874i 1.18644i 0.805041 + 0.593219i \(0.202143\pi\)
−0.805041 + 0.593219i \(0.797857\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.37400 0.188243
\(816\) 0 0
\(817\) 7.64408 0.267432
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 27.6475i − 0.964903i −0.875923 0.482451i \(-0.839746\pi\)
0.875923 0.482451i \(-0.160254\pi\)
\(822\) 0 0
\(823\) 12.4983 0.435665 0.217832 0.975986i \(-0.430101\pi\)
0.217832 + 0.975986i \(0.430101\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 9.03084i − 0.314033i −0.987596 0.157017i \(-0.949812\pi\)
0.987596 0.157017i \(-0.0501876\pi\)
\(828\) 0 0
\(829\) − 55.7684i − 1.93692i −0.249175 0.968458i \(-0.580159\pi\)
0.249175 0.968458i \(-0.419841\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.26654 0.113179
\(834\) 0 0
\(835\) 39.3597i 1.36210i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.3128 −0.494134 −0.247067 0.968998i \(-0.579467\pi\)
−0.247067 + 0.968998i \(0.579467\pi\)
\(840\) 0 0
\(841\) −62.6776 −2.16130
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14.8707i 0.511567i
\(846\) 0 0
\(847\) −29.4211 −1.01092
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.32089i 0.0452794i
\(852\) 0 0
\(853\) 38.0325i 1.30221i 0.758988 + 0.651105i \(0.225694\pi\)
−0.758988 + 0.651105i \(0.774306\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.1869 0.792048 0.396024 0.918240i \(-0.370390\pi\)
0.396024 + 0.918240i \(0.370390\pi\)
\(858\) 0 0
\(859\) 46.5870i 1.58953i 0.606919 + 0.794764i \(0.292405\pi\)
−0.606919 + 0.794764i \(0.707595\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −54.3149 −1.84890 −0.924451 0.381301i \(-0.875476\pi\)
−0.924451 + 0.381301i \(0.875476\pi\)
\(864\) 0 0
\(865\) 17.7640 0.603995
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 15.2408i − 0.517008i
\(870\) 0 0
\(871\) −27.4808 −0.931153
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 32.0194i − 1.08245i
\(876\) 0 0
\(877\) − 1.80324i − 0.0608910i −0.999536 0.0304455i \(-0.990307\pi\)
0.999536 0.0304455i \(-0.00969260\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.6372 −0.425759 −0.212880 0.977078i \(-0.568284\pi\)
−0.212880 + 0.977078i \(0.568284\pi\)
\(882\) 0 0
\(883\) 39.9276i 1.34367i 0.740700 + 0.671835i \(0.234494\pi\)
−0.740700 + 0.671835i \(0.765506\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.3642 −0.482304 −0.241152 0.970487i \(-0.577525\pi\)
−0.241152 + 0.970487i \(0.577525\pi\)
\(888\) 0 0
\(889\) −39.0830 −1.31080
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 7.56486i − 0.253148i
\(894\) 0 0
\(895\) 35.1769 1.17584
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 51.3060i − 1.71115i
\(900\) 0 0
\(901\) 21.3759i 0.712135i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.82473 −0.326585
\(906\) 0 0
\(907\) − 3.32787i − 0.110500i −0.998473 0.0552501i \(-0.982404\pi\)
0.998473 0.0552501i \(-0.0175956\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −35.8252 −1.18694 −0.593471 0.804855i \(-0.702243\pi\)
−0.593471 + 0.804855i \(0.702243\pi\)
\(912\) 0 0
\(913\) 41.8863 1.38623
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.66524i 0.0549910i
\(918\) 0 0
\(919\) 48.3186 1.59388 0.796942 0.604055i \(-0.206449\pi\)
0.796942 + 0.604055i \(0.206449\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 20.6990i − 0.681316i
\(924\) 0 0
\(925\) − 0.606487i − 0.0199412i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.2127 0.761585 0.380792 0.924661i \(-0.375651\pi\)
0.380792 + 0.924661i \(0.375651\pi\)
\(930\) 0 0
\(931\) − 0.476702i − 0.0156233i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −67.4073 −2.20445
\(936\) 0 0
\(937\) 7.10467 0.232099 0.116050 0.993243i \(-0.462977\pi\)
0.116050 + 0.993243i \(0.462977\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 55.5352i 1.81040i 0.424989 + 0.905199i \(0.360278\pi\)
−0.424989 + 0.905199i \(0.639722\pi\)
\(942\) 0 0
\(943\) 8.83612 0.287744
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.5988i 0.506894i 0.967349 + 0.253447i \(0.0815643\pi\)
−0.967349 + 0.253447i \(0.918436\pi\)
\(948\) 0 0
\(949\) 27.7304i 0.900165i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.1243 −0.684282 −0.342141 0.939649i \(-0.611152\pi\)
−0.342141 + 0.939649i \(0.611152\pi\)
\(954\) 0 0
\(955\) − 42.3047i − 1.36895i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −49.6529 −1.60338
\(960\) 0 0
\(961\) −2.28738 −0.0737863
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 3.90378i − 0.125667i
\(966\) 0 0
\(967\) −46.1207 −1.48314 −0.741570 0.670875i \(-0.765919\pi\)
−0.741570 + 0.670875i \(0.765919\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 22.3253i − 0.716454i −0.933635 0.358227i \(-0.883381\pi\)
0.933635 0.358227i \(-0.116619\pi\)
\(972\) 0 0
\(973\) 5.28882i 0.169552i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.2650 −0.456379 −0.228190 0.973617i \(-0.573281\pi\)
−0.228190 + 0.973617i \(0.573281\pi\)
\(978\) 0 0
\(979\) 2.89544i 0.0925385i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 12.7242 0.405838 0.202919 0.979196i \(-0.434957\pi\)
0.202919 + 0.979196i \(0.434957\pi\)
\(984\) 0 0
\(985\) 0.474237 0.0151104
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 9.20472i − 0.292693i
\(990\) 0 0
\(991\) 10.8169 0.343611 0.171806 0.985131i \(-0.445040\pi\)
0.171806 + 0.985131i \(0.445040\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 3.74705i − 0.118789i
\(996\) 0 0
\(997\) − 5.39134i − 0.170746i −0.996349 0.0853728i \(-0.972792\pi\)
0.996349 0.0853728i \(-0.0272081\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.g.b.2737.5 16
3.2 odd 2 608.2.c.b.305.9 16
4.3 odd 2 1368.2.g.b.685.1 16
8.3 odd 2 1368.2.g.b.685.2 16
8.5 even 2 inner 5472.2.g.b.2737.12 16
12.11 even 2 152.2.c.b.77.16 yes 16
24.5 odd 2 608.2.c.b.305.8 16
24.11 even 2 152.2.c.b.77.15 16
48.5 odd 4 4864.2.a.bp.1.5 8
48.11 even 4 4864.2.a.bq.1.4 8
48.29 odd 4 4864.2.a.bn.1.4 8
48.35 even 4 4864.2.a.bo.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.c.b.77.15 16 24.11 even 2
152.2.c.b.77.16 yes 16 12.11 even 2
608.2.c.b.305.8 16 24.5 odd 2
608.2.c.b.305.9 16 3.2 odd 2
1368.2.g.b.685.1 16 4.3 odd 2
1368.2.g.b.685.2 16 8.3 odd 2
4864.2.a.bn.1.4 8 48.29 odd 4
4864.2.a.bo.1.5 8 48.35 even 4
4864.2.a.bp.1.5 8 48.5 odd 4
4864.2.a.bq.1.4 8 48.11 even 4
5472.2.g.b.2737.5 16 1.1 even 1 trivial
5472.2.g.b.2737.12 16 8.5 even 2 inner