Properties

Label 5472.2.f.c.1025.7
Level $5472$
Weight $2$
Character 5472.1025
Analytic conductor $43.694$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5472,2,Mod(1025,5472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5472.1025"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5472 = 2^{5} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5472.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,28,0,0,0,-16,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(59)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.6941399860\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 38 x^{18} + 528 x^{16} + 3442 x^{14} + 11480 x^{12} + 20550 x^{10} + 20369 x^{8} + 11136 x^{6} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1025.7
Root \(-3.15931i\) of defining polynomial
Character \(\chi\) \(=\) 5472.1025
Dual form 5472.2.f.c.1025.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.06784i q^{5} -2.36143 q^{7} +1.12815i q^{11} +4.80373i q^{13} +4.69501i q^{17} +(-3.63064 - 2.41215i) q^{19} -7.88327i q^{23} +3.85973 q^{25} -3.53792 q^{29} +2.74877i q^{31} +2.52162i q^{35} -3.24552i q^{37} -4.61197 q^{41} +3.12136 q^{43} -5.36165i q^{47} -1.42363 q^{49} -1.59167 q^{53} +1.20468 q^{55} +9.17796 q^{59} +0.269865 q^{61} +5.12959 q^{65} -3.18840i q^{67} +16.3102 q^{71} -13.1634 q^{73} -2.66405i q^{77} -7.11877i q^{79} +0.310200i q^{83} +5.01349 q^{85} -2.18154 q^{89} -11.3437i q^{91} +(-2.57578 + 3.87692i) q^{95} +9.96747i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{25} - 16 q^{41} + 28 q^{49} - 16 q^{53} + 16 q^{65} + 16 q^{73} - 32 q^{85} + 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5472\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(2053\) \(3745\) \(4447\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.06784i 0.477550i −0.971075 0.238775i \(-0.923254\pi\)
0.971075 0.238775i \(-0.0767459\pi\)
\(6\) 0 0
\(7\) −2.36143 −0.892538 −0.446269 0.894899i \(-0.647248\pi\)
−0.446269 + 0.894899i \(0.647248\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.12815i 0.340150i 0.985431 + 0.170075i \(0.0544010\pi\)
−0.985431 + 0.170075i \(0.945599\pi\)
\(12\) 0 0
\(13\) 4.80373i 1.33232i 0.745811 + 0.666158i \(0.232062\pi\)
−0.745811 + 0.666158i \(0.767938\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.69501i 1.13871i 0.822093 + 0.569353i \(0.192806\pi\)
−0.822093 + 0.569353i \(0.807194\pi\)
\(18\) 0 0
\(19\) −3.63064 2.41215i −0.832926 0.553385i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.88327i 1.64378i −0.569649 0.821888i \(-0.692921\pi\)
0.569649 0.821888i \(-0.307079\pi\)
\(24\) 0 0
\(25\) 3.85973 0.771946
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.53792 −0.656975 −0.328488 0.944508i \(-0.606539\pi\)
−0.328488 + 0.944508i \(0.606539\pi\)
\(30\) 0 0
\(31\) 2.74877i 0.493694i 0.969054 + 0.246847i \(0.0793945\pi\)
−0.969054 + 0.246847i \(0.920605\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.52162i 0.426232i
\(36\) 0 0
\(37\) 3.24552i 0.533561i −0.963757 0.266780i \(-0.914040\pi\)
0.963757 0.266780i \(-0.0859598\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.61197 −0.720268 −0.360134 0.932901i \(-0.617269\pi\)
−0.360134 + 0.932901i \(0.617269\pi\)
\(42\) 0 0
\(43\) 3.12136 0.476003 0.238002 0.971265i \(-0.423508\pi\)
0.238002 + 0.971265i \(0.423508\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.36165i 0.782077i −0.920374 0.391038i \(-0.872116\pi\)
0.920374 0.391038i \(-0.127884\pi\)
\(48\) 0 0
\(49\) −1.42363 −0.203375
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.59167 −0.218633 −0.109317 0.994007i \(-0.534866\pi\)
−0.109317 + 0.994007i \(0.534866\pi\)
\(54\) 0 0
\(55\) 1.20468 0.162439
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.17796 1.19487 0.597434 0.801918i \(-0.296187\pi\)
0.597434 + 0.801918i \(0.296187\pi\)
\(60\) 0 0
\(61\) 0.269865 0.0345527 0.0172763 0.999851i \(-0.494500\pi\)
0.0172763 + 0.999851i \(0.494500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.12959 0.636248
\(66\) 0 0
\(67\) 3.18840i 0.389525i −0.980850 0.194762i \(-0.937606\pi\)
0.980850 0.194762i \(-0.0623936\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 16.3102 1.93566 0.967832 0.251599i \(-0.0809565\pi\)
0.967832 + 0.251599i \(0.0809565\pi\)
\(72\) 0 0
\(73\) −13.1634 −1.54066 −0.770328 0.637647i \(-0.779908\pi\)
−0.770328 + 0.637647i \(0.779908\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.66405i 0.303597i
\(78\) 0 0
\(79\) 7.11877i 0.800924i −0.916313 0.400462i \(-0.868850\pi\)
0.916313 0.400462i \(-0.131150\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.310200i 0.0340489i 0.999855 + 0.0170244i \(0.00541931\pi\)
−0.999855 + 0.0170244i \(0.994581\pi\)
\(84\) 0 0
\(85\) 5.01349 0.543789
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.18154 −0.231242 −0.115621 0.993293i \(-0.536886\pi\)
−0.115621 + 0.993293i \(0.536886\pi\)
\(90\) 0 0
\(91\) 11.3437i 1.18914i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.57578 + 3.87692i −0.264269 + 0.397764i
\(96\) 0 0
\(97\) 9.96747i 1.01204i 0.862521 + 0.506022i \(0.168884\pi\)
−0.862521 + 0.506022i \(0.831116\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.35024i 0.333361i 0.986011 + 0.166681i \(0.0533049\pi\)
−0.986011 + 0.166681i \(0.946695\pi\)
\(102\) 0 0
\(103\) 4.60362i 0.453608i 0.973940 + 0.226804i \(0.0728277\pi\)
−0.973940 + 0.226804i \(0.927172\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.2190 1.47128 0.735639 0.677374i \(-0.236882\pi\)
0.735639 + 0.677374i \(0.236882\pi\)
\(108\) 0 0
\(109\) 12.0581i 1.15495i −0.816407 0.577477i \(-0.804037\pi\)
0.816407 0.577477i \(-0.195963\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.3314 1.34819 0.674093 0.738646i \(-0.264534\pi\)
0.674093 + 0.738646i \(0.264534\pi\)
\(114\) 0 0
\(115\) −8.41803 −0.784986
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.0869i 1.01634i
\(120\) 0 0
\(121\) 9.72728 0.884298
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.46073i 0.846193i
\(126\) 0 0
\(127\) 21.9532i 1.94803i −0.226477 0.974016i \(-0.572721\pi\)
0.226477 0.974016i \(-0.427279\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.21142i 0.193213i −0.995323 0.0966064i \(-0.969201\pi\)
0.995323 0.0966064i \(-0.0307988\pi\)
\(132\) 0 0
\(133\) 8.57351 + 5.69613i 0.743418 + 0.493917i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.5677i 0.988295i −0.869378 0.494148i \(-0.835480\pi\)
0.869378 0.494148i \(-0.164520\pi\)
\(138\) 0 0
\(139\) −0.573802 −0.0486692 −0.0243346 0.999704i \(-0.507747\pi\)
−0.0243346 + 0.999704i \(0.507747\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.41933 −0.453187
\(144\) 0 0
\(145\) 3.77792i 0.313739i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.02231i 0.493367i −0.969096 0.246684i \(-0.920659\pi\)
0.969096 0.246684i \(-0.0793408\pi\)
\(150\) 0 0
\(151\) 20.0984i 1.63558i −0.575515 0.817791i \(-0.695198\pi\)
0.575515 0.817791i \(-0.304802\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.93524 0.235764
\(156\) 0 0
\(157\) −3.77321 −0.301135 −0.150567 0.988600i \(-0.548110\pi\)
−0.150567 + 0.988600i \(0.548110\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 18.6158i 1.46713i
\(162\) 0 0
\(163\) −21.8586 −1.71210 −0.856048 0.516897i \(-0.827087\pi\)
−0.856048 + 0.516897i \(0.827087\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.6237 −1.44115 −0.720573 0.693380i \(-0.756121\pi\)
−0.720573 + 0.693380i \(0.756121\pi\)
\(168\) 0 0
\(169\) −10.0758 −0.775065
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.9117 1.28578 0.642888 0.765960i \(-0.277736\pi\)
0.642888 + 0.765960i \(0.277736\pi\)
\(174\) 0 0
\(175\) −9.11450 −0.688991
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.79969 0.732463 0.366231 0.930524i \(-0.380648\pi\)
0.366231 + 0.930524i \(0.380648\pi\)
\(180\) 0 0
\(181\) 8.93364i 0.664032i −0.943274 0.332016i \(-0.892271\pi\)
0.943274 0.332016i \(-0.107729\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.46568 −0.254802
\(186\) 0 0
\(187\) −5.29667 −0.387331
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.28695i 0.310193i −0.987899 0.155096i \(-0.950431\pi\)
0.987899 0.155096i \(-0.0495688\pi\)
\(192\) 0 0
\(193\) 18.9215i 1.36200i −0.732285 0.680998i \(-0.761546\pi\)
0.732285 0.680998i \(-0.238454\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.8647i 1.13031i 0.824984 + 0.565156i \(0.191184\pi\)
−0.824984 + 0.565156i \(0.808816\pi\)
\(198\) 0 0
\(199\) −11.4759 −0.813507 −0.406754 0.913538i \(-0.633339\pi\)
−0.406754 + 0.913538i \(0.633339\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.35457 0.586376
\(204\) 0 0
\(205\) 4.92482i 0.343964i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.72127 4.09591i 0.188234 0.283320i
\(210\) 0 0
\(211\) 3.18840i 0.219498i −0.993959 0.109749i \(-0.964995\pi\)
0.993959 0.109749i \(-0.0350048\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.33310i 0.227316i
\(216\) 0 0
\(217\) 6.49105i 0.440641i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −22.5535 −1.51712
\(222\) 0 0
\(223\) 8.75467i 0.586256i −0.956073 0.293128i \(-0.905304\pi\)
0.956073 0.293128i \(-0.0946962\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.24273 −0.414344 −0.207172 0.978305i \(-0.566426\pi\)
−0.207172 + 0.978305i \(0.566426\pi\)
\(228\) 0 0
\(229\) −20.9327 −1.38327 −0.691636 0.722246i \(-0.743110\pi\)
−0.691636 + 0.722246i \(0.743110\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.3025i 0.936986i −0.883467 0.468493i \(-0.844797\pi\)
0.883467 0.468493i \(-0.155203\pi\)
\(234\) 0 0
\(235\) −5.72536 −0.373481
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.2971i 0.924802i −0.886671 0.462401i \(-0.846988\pi\)
0.886671 0.462401i \(-0.153012\pi\)
\(240\) 0 0
\(241\) 10.2609i 0.660965i −0.943812 0.330483i \(-0.892788\pi\)
0.943812 0.330483i \(-0.107212\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.52020i 0.0971220i
\(246\) 0 0
\(247\) 11.5873 17.4406i 0.737283 1.10972i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.2588i 0.963126i 0.876411 + 0.481563i \(0.159931\pi\)
−0.876411 + 0.481563i \(0.840069\pi\)
\(252\) 0 0
\(253\) 8.89351 0.559130
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.6849 −1.29029 −0.645146 0.764059i \(-0.723203\pi\)
−0.645146 + 0.764059i \(0.723203\pi\)
\(258\) 0 0
\(259\) 7.66409i 0.476223i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.9388i 1.41446i −0.706981 0.707232i \(-0.749943\pi\)
0.706981 0.707232i \(-0.250057\pi\)
\(264\) 0 0
\(265\) 1.69964i 0.104408i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.14139 −0.496389 −0.248195 0.968710i \(-0.579837\pi\)
−0.248195 + 0.968710i \(0.579837\pi\)
\(270\) 0 0
\(271\) −18.3559 −1.11504 −0.557521 0.830163i \(-0.688248\pi\)
−0.557521 + 0.830163i \(0.688248\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.35435i 0.262577i
\(276\) 0 0
\(277\) −22.5411 −1.35436 −0.677181 0.735817i \(-0.736799\pi\)
−0.677181 + 0.735817i \(0.736799\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.42329 −0.263871 −0.131936 0.991258i \(-0.542119\pi\)
−0.131936 + 0.991258i \(0.542119\pi\)
\(282\) 0 0
\(283\) −28.4078 −1.68867 −0.844335 0.535815i \(-0.820004\pi\)
−0.844335 + 0.535815i \(0.820004\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.8909 0.642867
\(288\) 0 0
\(289\) −5.04307 −0.296651
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 21.0306 1.22862 0.614310 0.789065i \(-0.289434\pi\)
0.614310 + 0.789065i \(0.289434\pi\)
\(294\) 0 0
\(295\) 9.80055i 0.570610i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 37.8691 2.19003
\(300\) 0 0
\(301\) −7.37089 −0.424851
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.288171i 0.0165006i
\(306\) 0 0
\(307\) 24.7020i 1.40982i −0.709298 0.704908i \(-0.750988\pi\)
0.709298 0.704908i \(-0.249012\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.2510i 0.921512i −0.887527 0.460756i \(-0.847578\pi\)
0.887527 0.460756i \(-0.152422\pi\)
\(312\) 0 0
\(313\) 29.8868 1.68930 0.844650 0.535318i \(-0.179808\pi\)
0.844650 + 0.535318i \(0.179808\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 28.7351 1.61392 0.806962 0.590604i \(-0.201110\pi\)
0.806962 + 0.590604i \(0.201110\pi\)
\(318\) 0 0
\(319\) 3.99131i 0.223470i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 11.3251 17.0459i 0.630143 0.948457i
\(324\) 0 0
\(325\) 18.5411i 1.02848i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.6612i 0.698034i
\(330\) 0 0
\(331\) 14.9942i 0.824155i 0.911149 + 0.412078i \(0.135197\pi\)
−0.911149 + 0.412078i \(0.864803\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.40468 −0.186018
\(336\) 0 0
\(337\) 15.4370i 0.840908i 0.907314 + 0.420454i \(0.138129\pi\)
−0.907314 + 0.420454i \(0.861871\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.10103 −0.167930
\(342\) 0 0
\(343\) 19.8918 1.07406
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.7596i 1.75863i 0.476245 + 0.879313i \(0.341998\pi\)
−0.476245 + 0.879313i \(0.658002\pi\)
\(348\) 0 0
\(349\) 18.0106 0.964087 0.482044 0.876147i \(-0.339895\pi\)
0.482044 + 0.876147i \(0.339895\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.1862i 1.02118i −0.859824 0.510590i \(-0.829427\pi\)
0.859824 0.510590i \(-0.170573\pi\)
\(354\) 0 0
\(355\) 17.4166i 0.924377i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.08985i 0.268632i −0.990939 0.134316i \(-0.957116\pi\)
0.990939 0.134316i \(-0.0428838\pi\)
\(360\) 0 0
\(361\) 7.36307 + 17.5153i 0.387530 + 0.921857i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.0563i 0.735741i
\(366\) 0 0
\(367\) −9.44574 −0.493063 −0.246532 0.969135i \(-0.579291\pi\)
−0.246532 + 0.969135i \(0.579291\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.75863 0.195138
\(372\) 0 0
\(373\) 8.14674i 0.421822i 0.977505 + 0.210911i \(0.0676431\pi\)
−0.977505 + 0.210911i \(0.932357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.9952i 0.875298i
\(378\) 0 0
\(379\) 23.0661i 1.18483i −0.805635 0.592413i \(-0.798176\pi\)
0.805635 0.592413i \(-0.201824\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.51050 0.332671 0.166336 0.986069i \(-0.446807\pi\)
0.166336 + 0.986069i \(0.446807\pi\)
\(384\) 0 0
\(385\) −2.84477 −0.144983
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.85875i 0.499858i −0.968264 0.249929i \(-0.919593\pi\)
0.968264 0.249929i \(-0.0804073\pi\)
\(390\) 0 0
\(391\) 37.0120 1.87178
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.60167 −0.382482
\(396\) 0 0
\(397\) 27.4226 1.37630 0.688150 0.725569i \(-0.258423\pi\)
0.688150 + 0.725569i \(0.258423\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.80530 0.289903 0.144951 0.989439i \(-0.453697\pi\)
0.144951 + 0.989439i \(0.453697\pi\)
\(402\) 0 0
\(403\) −13.2044 −0.657756
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.66144 0.181491
\(408\) 0 0
\(409\) 27.8428i 1.37674i −0.725362 0.688368i \(-0.758327\pi\)
0.725362 0.688368i \(-0.241673\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −21.6732 −1.06647
\(414\) 0 0
\(415\) 0.331242 0.0162600
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.65834i 0.178722i 0.995999 + 0.0893609i \(0.0284824\pi\)
−0.995999 + 0.0893609i \(0.971518\pi\)
\(420\) 0 0
\(421\) 6.88200i 0.335408i 0.985837 + 0.167704i \(0.0536353\pi\)
−0.985837 + 0.167704i \(0.946365\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 18.1214i 0.879019i
\(426\) 0 0
\(427\) −0.637268 −0.0308396
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.4868 0.745973 0.372986 0.927837i \(-0.378334\pi\)
0.372986 + 0.927837i \(0.378334\pi\)
\(432\) 0 0
\(433\) 23.3016i 1.11980i 0.828560 + 0.559901i \(0.189161\pi\)
−0.828560 + 0.559901i \(0.810839\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −19.0156 + 28.6213i −0.909641 + 1.36914i
\(438\) 0 0
\(439\) 5.57562i 0.266110i −0.991109 0.133055i \(-0.957521\pi\)
0.991109 0.133055i \(-0.0424787\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.33217i 0.0632934i −0.999499 0.0316467i \(-0.989925\pi\)
0.999499 0.0316467i \(-0.0100751\pi\)
\(444\) 0 0
\(445\) 2.32952i 0.110430i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.72795 0.459091 0.229545 0.973298i \(-0.426276\pi\)
0.229545 + 0.973298i \(0.426276\pi\)
\(450\) 0 0
\(451\) 5.20299i 0.244999i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −12.1132 −0.567875
\(456\) 0 0
\(457\) −4.67561 −0.218716 −0.109358 0.994002i \(-0.534879\pi\)
−0.109358 + 0.994002i \(0.534879\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.3475i 0.668232i 0.942532 + 0.334116i \(0.108438\pi\)
−0.942532 + 0.334116i \(0.891562\pi\)
\(462\) 0 0
\(463\) −7.41555 −0.344630 −0.172315 0.985042i \(-0.555125\pi\)
−0.172315 + 0.985042i \(0.555125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.659703i 0.0305274i −0.999884 0.0152637i \(-0.995141\pi\)
0.999884 0.0152637i \(-0.00485877\pi\)
\(468\) 0 0
\(469\) 7.52919i 0.347666i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.52137i 0.161913i
\(474\) 0 0
\(475\) −14.0133 9.31024i −0.642973 0.427183i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.6397i 0.623212i −0.950211 0.311606i \(-0.899133\pi\)
0.950211 0.311606i \(-0.100867\pi\)
\(480\) 0 0
\(481\) 15.5906 0.710871
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.6436 0.483302
\(486\) 0 0
\(487\) 27.0721i 1.22675i −0.789791 0.613376i \(-0.789811\pi\)
0.789791 0.613376i \(-0.210189\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 33.5861i 1.51572i 0.652418 + 0.757859i \(0.273755\pi\)
−0.652418 + 0.757859i \(0.726245\pi\)
\(492\) 0 0
\(493\) 16.6106i 0.748102i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −38.5154 −1.72765
\(498\) 0 0
\(499\) 3.18483 0.142573 0.0712863 0.997456i \(-0.477290\pi\)
0.0712863 + 0.997456i \(0.477290\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 10.5504i 0.470418i −0.971945 0.235209i \(-0.924423\pi\)
0.971945 0.235209i \(-0.0755774\pi\)
\(504\) 0 0
\(505\) 3.57750 0.159197
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.598801 0.0265414 0.0132707 0.999912i \(-0.495776\pi\)
0.0132707 + 0.999912i \(0.495776\pi\)
\(510\) 0 0
\(511\) 31.0845 1.37510
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.91591 0.216621
\(516\) 0 0
\(517\) 6.04874 0.266023
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.88603 −0.433115 −0.216557 0.976270i \(-0.569483\pi\)
−0.216557 + 0.976270i \(0.569483\pi\)
\(522\) 0 0
\(523\) 41.2487i 1.80368i 0.432072 + 0.901839i \(0.357783\pi\)
−0.432072 + 0.901839i \(0.642217\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.9055 −0.562173
\(528\) 0 0
\(529\) −39.1460 −1.70200
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 22.1547i 0.959624i
\(534\) 0 0
\(535\) 16.2514i 0.702609i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.60607i 0.0691781i
\(540\) 0 0
\(541\) −16.6928 −0.717680 −0.358840 0.933399i \(-0.616828\pi\)
−0.358840 + 0.933399i \(0.616828\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.8760 −0.551549
\(546\) 0 0
\(547\) 45.3457i 1.93884i 0.245405 + 0.969421i \(0.421079\pi\)
−0.245405 + 0.969421i \(0.578921\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.8449 + 8.53399i 0.547212 + 0.363560i
\(552\) 0 0
\(553\) 16.8105i 0.714856i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.0114i 0.678426i −0.940710 0.339213i \(-0.889839\pi\)
0.940710 0.339213i \(-0.110161\pi\)
\(558\) 0 0
\(559\) 14.9942i 0.634187i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.9583 −0.883288 −0.441644 0.897190i \(-0.645605\pi\)
−0.441644 + 0.897190i \(0.645605\pi\)
\(564\) 0 0
\(565\) 15.3036i 0.643827i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 35.6361 1.49394 0.746971 0.664856i \(-0.231507\pi\)
0.746971 + 0.664856i \(0.231507\pi\)
\(570\) 0 0
\(571\) −45.8247 −1.91771 −0.958853 0.283903i \(-0.908370\pi\)
−0.958853 + 0.283903i \(0.908370\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 30.4273i 1.26891i
\(576\) 0 0
\(577\) 2.03946 0.0849036 0.0424518 0.999099i \(-0.486483\pi\)
0.0424518 + 0.999099i \(0.486483\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.732517i 0.0303899i
\(582\) 0 0
\(583\) 1.79565i 0.0743681i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.86694i 0.407252i −0.979049 0.203626i \(-0.934727\pi\)
0.979049 0.203626i \(-0.0652727\pi\)
\(588\) 0 0
\(589\) 6.63045 9.97980i 0.273203 0.411211i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 16.1272i 0.662265i 0.943584 + 0.331133i \(0.107431\pi\)
−0.943584 + 0.331133i \(0.892569\pi\)
\(594\) 0 0
\(595\) −11.8390 −0.485353
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.2898 −0.461289 −0.230644 0.973038i \(-0.574083\pi\)
−0.230644 + 0.973038i \(0.574083\pi\)
\(600\) 0 0
\(601\) 18.9215i 0.771822i −0.922536 0.385911i \(-0.873887\pi\)
0.922536 0.385911i \(-0.126113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.3871i 0.422297i
\(606\) 0 0
\(607\) 14.0925i 0.571996i 0.958230 + 0.285998i \(0.0923250\pi\)
−0.958230 + 0.285998i \(0.907675\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 25.7559 1.04197
\(612\) 0 0
\(613\) −19.7088 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.721275i 0.0290374i 0.999895 + 0.0145187i \(0.00462161\pi\)
−0.999895 + 0.0145187i \(0.995378\pi\)
\(618\) 0 0
\(619\) −12.8736 −0.517435 −0.258718 0.965953i \(-0.583300\pi\)
−0.258718 + 0.965953i \(0.583300\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.15155 0.206393
\(624\) 0 0
\(625\) 9.19614 0.367846
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.2377 0.607569
\(630\) 0 0
\(631\) 25.4402 1.01276 0.506380 0.862311i \(-0.330983\pi\)
0.506380 + 0.862311i \(0.330983\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −23.4424 −0.930284
\(636\) 0 0
\(637\) 6.83873i 0.270960i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 42.9562 1.69667 0.848333 0.529463i \(-0.177606\pi\)
0.848333 + 0.529463i \(0.177606\pi\)
\(642\) 0 0
\(643\) −13.6583 −0.538630 −0.269315 0.963052i \(-0.586797\pi\)
−0.269315 + 0.963052i \(0.586797\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.1800i 1.02924i −0.857418 0.514621i \(-0.827933\pi\)
0.857418 0.514621i \(-0.172067\pi\)
\(648\) 0 0
\(649\) 10.3541i 0.406435i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.5958i 0.571177i −0.958352 0.285588i \(-0.907811\pi\)
0.958352 0.285588i \(-0.0921890\pi\)
\(654\) 0 0
\(655\) −2.36143 −0.0922689
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 31.1753 1.21442 0.607208 0.794543i \(-0.292290\pi\)
0.607208 + 0.794543i \(0.292290\pi\)
\(660\) 0 0
\(661\) 7.62562i 0.296602i 0.988942 + 0.148301i \(0.0473805\pi\)
−0.988942 + 0.148301i \(0.952620\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.08253 9.15510i 0.235870 0.355020i
\(666\) 0 0
\(667\) 27.8904i 1.07992i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.304448i 0.0117531i
\(672\) 0 0
\(673\) 10.3195i 0.397786i −0.980021 0.198893i \(-0.936265\pi\)
0.980021 0.198893i \(-0.0637346\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −12.0089 −0.461541 −0.230770 0.973008i \(-0.574125\pi\)
−0.230770 + 0.973008i \(0.574125\pi\)
\(678\) 0 0
\(679\) 23.5375i 0.903288i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.7105 1.02205 0.511024 0.859566i \(-0.329266\pi\)
0.511024 + 0.859566i \(0.329266\pi\)
\(684\) 0 0
\(685\) −12.3524 −0.471961
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.64597i 0.291288i
\(690\) 0 0
\(691\) 30.9230 1.17637 0.588184 0.808727i \(-0.299843\pi\)
0.588184 + 0.808727i \(0.299843\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.612726i 0.0232420i
\(696\) 0 0
\(697\) 21.6532i 0.820174i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.8974i 0.600438i −0.953870 0.300219i \(-0.902940\pi\)
0.953870 0.300219i \(-0.0970597\pi\)
\(702\) 0 0
\(703\) −7.82869 + 11.7833i −0.295265 + 0.444416i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.91137i 0.297538i
\(708\) 0 0
\(709\) −4.99467 −0.187579 −0.0937893 0.995592i \(-0.529898\pi\)
−0.0937893 + 0.995592i \(0.529898\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.6693 0.811523
\(714\) 0 0
\(715\) 5.78695i 0.216420i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.9681i 0.856566i −0.903645 0.428283i \(-0.859119\pi\)
0.903645 0.428283i \(-0.140881\pi\)
\(720\) 0 0
\(721\) 10.8711i 0.404863i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −13.6554 −0.507149
\(726\) 0 0
\(727\) 14.1434 0.524549 0.262275 0.964993i \(-0.415527\pi\)
0.262275 + 0.964993i \(0.415527\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 14.6548i 0.542028i
\(732\) 0 0
\(733\) −39.4162 −1.45587 −0.727935 0.685646i \(-0.759520\pi\)
−0.727935 + 0.685646i \(0.759520\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.59699 0.132497
\(738\) 0 0
\(739\) 19.5611 0.719567 0.359784 0.933036i \(-0.382850\pi\)
0.359784 + 0.933036i \(0.382850\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −37.3997 −1.37206 −0.686031 0.727573i \(-0.740648\pi\)
−0.686031 + 0.727573i \(0.740648\pi\)
\(744\) 0 0
\(745\) −6.43084 −0.235608
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −35.9387 −1.31317
\(750\) 0 0
\(751\) 21.7343i 0.793095i 0.918014 + 0.396547i \(0.129792\pi\)
−0.918014 + 0.396547i \(0.870208\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −21.4617 −0.781073
\(756\) 0 0
\(757\) 51.2731 1.86355 0.931776 0.363034i \(-0.118259\pi\)
0.931776 + 0.363034i \(0.118259\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 10.2733i 0.372407i 0.982511 + 0.186203i \(0.0596184\pi\)
−0.982511 + 0.186203i \(0.940382\pi\)
\(762\) 0 0
\(763\) 28.4743i 1.03084i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 44.0885i 1.59194i
\(768\) 0 0
\(769\) 6.40479 0.230963 0.115481 0.993310i \(-0.463159\pi\)
0.115481 + 0.993310i \(0.463159\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 29.4767 1.06020 0.530101 0.847935i \(-0.322154\pi\)
0.530101 + 0.847935i \(0.322154\pi\)
\(774\) 0 0
\(775\) 10.6095i 0.381105i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.7444 + 11.1248i 0.599930 + 0.398586i
\(780\) 0 0
\(781\) 18.4003i 0.658416i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.02917i 0.143807i
\(786\) 0 0
\(787\) 22.7715i 0.811717i 0.913936 + 0.405859i \(0.133028\pi\)
−0.913936 + 0.405859i \(0.866972\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −33.8427 −1.20331
\(792\) 0 0
\(793\) 1.29636i 0.0460351i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.4065 0.439462 0.219731 0.975561i \(-0.429482\pi\)
0.219731 + 0.975561i \(0.429482\pi\)
\(798\) 0 0
\(799\) 25.1730 0.890556
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 14.8503i 0.524054i
\(804\) 0 0
\(805\) 19.8786 0.700630
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 29.9907i 1.05442i 0.849736 + 0.527209i \(0.176762\pi\)
−0.849736 + 0.527209i \(0.823238\pi\)
\(810\) 0 0
\(811\) 23.8227i 0.836529i −0.908325 0.418265i \(-0.862638\pi\)
0.908325 0.418265i \(-0.137362\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.3413i 0.817612i
\(816\) 0 0
\(817\) −11.3325 7.52919i −0.396475 0.263413i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.9274i 0.555870i −0.960600 0.277935i \(-0.910350\pi\)
0.960600 0.277935i \(-0.0896499\pi\)
\(822\) 0 0
\(823\) 36.1294 1.25939 0.629696 0.776842i \(-0.283179\pi\)
0.629696 + 0.776842i \(0.283179\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.3970 0.848366 0.424183 0.905576i \(-0.360561\pi\)
0.424183 + 0.905576i \(0.360561\pi\)
\(828\) 0 0
\(829\) 49.1297i 1.70634i −0.521630 0.853172i \(-0.674676\pi\)
0.521630 0.853172i \(-0.325324\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.68394i 0.231585i
\(834\) 0 0
\(835\) 19.8870i 0.688219i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.31351 −0.0798713 −0.0399357 0.999202i \(-0.512715\pi\)
−0.0399357 + 0.999202i \(0.512715\pi\)
\(840\) 0 0
\(841\) −16.4831 −0.568383
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.7593i 0.370132i
\(846\) 0 0
\(847\) −22.9703 −0.789270
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −25.5853 −0.877054
\(852\) 0 0
\(853\) −0.259187 −0.00887438 −0.00443719 0.999990i \(-0.501412\pi\)
−0.00443719 + 0.999990i \(0.501412\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −37.6511 −1.28614 −0.643068 0.765809i \(-0.722339\pi\)
−0.643068 + 0.765809i \(0.722339\pi\)
\(858\) 0 0
\(859\) 18.7464 0.639618 0.319809 0.947482i \(-0.396381\pi\)
0.319809 + 0.947482i \(0.396381\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −40.0854 −1.36452 −0.682262 0.731108i \(-0.739004\pi\)
−0.682262 + 0.731108i \(0.739004\pi\)
\(864\) 0 0
\(865\) 18.0589i 0.614023i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8.03104 0.272434
\(870\) 0 0
\(871\) 15.3162 0.518970
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 22.3409i 0.755260i
\(876\) 0 0
\(877\) 56.1594i 1.89637i 0.317721 + 0.948184i \(0.397082\pi\)
−0.317721 + 0.948184i \(0.602918\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.653276i 0.0220094i −0.999939 0.0110047i \(-0.996497\pi\)
0.999939 0.0110047i \(-0.00350298\pi\)
\(882\) 0 0
\(883\) 47.6956 1.60509 0.802543 0.596595i \(-0.203480\pi\)
0.802543 + 0.596595i \(0.203480\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −43.3746 −1.45638 −0.728189 0.685377i \(-0.759638\pi\)
−0.728189 + 0.685377i \(0.759638\pi\)
\(888\) 0 0
\(889\) 51.8411i 1.73869i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.9331 + 19.4662i −0.432790 + 0.651412i
\(894\) 0 0
\(895\) 10.4644i 0.349788i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.72494i 0.324345i
\(900\) 0 0
\(901\) 7.47291i 0.248959i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.53965 −0.317109
\(906\) 0 0
\(907\) 40.4286i 1.34241i −0.741272 0.671205i \(-0.765777\pi\)
0.741272 0.671205i \(-0.234223\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 17.5325 0.580879 0.290439 0.956893i \(-0.406199\pi\)
0.290439 + 0.956893i \(0.406199\pi\)
\(912\) 0 0
\(913\) −0.349952 −0.0115817
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.22213i 0.172450i
\(918\) 0 0
\(919\) −21.3638 −0.704726 −0.352363 0.935863i \(-0.614622\pi\)
−0.352363 + 0.935863i \(0.614622\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 78.3498i 2.57891i
\(924\) 0 0
\(925\) 12.5268i 0.411880i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.941448i 0.0308879i −0.999881 0.0154439i \(-0.995084\pi\)
0.999881 0.0154439i \(-0.00491616\pi\)
\(930\) 0 0
\(931\) 5.16868 + 3.43400i 0.169397 + 0.112545i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.65597i 0.184970i
\(936\) 0 0
\(937\) −26.4685 −0.864688 −0.432344 0.901709i \(-0.642313\pi\)
−0.432344 + 0.901709i \(0.642313\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 35.8796 1.16964 0.584821 0.811162i \(-0.301165\pi\)
0.584821 + 0.811162i \(0.301165\pi\)
\(942\) 0 0
\(943\) 36.3574i 1.18396i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.0432i 0.781298i 0.920540 + 0.390649i \(0.127749\pi\)
−0.920540 + 0.390649i \(0.872251\pi\)
\(948\) 0 0
\(949\) 63.2333i 2.05264i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −43.6479 −1.41389 −0.706947 0.707267i \(-0.749928\pi\)
−0.706947 + 0.707267i \(0.749928\pi\)
\(954\) 0 0
\(955\) −4.57775 −0.148133
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 27.3164i 0.882091i
\(960\) 0 0
\(961\) 23.4442 0.756266
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −20.2050 −0.650422
\(966\) 0 0
\(967\) −21.1057 −0.678713 −0.339356 0.940658i \(-0.610209\pi\)
−0.339356 + 0.940658i \(0.610209\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.98067 −0.0635627 −0.0317814 0.999495i \(-0.510118\pi\)
−0.0317814 + 0.999495i \(0.510118\pi\)
\(972\) 0 0
\(973\) 1.35500 0.0434392
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.0586 0.641732 0.320866 0.947125i \(-0.396026\pi\)
0.320866 + 0.947125i \(0.396026\pi\)
\(978\) 0 0
\(979\) 2.46110i 0.0786571i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −27.0644 −0.863222 −0.431611 0.902060i \(-0.642055\pi\)
−0.431611 + 0.902060i \(0.642055\pi\)
\(984\) 0 0
\(985\) 16.9409 0.539781
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.6065i 0.782443i
\(990\) 0 0
\(991\) 6.52113i 0.207151i 0.994622 + 0.103575i \(0.0330283\pi\)
−0.994622 + 0.103575i \(0.966972\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12.2544i 0.388491i
\(996\) 0 0
\(997\) −7.46523 −0.236426 −0.118213 0.992988i \(-0.537717\pi\)
−0.118213 + 0.992988i \(0.537717\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.f.c.1025.7 20
3.2 odd 2 5472.2.f.d.1025.13 yes 20
4.3 odd 2 inner 5472.2.f.c.1025.8 yes 20
12.11 even 2 5472.2.f.d.1025.14 yes 20
19.18 odd 2 5472.2.f.d.1025.7 yes 20
57.56 even 2 inner 5472.2.f.c.1025.13 yes 20
76.75 even 2 5472.2.f.d.1025.8 yes 20
228.227 odd 2 inner 5472.2.f.c.1025.14 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5472.2.f.c.1025.7 20 1.1 even 1 trivial
5472.2.f.c.1025.8 yes 20 4.3 odd 2 inner
5472.2.f.c.1025.13 yes 20 57.56 even 2 inner
5472.2.f.c.1025.14 yes 20 228.227 odd 2 inner
5472.2.f.d.1025.7 yes 20 19.18 odd 2
5472.2.f.d.1025.8 yes 20 76.75 even 2
5472.2.f.d.1025.13 yes 20 3.2 odd 2
5472.2.f.d.1025.14 yes 20 12.11 even 2